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Abstract: The incidence of heatstroke has been increasing in Japan, and future climate change is likely
to increase heatstroke risk. We therefore developed a method to quantify the spatial distribution of
outdoor heatstroke risk and predicted future changes in this risk considering the predicted climate
change in Sendai, Japan. Heatstroke risk was quantified by assessing hazard, vulnerability and
exposure. Daily maximum wet-bulb globe temperature (WBGT) was selected as the hazard index.
The distribution of WBGT was predicted by mesoscale meteorological simulations using the Weather
Research and Forecasting (WRF) model. The relationship between daily maximum WBGT and the
daily incidence rate was approximated by analyzing emergency transport data. This relationship was
selected as the vulnerability index. Using the hazard and vulnerability indices, a spatial distribution
of the monthly incidence rate was obtained. Finally, the total number of heatstroke patients per month
was estimated by multiplying the monthly incidence rate by the population density. The outdoor
heatstroke risk for August was then estimated for current (2000s) and near-future (2030s) climatic
conditions in Sendai. WBGT at coastal areas in the 2030s increased owing to increases in humidity,
while WBGT at inland areas increased owing to increases in air temperature. This increase in WBGT
drove increases in heatstroke risk.

Keywords: heatstroke risk; wet-bulb globe temperature (WBGT); Weather Research and Forecasting
(WRF) model; global climate model; future prediction; climate change; Sendai

1. Introduction

Urban areas are subject to increasing temperatures due to urbanization and global warming.
The Intergovernmental Panel on Climate Change (IPCC) has concluded that warming of 0.3 to 4.8 ◦C by
the end of the 21st century is probable [1]. Global warming and urban heat island effects cause serious
problems, including increases in energy demands for cooling indoor spaces. A working group on
future standard weather predictions using a global climate model (GCM) at the Architectural Institute
of Japan has developed a method for constructing standard weather data for building-thermal-load
calculations [2,3]. The group used data from a GCM, the Model for Interdisciplinary Research on
Climate version 4 (MIROC4h) [4], as initial and boundary conditions for a regional climate model
(RCM), and the Weather Research and Forecasting (WRF) model as an RCM. MIROC4h data were
physically downscaled using the WRF model. Using the WRF simulation results, standard weather
data were constructed for the near future (2030s) for major cities in Japan such as Tokyo, Osaka,
Nagoya and Sendai.
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Urbanization causes temperature increases in urban areas, aggravating the increases caused
by climate change. The incidence of heatstroke in Sendai, which is located about 300 km north of
Tokyo, has been rapidly increasing. Figure 1 shows the number of heatstroke patients transported
by ambulances during July and August 2002–2015, in Sendai [5]. During the summer of 2010, Japan
experienced a serious heat wave, and the number of heatstroke patients transported by ambulances in
Sendai jumped to about ten times that of previous years. Since 2010, the number of heatstroke patients
has remained elevated.
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reflective materials on vertical walls from the viewpoints of both mitigation and adaptation [10]. 
Morini et al. investigated the effectiveness of albedo increase as a strategy to mitigate the urban 
heat island with WRF as an example in Terni, Italy [15]. 

Previous research has assessed the mesoscale thermal environment from a human 
biometeorological point of view for various regions, based on thermal indices, including the 
physiological equivalent temperature, weather suitability index, humidex, and wet-bulb globe 
temperature (WBGT) (e.g., [16–18]). The Ministry of Health, Labor and Welfare of Japan established 
a heatstroke prevention guideline with WBGT [19], by following International Organization for 
Standardization (ISO) 7243 [20]. Moreover, several previous studies have estimated the risk of 
heatstroke in summer using WBGT as a thermal index [21–23]. Kusaka et al. conducted dynamical 
downscaling using the WRF model and the pseudo-global-warming data for the 2000s and 2070s 
[21]. They estimated the WBGT for some major Japanese cities from WRF outputs to provide a 
thermal index for the assessment of heat stress on humans, and concluded that daytime safe hours 
for strenuous exercise will be frequently lost in the future because of increases in the WBGT. Ohashi et 
al. showed that the incidence rate of heatstroke increased rapidly when the WBGT exceeded 27–28 °C 
[22]. They used the simulated daily maximum WBGT as an index for outdoor heat stress and 
estimated the heatstroke risk for Tokyo, Japan, in 2010. However, the accuracy of the method used to 
estimate the risk was not validated. Kikumoto et al. estimated both the current and near-future 
incidence rates of heatstroke in the Tokyo metropolitan area [23], and predicted that the incidence 
rate in August would increase by 63% from the 2000s to the 2030s. However, the effects of 
population distribution were not discussed, and thus the total number of heatstroke patients in 
summer was not assessed. The total number of heatstroke patients should be evaluated in Sendai 
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Figure 1. Annual variations in the number of heatstroke patients transported by ambulances in Sendai
from 2002 to 2015.

To mitigate the urban heat island effect and adapt to urban warming, various countermeasures
have been proposed and assessed [6–15]. Yumino et al. assessed the impact of greening and highly
reflective materials on vertical walls from the viewpoints of both mitigation and adaptation [10].
Morini et al. investigated the effectiveness of albedo increase as a strategy to mitigate the urban heat
island with WRF as an example in Terni, Italy [15].

Previous research has assessed the mesoscale thermal environment from a human
biometeorological point of view for various regions, based on thermal indices, including the
physiological equivalent temperature, weather suitability index, humidex, and wet-bulb globe
temperature (WBGT) (e.g., [16–18]). The Ministry of Health, Labor and Welfare of Japan established
a heatstroke prevention guideline with WBGT [19], by following International Organization for
Standardization (ISO) 7243 [20]. Moreover, several previous studies have estimated the risk of
heatstroke in summer using WBGT as a thermal index [21–23]. Kusaka et al. conducted dynamical
downscaling using the WRF model and the pseudo-global-warming data for the 2000s and 2070s [21].
They estimated the WBGT for some major Japanese cities from WRF outputs to provide a thermal index
for the assessment of heat stress on humans, and concluded that daytime safe hours for strenuous
exercise will be frequently lost in the future because of increases in the WBGT. Ohashi et al. showed that
the incidence rate of heatstroke increased rapidly when the WBGT exceeded 27–28 ◦C [22]. They used
the simulated daily maximum WBGT as an index for outdoor heat stress and estimated the heatstroke
risk for Tokyo, Japan, in 2010. However, the accuracy of the method used to estimate the risk was not
validated. Kikumoto et al. estimated both the current and near-future incidence rates of heatstroke in
the Tokyo metropolitan area [23], and predicted that the incidence rate in August would increase by
63% from the 2000s to the 2030s. However, the effects of population distribution were not discussed,
and thus the total number of heatstroke patients in summer was not assessed. The total number of
heatstroke patients should be evaluated in Sendai where the average temperature in August from
2000–2009 was approximately 3.5 ◦C lower than Tokyo, because the heatstroke risk may possibly
increase in the future.
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This study proposed a method for estimating the heatstroke risk index, which is here defined as
the total number of outdoor heatstroke patients transported by ambulances per square kilometer per
month. To validate the proposed method, the number of heatstroke patients in Sendai was estimated
for 2010 and compared with recorded observation data. Then, the impact of climate change on
heatstroke risk in Sendai was quantitatively evaluated by applying the proposed method for current
(2000s) and near-future (2030s) climatic conditions.

2. Materials and Methods

2.1. Method for Heatstroke Risk Estimation

2.1.1. Conceptual Model for Disaster Risk Evaluation

We developed a method to evaluate the heatstroke risk by following the conceptual model used
to evaluate disaster risks in the field of disaster prevention [24].

Figure 2 illustrates the conceptual model for disaster risk evaluation. In the field of disaster
prevention, the risk of disasters, such as earthquakes, hurricanes or floods, is largest for locations
where the hazard, vulnerability and exposure intersect [24]. The term “hazard” incorporates dangerous
factors that can cause natural disasters, and “vulnerability” represents potential weaknesses that
increase the disaster risk for a region. Vulnerability is often considered to comprise two factors:
physical and social vulnerability. Physical, or technological, vulnerability increases with weaknesses
in urban structures, foundations or infrastructure. Social vulnerability increases with the high average
age of the population, lack of experience with a given disaster, and any collapse in community cohesion.
The term “exposure” represents the presence of people in places that could be adversely affected by a
hazard, and is generally quantified as the population in the region of interest.
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2.1.2. Development of a Method for Quantitatively Estimating the Heatstroke Risk

In this study, the heatstroke risk was defined as the number of outdoor heatstroke patients
transported by ambulances for a given location and time period. The risk was estimated based on
the disaster risk evaluation concept described above. The three indices of hazard, vulnerability and
exposure were defined as the daily maximum WBGT, the daily heatstroke incidence rate in daytime
population per 1,000,000 persons (IRday), which is a function of the daily maximum WBGT, and the
daytime population density, respectively.

The WBGT is an empirical index widely used to evaluate the heat stress for outdoor activities in
hot or humid weather [25]. The daily maximum WBGT was selected as the hazard index for calculating
the heatstroke risk because of the strong relationship between the maximum WBGT on a given day
and the number of heatstroke patients. The outdoor WBGT is calculated from Equation (1) [26,27]:

WBGT = 0.1Ta + 0.7Tw + 0.2Tg (1)
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where Ta is the dry-bulb temperature (◦C), Tw is the wet-bulb temperature (◦C), and Tg is the globe
temperature (◦C).

Figure 3 shows the flowchart for WBGT calculations using the outputs from the WRF model.
Ta was set to 2-m air temperature, which was obtained directly from the WRF simulations. Tw and
Tg were estimated from several WRF outputs. Several models for estimating Tw have been proposed.
The Ministry of the Environment in Japan estimated Tw using the equations proposed by Iribarne
and Godson [28]. Kikumoto et al. employed the Sprung formula to estimate Tw using the outputs
from the WRF model and calculated the WBGT [23]. In this study, Tw was estimated using the same
equations employed by the Ministry of the Environment in Japan, using air temperature, absolute
humidity, and atmospheric pressure [28,29]. Similarly, some models for estimating Tg have also been
developed [30,31]. In this study, Equation (2), which was proposed by Tonouchi and Murayama [30],
was selected to estimate Tg. Equation (2) is an empirical formula analyzed from measurement data
recorded at meteorological stations in Japan:

Tg =

{
Ta + 12.1 + 0.0067 S − 2.40 v1/2 (S > 400)
Ta − 0.3 + 0.0256 S − 0.18 v1/2 (S ≤ 400)

(2)

where S is global solar radiation (W/m2) and v is wind velocity (m/s). Equation (2) was employed by
Kikumoto et al. to estimate Tg with WRF simulation outputs [23]. The solar radiation to the ground
surface and the horizontal wind velocity at 10 m were obtained from WRF simulations and used for S
and v, respectively. Finally, hourly estimates of the WBGT were calculated and the daily maximum
WBGT was used as the hazard index for heatstroke risk evaluations.
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Figure 3. Flowchart for outdoor wet-bulb globe temperature (WBGT) calculations.

To define the vulnerability index, the relationship between the observed daily maximum WBGT
and the actual number of heatstroke patients transported by ambulance was analyzed. Emergency
transport data were provided by the fire departments in five major Japanese cities: Tokyo, Nagoya,
Osaka, Fukuoka and Sendai. The data included the transport date and incidence location for each
heatstroke patient. The data period was from January to December, 2010–2012, for all cities except
Tokyo, where data were only available from May to September, 2010–2011. We extracted all outdoor
cases from the transport data to estimate the vulnerability index in each city. The daily maximum
WBGT for each city was estimated using hourly meteorological observation data from automated
meteorological data acquisition systems (AMeDAS) at each district meteorological observatory
provided by the Japanese Meteorological Agency. The relationship between the daily maximum
WBGT and the number of heatstroke patients transported by ambulances in each city was then
obtained. Furthermore, to normalize the number of heatstroke patients transported by ambulance to
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the number of heatstroke patients per one million people, the daytime population data were estimated
based on the Population Census of 2010 [32] and the Economic Census of 2009 [33]. The IRday value for
a given daily maximum WBGT (IRday(Wmax,o)) is expressed in Equation (3):

IRday(Wmax,o) =
Nα(Wmax,o)

Nt(Wmax,o)× Np
× 106 (3)

where Wmax,o is the daily maximum WBGT at 1 ◦C interval, Nα(Wmax,o) is the total recorded number of
outdoor heatstroke patients transported by ambulances in a given period when the observed daily
maximum WBGT was between (Wmax,o − 0.5 ◦C) and (Wmax,o + 0.5 ◦C) (persons), Nt(Wmax,o) is the
number of days in a given period for which the daily maximum WBGT is between (Wmax,o − 0.5 ◦C)
and (Wmax,o + 0.5 ◦C) (days), and Np is the daytime population in a given area (persons). Figure 4
illustrates the emergency transport rates for heatstroke cases for five major cities as a function of
the daily maximum WBGT. The figure indicates that people living in Sendai are more vulnerable to
heatstroke compared with people in other cities. This may be due to a lack of acclimatization to severe
hot weather in Sendai’s population. Among the five cities, Sendai lies in the highest latitude region,
and the average temperature in Sendai in August from 2000 to 2009 was 3.5 ◦C lower than in Tokyo.
The threshold value of the daily maximum WBGT, i.e., the values at which the number of heatstroke
patients increased most rapidly, was 28.5 ◦C in Sendai.
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Figure 4. Relationship between the daily maximum WBGT and the daily heatstroke incidence
rate (IRday).

Figure 5 illustrates the spatial distribution of the daytime population density per square kilometer
in Miyagi prefecture (where Sendai is located) based on the Population Census of 2010 [32] and the
Economic Census of 2009 [33]. These data were used to obtain the exposure index. To analyze only
the impact of climate change on the future heatstroke risk, a constant population density was used.
Therefore, the same daytime population density distribution was used as the exposure index in both
current and near-future estimations.
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2.1.3. Procedure for Estimating Heatstroke Risk

The heatstroke risk index is given by the absolute number of heatstroke patients, which was
estimated as follows:

IRday =

{
0.10 Wmax − 2.01 (Wmax < 28.3)
1.64 Wmax − 45.82 (Wmax ≥ 28.3)

(4)

IRmonth = ∑day=max
day=1 IRday (5)

Risk = (IRmonth × PD)/106 (6)

where Wmax is the estimated daily maximum WBGT using the WRF model (◦C), IRmonth is the
monthly incidence rate (cases/(1,000,000 persons)/month), Risk is the number of heatstroke patients
transported by ambulances per square kilometer per month (persons/km2/month), and PD is the
daytime population density for a given computational mesh (persons/km2). Equation (4) is the linear
approximation of the risk curve for Sendai, which was obtained in this study by analyzing the actual
emergency transport data and meteorological observation data as shown in Figure 4. Equation (5)
means that the monthly incidence rate can be obtained by summing IRday over a month. Then, the
monthly total number of heatstroke patients can be calculated by multiplying IRmonth by daytime
population density using Equation (6).

In this study, the daily maximum WBGT for each day and each computational mesh was estimated
from the WRF simulation output. By substituting the daily maximum WBGT into Equation (4), the
incidence rate for each day (IRday) was obtained. IRmonth for August was then calculated by substituting
IRday into Equation (5). Finally, the monthly total number of heatstroke patients transported by
ambulances per square kilometer was estimated by substituting IRmonth and the daytime population
density into Equation (6).

2.2. Outline of Mesoscale Meteorological Simulations Using the WRF Model

Mesoscale meteorological simulations were performed using the WRF model to obtain
distributions of the daily maximum WBGT (the hazard index). Figure 6 shows the computational
domains. A system of three nested grids was used in this study. The target area was Sendai, located
in Miyagi Prefecture in the Tohoku region, with a population of around a million. Sendai is located
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approximately 300 km north of Tokyo. The east side of Sendai faces the Pacific Ocean, and the center
of Sendai is 10 km from the coast.
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Detailed conditions used for the domain settings are summarized in Table 1. The horizontal
resolution of the smallest domain, namely Domain 3, was set to 1 km. Figure 6 shows the land-use
distribution in Domain 3 used for WRF simulations. Land-use data for Domain 3 were taken from
the National Land Numerical Information for Japan [34], which provides more accurate and higher
resolution land-use data than the U.S. Geological Survey (USGS) land-use data employed for Domains 1
and 2.

Table 1. Domain settings for the WRF simulations.

Domain Size
(X × Y)

Grid Arrangement
(X × Y × Z)

Grid Size
(X × Y)

Domain 1 1800 km × 1800 km 72 × 72 × 34 25 km × 25 km
Domain 2 750 km × 750 km 150 × 150 × 34 5 km × 5 km
Domain 3 120 km × 120 km 120 × 120 × 34 1 km × 1 km

First, we validated the accuracy of the proposed method for evaluating the heatstroke risk, as
detailed in Section 3.1. A WRF simulation was run to reproduce the actual summer conditions of
2010, using the National Centers for Environmental Prediction (NCEP) Final (FNL) Operational Global
Analysis data [35] as the initial conditions in all computational domains and as the boundary conditions
for the largest domain.

Second, we estimated the heatstroke risk under current (2000s) and future (2030s) climatic
conditions based on the proposed method, as detailed in Sections 3.2 and 3.3. We selected MIROC4h,
which follows the representative concentration pathways (RCP) 4.5 scenario [36], as the GCM.
The horizontal resolution of MIROC4h data is approximately 60 km × 60 km, which cannot provide
detailed distributions of the thermal environment on an urban scale. Hence, we used the WRF model
to conduct simulations with a finer grid resolution to dynamically downscale MIROC4h data to predict
climatic conditions on an urban scale. In this study, August 2007 and August 2034 of MIROC4h data
were selected to represent current (2000s) and near-future (2030s) summer climates, respectively.

Other calculation conditions and physics schemes used in this study are summarized in Tables 2
and 3, respectively. We ran each WRF simulation from 15 July to 1 September, with the first two weeks
used as spin-up.
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Table 2. Calculation conditions for the WRF simulations.

Items Content

Date 21:00 (JST) 15 July to 21:00 1 September
Number of Vertical Grids 34 (from the surface to the 50 hPa level)

Time Interval Domain 1: 90 s; Domain 2: 30 s; Domain 3: 6 s
Topographic Data Domains 1 and 2: U.S. Geological Survey

Domain 3: Japanese National Land Numerical Information [34]
Nesting One-way nesting

Table 3. Physics schemes for the WRF simulations.

Items Content

Microphysics WRF single-moment six-class scheme [37]
Shortwave Radiation Dudhia scheme [38]
Longwave Radiation Rapid radiative transfer model scheme [39]

Land Surface Noah land surface model [40]
+ Single-layer urban canopy model [41,42]

Planetary Boundary Layer Yonsei University scheme [43]
Cumulus Parameterization Domains 1 and 2: Kain-Fritsch (new Eta) scheme [44]

Domain 3: None

3. Results and Discussions

3.1. Method Validation for Heatstroke Risk Estimation in an Actual Situation

To validate the accuracy of the proposed method for estimating the heatstroke risk, a meteorological
simulation was conducted using the WRF model with the NCEP FNL Operational Global Analysis
data to reproduce actual conditions for Sendai in August 2010.

Figure 7 shows the average diurnal variations of air temperature and absolute humidity, which
are important meteorological factors affecting WBGT calculations, at Sendai station in August 2010.
The error bars in Figure 7 show standard deviations. The WRF simulation produced diurnal variations
of air temperature that were similar to the observed data. Although the average temperature
for nighttime predicted by WRF was 1 ◦C smaller than that by AMeDAS at the Sendai District
Meteorological Observatory near Sendai station, the diurnal peak around noon predicted by WRF
corresponded well with the observed value. In the morning, humidity predicted by the WRF was
slightly lower than that by AMeDAS. However, data from both models showed very good agreement
in the afternoon.

Figure 8 illustrates daily variations in the daily maximum WBGT at the Sendai District
Meteorological Observatory and the total number of outdoor heatstroke patients transported by
ambulance in Sendai city for August 2010. Although the monthly average value of the daily maximum
WBGT from the WRF simulation is 0.9 ◦C lower than that from AMeDAS, the trend in the daily
maximum WBGT variations predicted by the WRF model corresponds well with that calculated from
AMeDAS data.
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Figure 7. Mean diurnal variations of meteorological factors at Sendai station for August 2010, (a) air
temperature; (b) absolute humidity.

The total number of outdoor heatstroke patients predicted by the proposed method for
August 2010 in Sendai was 64 persons, approximately 40% less than the observed total number.
This difference was mainly caused by a gross underestimation of the number of heatstroke patients
from 5 August to 11 August. However, the trend of the number of heatstroke patients obtained from
WRF well reproduced the actual recorded number except for several special days. One of the biggest
summer festivals in Sendai was held from 5 August to 8 August. Over two million people participated
in this festival during the period, in contrast to the usual population of one million. As a result, the
daytime population was doubled. Therefore, the value of exposure index might be larger than that
used in this model for this period. In addition, the underestimation of the number of heatstroke
patients could be attributed to the fact that the accumulation of heat stress over many days was not
considered in our estimation method. In the early part of August, hot days—when the daily maximum
WBGT value exceeded 28.5 ◦C (the threshold value for heatstroke risk in Sendai)—continued for
around two weeks. Although our proposed method could not well reproduce the number of outdoor
heatstroke patients from 5 August to 11 August, it accounted for 90% of the actual number of heatstroke
patients for the remaining periods. Thus, we confirm that our proposed method is useful for heatstroke
risk evaluation.
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Figure 8. Daily variations in the number of outdoor heatstroke patients transported by ambulances
and the daily maximum WBGT for August 2010.

3.2. Results of Current and Near-Future Meteorological Simulations

To understand the impact of climate change on the heatstroke risk, we conducted a downscaling
simulation for the MIROC4h data using the WRF model for current and near-future climatic conditions.

3.2.1. Meteorological Factors

Some meteorological factors, such as temperature and humidity, were obtained from the WRF
simulations. Figure 9 illustrates the spatial distribution for the monthly average 2-m air temperature
and absolute humidity in Domain 3 at 12:00 p.m. Japan Standard Time (JST) in 2034. The distributions
of the differences between 2007 and 2034 (2034 data minus 2007 data) for monthly average 2-m air
temperature and humidity are shown in Figure 10.
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Figure 9. Monthly means for meteorological factors at 12:00 p.m. Japan Standard Time (JST) in
August 2034, (a) air temperature at 2-m height; (b) absolute humidity at 2-m height.

Figure 9a indicates that the average air temperature in all areas exceeded 28 ◦C at 12:00 p.m. (JST)
in August 2034, except for the mountainous western area of Sendai. Temperatures in the central part of
Sendai were higher than those on the eastern coast. In the future scenario, air temperature was higher
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for the entire area compared with 2007. In particular, temperatures of both the inland and coastal areas
of Sendai increased by about 1 ◦C, as shown in Figure 10a.

Humidity in the central part of Sendai was lower than in the surrounding areas (Figure 9b).
As the land use in this area was categorized as “urban (commercial),” the amount of transpiration
from plants may be lower than in other areas owing to a lower proportion of green spaces. In contrast,
humidity in the coastal area was much higher than in the central part of Sendai. This is probably
because sea breezes from the southeast (the daytime prevailing wind-direction in summer) transport
moisture from the sea. However, wind velocity around coastal and inland areas decreased in the future
scenario, and the absolute humidity increased, especially along the eastern coast and to the north of
Sendai (Figure 10b). This increase in humidity was mainly caused by an increase in evaporation due to
increased sea surface temperatures.
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3.2.2. Outdoor WBGT

Figures 11 and 12 illustrate the distribution of the monthly average outdoor WBGT for 12:00 p.m.
(JST) in August 2034, and changes in WBGTs between 2007 and 2034, respectively.

In Figure 11, areas where WBGT exceeded 28.5 ◦C (the threshold value for heatstroke risk in
Sendai) were found in the northern and southern inland areas of Sendai. However, WBGT in central
Sendai was slightly lower than in the surrounding areas. This is because humidity was lower in
central Sendai compared with the surrounding areas, even though the air temperatures were almost
equal. In the future scenario, the predicted WBGT increased in almost all areas, as shown in Figure 12.
Compared with 2007, the predicted WBGT was more than 1 ◦C higher at coastal areas, where a large
increase in humidity occurred between 2007 and 2034. On the other hand, the increases in WBGT
at inland areas, such as the western part of Sendai station, were mainly caused by increases in air
temperature. The effects of increased air temperature and humidity area are much stronger than the
effects of decreased wind velocity. These results indicate influential meteorological factors on WBGT
in each region. Such information can be used to select an appropriate countermeasure to effectively
decrease WBGT for each region.
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3.3. Estimation of the Outdoor Incidence Rate and Risk of Heatstroke

Figure 13 illustrates the spatial distribution of the monthly incidence rate per 1,000,000 persons
(IRmonth) for 2034. The potential risk for heatstroke was very high in the northern inland and southern
areas of Sendai, whereas IRmonth in central Sendai was relatively low. These results confirm that IRmonth
is predominantly affected by the WBGT distribution. Moreover, IRmonth increased in many places in
2034 compared with 2007 (Figure 14). In particular, the number of heatstroke patients is predicted to
increase by five or more persons per million in August 2034 compared with that in August 2007, in the
coastal areas, and in the northern and southern inland areas, of Sendai, where the WBGT increase rate
was the highest.

The distribution of the monthly absolute number of heatstroke patients transported by ambulances
(Risk (persons/km2/month)) for 2034 was obtained by multiplying IRmonth by the daytime population
density in each computational mesh (Figure 15). In addition, the change in Risk values between 2007
and 2034 is shown in Figure 16. By comparing Figures 5 and 15, Risk was found to be most affected
by population density, with the largest number of heatstroke patients transported by ambulances
observed in urban areas. Furthermore, Figure 16 shows that the predicted Risk values in urban areas
increased by more than 0.1 persons/km2 in 2034. Owing to the combination of increased IRmonth and
a high population density, the increases in Risk values were highest in urban areas. Some northern and
southern inland areas also had relatively high Risk values due to large increases in IRmonth.
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Following model validation, heatstroke risks for current (August 2007) and near-future (August 
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in both years showed that changes in climatic conditions were predominantly associated with 
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0.8 °C in central Sendai between 2007 and 2034. A larger temperature increase of 1.0 °C was 
observed for the inland area northwest of central Sendai, and for the coastal areas to the south. The 
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humidity increased between 2007 and 2034, especially along the eastern coastal and northern areas 
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August 2034 increased for almost all areas. In particular, WBGTs around central Sendai increased by 
more than 1 °C owing to the combined effect of increases in humidity and temperature.  

The outdoor heatstroke incidence rate in 2034 was larger than in 2007, especially in the north 
central and east coastal areas of Sendai. In these regions, WBGTs increased with increasing humidity 
and air temperature in 2034. Therefore, changes in meteorological factors caused increases in 
WBGTs and in the incidence rate of heatstroke. The total number of heatstroke patients increased in 
central Sendai, where the population density is high. The total number of heatstroke patients also 
increased in some parts of the northern and southern inland areas of Sendai, owing to large 
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Figure 16. Differences in the number of heatstroke patients (Risk) (2034 data minus 2007 data).

4. Conclusions

In this study, the increase in the number of heatstroke patients caused by extremely hot summer
conditions was regarded as a disaster, and a method for evaluating the outdoor heatstroke risk was
developed based on the concept that disasters occur when hazard, vulnerability and exposure intersect.
The accuracy of the proposed method was confirmed by comparing predictions for the number of
heatstroke patients estimated with the actual number of patients recorded in August 2010, in Sendai.

Following model validation, heatstroke risks for current (August 2007) and near-future
(August 2034) climatic conditions in Sendai, Japan, were estimated using WRF simulations to
dynamically downscale MIROC4h output data. Comparisons of the predicted results from the WRF
simulations in both years showed that changes in climatic conditions were predominantly associated
with increased WBGTs. The monthly average air temperature at 12:00 p.m. (JST) in August increased by
0.8 ◦C in central Sendai between 2007 and 2034. A larger temperature increase of 1.0 ◦C was observed
for the inland area northwest of central Sendai, and for the coastal areas to the south. The temperature
increases are driven by decreases in wind velocity for the Pacific Ocean. The absolute humidity
increased between 2007 and 2034, especially along the eastern coastal and northern areas of Sendai.
Alongside these climate changes, the monthly average WBGT at 12:00 p.m. (JST) in August 2034
increased for almost all areas. In particular, WBGTs around central Sendai increased by more than 1 ◦C
owing to the combined effect of increases in humidity and temperature.

The outdoor heatstroke incidence rate in 2034 was larger than in 2007, especially in the north
central and east coastal areas of Sendai. In these regions, WBGTs increased with increasing humidity
and air temperature in 2034. Therefore, changes in meteorological factors caused increases in WBGTs
and in the incidence rate of heatstroke. The total number of heatstroke patients increased in central
Sendai, where the population density is high. The total number of heatstroke patients also increased
in some parts of the northern and southern inland areas of Sendai, owing to large increases in the
heatstroke incidence rate.
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