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Abstract: In China, household CO2 emissions (HCEs) are increasing due to economic development
and accelerated urbanization. This paper details the spatial variations of per capita household CO2

emissions (PHCEs) in China and the factors impacting PHCEs using spatial statistical analysis and a
spatial panel data model for the period from 1997 to 2014. Our results indicate that (1) there has been
high provincial variation in rates of change across China, with some provinces’ PHCEs increasing
by an order of magnitude from 1997 to 2014; (2) the Global Moran’s I of PHCEs are above 0, and
the spatial differences between PHCEs are caused by the High-High cluster and Low-Low cluster
in China; (3) a 1% increase of per capita income, education level, and urbanization will result in
increases in PHCEs of 0.6990%, 0.0149%, and 0.0044%, respectively, whilst a 1% increase in household
size will result in a 0.0496% decrease in PHCEs. There are a large number of factors impacting CO2

emissions, while there is little specific guidance on the spatial variations and provincial characteristics
of CO2 emissions from the perspective of household consumption.

Keywords: per capita household CO2 emissions (PHCEs); panel data model; spatial variations;
determinants; China

1. Introduction

Global climate change is primarily caused by anthropogenic greenhouse gas emissions,
particularly CO2 emissions [1,2]. China is currently the largest CO2 emitter in the world and
continues to have rapid growth in CO2 emissions [3]. Facing fast-growing CO2 emissions, the Chinese
government established a goal of reducing its carbon intensity to 40% to 50% of 2005 levels by 2020 at
the Copenhagen Climate Conference in 2009 and vowed to reach its carbon emissions peak circa 2030
and make efforts to peak early during the APEC (Asia-Pacific Economic Cooperation) Summit in 2014.
While many of these emissions can be attributed to household energy usage, household consumption
will account for a rising portion of emissions in the coming decades as living standards improve [4–6].
Early evaluations of carbon emission reduction efforts focused on the industrial sector and evaluated
CO2 emissions from fossil fuels, but, recently, researchers have turned to studies of CO2 emissions
from household consumption [4,6–11], with per capita household CO2 emissions (PHCEs) being an
important point for climate change mitigation efforts in the future [12].

Previous studies of household CO2 emissions (HCEs) can be divided into three phases. During
the initial phase (1990 to 2000), scholars focused on analyzing carbon emissions from residential
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uses [13–15]. The second phase (2001 to 2010) featured the development of a variety of assessment
methods for carbon emissions from household consumption, including the Consumer Lifestyle
Approach [16,17], the IPCC Reference Approach (IPCC Reference Approach for estimating CO2

emissions) [1,18], and Input-output analysis [19,20]. In addition, household CO2 emissions were
divided into direct and indirect carbon emissions for the purpose of analysis [16,17,20]. The third
phase (2011 to the present) has seen the focus shift to the analysis of factors influencing household
CO2 emissions and measures to reduce CO2 emissions.

Studies of factors influencing HCEs have used a variety of approaches, including Logarithmic
Mean Divisia Index (LMDI) models [21–23], Stochastic Impacts by Regression on Population, Affluence
and Technology (STIRPAT) models [24,25], shapley decomposition [26], Structural Decomposition
Analysis (SDA) models [27], self-organizing feature map (SOFM) models [28], the Adaptive Weighting
Divisia (AWD) method [29], and multivariate analysis [30]. Although many scholars have explored
how household carbon emissions and the factors influencing their variation vary across time, few have
explored the spatial variations of PHCEs and their influencing factors. This paper contributes to the
understanding of the factors influencing PHCEs by evaluating spatial patterns.

In China, there is a rich source of literature on the spatial analysis of CO2 emissions from energy
consumption [31–33]. Based on Chinese provincial energy consumption data, Chuai et al. [31] identified
an increasing trend in the global spatial autocorrelation in carbon emissions. Similarly, for carbon
intensity, a growing spatial agglomeration based on Moran’s I has been identified [32]. However,
energy usage and CO2 emissions from the household sector accounted for 27% and 17%, respectively,
of total global emissions [34]. In China, estimates of CO2 emissions from households range from
35% [6] to 40% [4] of total emissions. To develop national and regional carbon reduction targets for the
future, it is essential to analyze the factors influencing household CO2 emissions for residents in China
by using a spatial perspective.

Recently, the relationship between CO2 emissions and the related influencing factors have been
analyzed using spatial panel data models at the global level [35–39], national level [40,41], and
provincial level [42–45]. There are numerous advantages to spatial panel data models, including
improved efficiency with increasing degrees of freedom, the capability of controlling individual
heterogeneity, and reduced the effects of collinearity among different variables [46]. Spatial panel data
analysis has been used to examine the factors influencing carbon emissions both in spatial and temporal
dimensions. For example, the relationship between economic development and CO2 emissions was
investigated by Du et al. [42], and the relationship between urbanization, energy consumption, and
carbon emissions was examined by Wang et al. [43]. Many factors affected CO2 emissions, including
population, economic factors, and social variables. This study investigates the impacts of population,
economic development, and technology on China’s PHCEs by constructing different forms of spatial
panel data models, including pooled regression models and variable intercepts models with both
constant and variable coefficients.

In this study, we compare PHCEs at the provincial level in China and their related influencing
factors (e.g., population, economic status, and technology) using a spatial panel data model. The paper
asks two questions. (1) What is the current distribution of PHCEs in China? We answer this through
the spatial analysis of a data set of provincial level PHCEs using measures of both global and local
spatial autocorrelation. (2) What factors have influenced this distribution of PHCEs? We answer this
question through use of a panel model to estimate the effects of factors likely to influence PHCEs.

The remainder of this article is organized as follows. Section 2 presents the data sources and
analytical methods. Section 3 evaluates the spatial distribution of PHCEs and discusses the influencing
factors based on a spatial panel data method. Finally, in Section 4, we offer some conclusions and give
primary policy recommendations related to PHCEs.
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2. Research Methods and Data Sources

2.1. Estimation of PHCEs

PCHEs can be divided into six parts in this work: coal, oil, gas, other fuels, electricity, heating,
and household consumption. Household CO2 emissions from coal, oil, gas, and other fuels are
calculated based on the IPCC reference approach [1]. Household CO2 emissions from electricity and
heating are calculated following the IPCC Reference Approach [1] and the National Development and
Reform Commission (NDRC) [47]. This follows a ‘twelfth five-year’ control scheme for greenhouse gas
emissions and includes the first ten industries in greenhouse gas emission accounting methods and
reporting guidelines [47]. Household CO2 emissions from other household consumption are calculated
by (1) Input-output analysis, which is similar to Bin and Dowlatabadi [16] and Wei et al. [17], and (2)
the Consumer Lifestyle Approach, following Liu et al. [4], Zhu et al. [5], and Qu et al. [8,9]. In this
work, we calculate the total amount of household CO2 emissions in China based on the provincial unit.
The formula of calculating PHCEs in each province is shown below:

ET = ECoal + EOil + EGas + EOther + EElec + EHeat + EHC (1)

where ET is the total amount of household CO2 emissions in each Chinese province (t CO2); ECoal is
the total amount of household CO2 emissions from coal usage (t CO2); EOil is the total amount of
household CO2 emissions from oil usage (t CO2); EGas is the total amount of household CO2 emissions
from gas usage (t CO2); EOther is the total amount of household CO2 emissions from the use of other
fuels (t CO2); EElec is the total amount of household CO2 emissions from electricity usage (t CO2);
EHeat is the total amount of household CO2 emissions from heating (heating usage in this study is
the centralized heating usage in urban China; meanwhile, the centralized heating usage equals zero
in rural China) (t CO2); and EHC is the total amount of household CO2 emissions from household
consumption (t CO2).

ECoal + EOil + EGas + EOther = ∑
i=1

Fi × NCVi × CCi ×OFi ×
44
12

(2)

where Fi denotes the fuel consumption of the average household (104 t/108 m3) (i = coal, oil, gas, and
other fossil fuels); NCVi is the Net Calorific Value of the ith fuel (TJ/104 t/108 m3); CCi denotes the
Carbon Emission Factor of the ith fuel (t C/TJ); OFi expresses the fraction of carbon oxidized for the ith

fuel; and 44/12 is the ratio of molecular weight of CO2/C.

EElec + EHeat = FElec × CElec + FHeat × CHeat (3)

where FElec is the electric power consumption (MWh); CElec is the CO2 emission factor of the electricity
sector (t CO2/MWh) from different provinces in 2010, which comes from the Baseline Emission Factor
for provincial power grids in China [48]; FHeat (GJ) is the heating power consumption; and CHeat is the
CO2 emissions factor of the heating sector (t CO2/GJ), which is derived from the NDRC [47].

EHC = ∑
j=1

FHC × CHC =
j=n

∑
j=1

(
Ej

Pj
× (I − A)− 1× FI j) (4)

where CHC = CDj(I− A)−1 and CDj = Ej/Pj, FIj is the consumption of the household (104 RMB); CHC is the
CO2 emissions factor from household consumption (t CO2/104 RMB); j is the household consumption
category (i.e., food, clothing, residence, household equipment, transportation and communication,
cultural and educational entertainment, medical care, and other goods); CDj is the direct energy carbon
emissions intensity from the jth category (t CO2/104 RMB); Ej is the direct energy carbon emissions
from the jth category (t CO2, Ej is calculated based on Equation (2); Pj is the total output value of the
jth category (104 RMB); A is the direct requirement matrix; I is the identity matrix; and (I − A)−1 is
Leontief inverse square matrix.
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PHCEs =
ET
P

(5)

where PHCEs is the per capita household CO2 emissions (t CO2/person) and P is the population size
of each province in China.

2.2. The Spatial Statistical Analysis

2.2.1. Global Spatial Autocorrelation

Spatial autocorrelation and spatial regression analyses have long been employed in studies of
energy consumption and the related carbon emissions [31–33]. In this study, changing trends in
regional spatial patterns of PHCEs are evaluated by Global Moran’s I and Local Indicators of Spatial
Association (LISA) by using ArcGIS10.3 and GeoDa software, respectively.

The formulas of Global Moran’s I are shown below [49]:

I =
n ∑n

i=1 ∑n
j 6=i wij(xi − x)

(
xj − x

)
∑n

i=1 ∑n
j 6=i wij ∑n

i=1(xi − x)2 =
∑n

i=1 ∑n
j 6=i wij(xi − x)

(
xj − x

)
S2 ∑n

i=1 ∑n
j 6=i wij

(6)

where S2 = 1
n ∑i(xi − x)2; n is the total number of provinces; xi and xj are the household carbon

emissions of the ith and jth provinces, respectively; x is the average of all observational values; and wij
is the spatial weight matrix. In this study, we use the z value as Moran’s I statistic test, calculated as
z = (I − E(I))/

√
var(I).

The Global Moran’s I measures the degree of global spatial autocorrelation for PHCEs in China,
with values ranging between −1 and 1. Spatial autocorrelation is positive if the value is > 0, indicating
more agglomeration, and negative for values < 0, indicating more scattered data. There is no spatial
autocorrelation when the value is equal to 0 [49].

2.2.2. Cluster and Outlier Analysis

In addition to global spatial autocorrelation, this article examines the Local Indicators of Spatial
Association (LISA) [49], expressed as:

Ii =
(xi − x)

S2

n

∑
j 6=i

wij(xi − x) (7)

where S2 = 1
n ∑i(xi − x)2 and zi = (Ii − E(Ii))/

√
var(Ii).

LISA makes every local spatial unit a target item, which indicates the presence or absence of
significant spatial clusters or outliers for every local spatial pattern. The Moran scatterplot can identify
relationships between a local province and its adjacent provinces. By composing four quadrants [49],
the upper right quadrant, termed High-High (H-H), and the lower left quadrant, termed Low-Low
(L-L), indicate that there is a conglomeration effect of high values and low values between the province
and its adjacent provinces, respectively. The upper left quadrant, termed High-Low (H-L), and the
lower right quadrant, termed Low-High (L-H), indicate that the province itself has a high value with
low values in adjacent provinces and that the province itself has a low value with high values in
adjacent provinces, respectively.

2.2.3. The Standard Deviational Ellipse

The Standard Deviational Ellipse (SDE) is a Geographic Information Systems (GIS) tool for
delineating the dispersion of univariate features around its center [50], which was initially put forward
by Lefever [51]. We use the SDE to calculate the gravity center of PHCEs in China following Lefever [51]
and Zhao and Zhao [50]. The center of SDE is calculated as:
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SDEx =

√
∑n

i=1
(
xi − X

)
n

SDEy =

√
∑n

i=1
(
yi −Y

)
n

tan θ =

(
∑n

i=1 x̃2
i −∑n

i=1 ỹ2
i

)
+

√(
∑n

i=1 x̃2
i −∑n

i=1 ỹ2
i

)2
+ 4(∑n

i=1 x̃i ỹi)
2

2 ∑n
i=1 x̃i ỹi

δx =
√

2

√√√√ n

∑
i=1

(x̃i cos θ − ỹi sin θ)2

n

δy =
√

2

√√√√ n

∑
i=1

(x̃i sin θ − ỹi cos θ)2

n
(8)

where xi and yi are the space coordinates of each feature; X and Y are the arithmetic average centers;
SDEx and SDEy are the center of SDE; and θ, δx, and δy represent the angle of rotation, the length of X,
and the length of Y of the SDE, respectively.

2.3. Spatial Panel Data Models

A spatial panel data analysis is used in this paper is to estimate the relationships between PHCEs
and factors predicted to influence PHCEs. There are three types of panel data analytic models based
on different parameters, as shown in Figure 1; pooled regression models (yit = a + bxit + εit), variable
intercepts and constant coefficient models (yit = ai + bxit + εit), and variable intercepts and variable
coefficient models (yit = ai + bixit + εit) [46]. In Figure 1, yit is the index for the dependent variable;
xit is the index for the independent variable; ai and bi are expressed as fixed effects or random effects;
and εit is the error term. Baltagi [46] has shown that the Hausman test is the most appropriate analytic
to select the suitability of spatial panel data models. In this work, we use the Hausman test to decide
which model is most suitable for analyzing the factors influencing PHCEs in China.
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Based on the Hausman test, two main hypotheses are used to confirm which specific model
should be selected. The formulas are shown as below [46]:

H1 : b1 = b2 = . . . = bN

H2 : a1 = a2 = . . . = aN b1 = b2 = . . . = bN

F2 =
(S3 − S1)/[(N − 1)(k + 1)]

S1/(NT − N(k + 1))
∼ F[(N − 1)(k + 1), N(T − k− 1)]

F1 =
(S2 − S1)/[(N − 1)k]
S1/(NT − N(k + 1))

∼ F[(N − 1)k, N(T − k− 1)] (9)

where F2 is the statistic for H2; F1 is the statistic for H1; S1, S2, and S3 are the residual sums of the
squares of the three spatial panel data models above, respectively; and N, T, and k are the number of
entities, time points, and explanatory variables, respectively.

Based on these two hypotheses, if H2 is accepted, we should choose the pooled regression model.
If H2 is rejected but H1 is accepted, we should choose the variable intercepts and constant coefficients
model. If both H2 and H1 are rejected, we should choose the variable intercepts and variable coefficients
model [46].

We selected a variety of variables that have been shown to be related to PHCEs in previous research
for the spatial data model. Two variables were chosen to represent urbanization and population density,
which in previous studies have been shown to influence PHCEs [8–11]. Population per km2 (PD) was
chosen to represent the average population density of a province. This is distinct from the rate of
urbanization (UR) which represents the portion of the population living in urban areas. For example,
Sichuan has a relatively high population density, while it has a moderate rate of urbanization. A final
demographic variable that has been shown to influence PHCEs is average household size (HS) [8–11].
Per capita income (PI) was chosen as a metric of economic affluence [21], since personal income is
likely to have the most direct impact on PHCEs, relative to other measures such as per capita GDP.
Personal income data is also readily available for both urban and rural China, while GDP data is only
available at the provincial level. Education has also been identified as an important factor influencing
HCEs [8,9]; its effect has been debated. This effect appears to be independent of measures of relative
wealth, which is often correlated with income. The relative level of technological development plays
an important role in HCEs yet is difficult to define. We have chosen energy intensity (measures in t
ce/104 RMB) to represent technological development [5].

The spatial panel data model used in this work is shown as follows:

PHCEsit = αi + β1PD + β2UR + β3HS + β4EL + β5PI + β6EI + µit + εi (10)

where αi represents the intercept for specifying cross-section fixed or period fixed effects; µit is the
error term; and the factors influencing PHCEs are shown in Table 1.

Table 1. The factors influencing per capita household CO2 emissions (PHCEs) in this work.

Variables Implication Interpretation Unit Sources

PHCEs Per capita household
CO2 emissions

Total household CO2
emissions/total population t CO2/person Calculated by above

formulas

PD Per km2 areas population
(Population density)

Administrative area/total
population person/km2 China Statistical Yearbooks

(1998–2015)

UR Urbanization The proportion of urban
population % China Statistical Yearbooks

(1998–2015)

HS Household size Average person in each
household Person/household China Population Statistical

Yearbooks (1998–2015)
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Table 1. Cont.

Variables Implication Interpretation Unit Sources

EL Education level

The proportion of college
educated people and/or
higher educational level

students in the population

% China Statistical Yearbooks
(1998–2015)

PI Per capita income Total income/total
population 104RMB/person

China Statistical Yearbooks
(1998–2015)

EI Energy intensity Total Energy usage/Total
GDP t ce/104RMB

China Statistical Yearbooks
(1998–2015)

2.4. Data Sources

Annual data for household energy usage were obtained from the China Energy Statistical
Yearbooks (1998 to 2015) [52]. Annual data for household consumption were obtained from the China
Statistical Yearbooks (1998 to 2015) [53]. Data for calculating CO2 emissions factors from household
consumption were obtained from China’s Input-Output tables (1999, 2007, 2009, 2015) [54], the
extended input-output tables [53], and the China Energy Statistical Yearbooks (1998–2015). In addition,
data for factors influencing PHCEs were obtained from the China Population Statistical Yearbooks
(1998 to 2015) [55] and the China Statistical Yearbooks (1998 to 2015) [53]. To control for inflation, annual
data for household consumption was indexed to the year 2005. Due to the lack of comparable data
for the Taiwan, Hong Kong, and Macao Special Administrative Regions and the Tibet Autonomous
Region, this work took no account of these regions.

3. Results and Discussions

3.1. Comparing PHCEs in China

Figure 2 illustrates the temporal-spatial evolution of China’s PHCEs for each province in 1997,
2002, 2007, and 2014. The PHCEs of different provinces range from 0.60 t CO2/person in 1997 to 6.18 t
CO2/person in 2014, differing by one order of magnitude. We classify the PHCEs of different provinces
into five groups: lowest (less than 1.00 t CO2/person), low (1.01–2.00 t CO2/person), mid (2.01–3.00 t
CO2/person), high (3.01–4.00 t CO2/person), and highest (more than 4 t CO2/person). In 1997,
all provinces’ PHCEs were no more than 3.00 t CO2/person; thus they were classified into the lowest
three groups. Of these, 16 provinces were in the lowest-level PHCEs, including northwest China,
central China and southeast China. The 12 provinces with low-level PHCEs were concentrated in
northeast China, the Qinghai-Tibet area, the Bohai Sea Region, and the Yangtze River Delta Economic
Zone. By 2014, PHCEs in all provinces were more than 1.00 t CO2/person, constituting the top
four groups. Only four provinces had low-level PHCEs in 2014, and these were among the poorest
provinces: Gansu, Jiangxi, Guangxi, and Yunnan. The 16 provinces with mid-level PHCEs in 2014 were
concentrated in the Qinghai-Tibet area, central China, and northern China. Six provinces that were
either relatively wealthy (Guangdong, Fujian, Jiangsu) or had coal resources and a higher concentration
of energy industries (Heilongjiang, Liaoning, and Inner Mongolia) had high-level PHCEs. Four of
China’s wealthiest provinces, Beijing, Shanghai, Tianjin, and Zhejiang, had the highest-level PHCEs.
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Figure 2. The distribution of China’s total PHCEs in 1997, 2002, 2007, and 2014.

Figure 3 presents the increment and the increase rate of PHCEs from 1997 to 2014 for each province.
All provinces’ PHCEs increased by more than 1.00 t CO2/person between 1997 and 2014. Twenty-two
provinces had relatively low increases of PHCEs, from 1.00–2.00 t CO2/person. These provinces
were relatively poor and were found in China’s southwest, northwest, and central regions. The two
provinces with high increments of PHCEs, from 3.01 to 4.00 t CO2/person, were the rich provinces,
Shanghai and Beijing. However, patterns in the rates of increase are somewhat different. Thirteen
provinces had low rates of increase in PHCEs by one to two times. These can be divided into two
groups; (1) relatively wealthy provinces, including Guangdong, Beijing, Shanghai, and other provinces
with large PHCEs but with low rates of increase, and (2) relatively poor provinces with both low
PHCEs and low rates of increase. Seven provinces had PHCEs more than double from 1997 to 2014.
These included provinces with low PHCEs but high rates of increase (e.g., Anhui and Hainan) and
provinces with both relatively high PHCEs and rates of increase (e.g., Zhejiang, Shandong, and Inner
Mongolia).
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3.2. Spatial Evolution Analysis of PHCEs in China

3.2.1. Results of Global Spatial Autocorrelation

While a regional pattern is clear from our descriptive analysis, we quantified this correlation
using Moran’s I to evaluate the global spatial autocorrelation of PHCEs at the provincial level from
1997 to 2014. Table 2 shows that the Global Moran’s I of PHCEs in China for all years was above 0,
indicating spatial clustering, and all are significant at a 95% confidence interval level based on the Z
test. While the values of Moran’s I vary from year to year, over the study period, there was a general
rising pattern from values in the low 0.2 range (0.22 in 1997) to the mid 0.3 range (0.37 in 2014). This
pattern of increasing Moran’s I was matched by increasing statistical significance levels, from the 95%
confidence range in 1997 to greater than 99% confidence by 2014. This indicates that there is significant
and rising spatial autocorrelation for PHCEs in China.

Table 2. Changes of the Global Moran’s I of PHCEs in China (1997–2014).

Year I Z P

1997 0.22 1.98 0.04
1998 0.24 2.12 0.03
1999 0.26 2.12 0.04
2000 0.28 2.27 0.03
2001 0.27 2.07 0.04
2002 0.28 2.29 0.03
2003 0.29 2.58 0.02
2004 0.25 2.12 0.03
2005 0.29 2.34 0.02
2006 0.32 2.62 0.02
2007 0.32 2.45 0.02
2008 0.34 2.51 0.02
2009 0.35 2.65 0.02
2010 0.34 2.54 0.01
2011 0.34 2.56 0.01
2012 0.33 2.53 0.02
2013 0.37 2.78 0.01
2014 0.37 2.81 0.01
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3.2.2. Cluster and Outlier Analysis

We analyzed local spatial autocorrelation [31–33] using LISA for 1997, 2002, 2007, and 2014.
Figure 4 reveals the characteristics of significant local spatial agglomeration in the distribution
of PHCEs in China. Three significant patterns stand out. Firstly, the LL type of local spatial
autocorrelation, which indicates provinces with low PHCEs that are also surrounded by provinces
with low PHCEs, was present in central and southwest China for all years. This pattern can be
seen in the provinces of Hubei, Hunan, Guizhou, and Yunnan for all years, as well as Sichuan,
Chongqing, and Guangxi for all years except 1997 and 2002. Secondly, Guangdong, a manufacturing
powerhouse located in the Southeast, has the HL pattern in 1997, indicating that Guangdong’s PHCEs
are high whilst those of the surrounding provinces are low. However, Guangdong has no significant
pattern in 2002, 2007, and 2014, indicating a convergence between Guangdong’s PHCEs and the
surrounding provinces such as Fujian. Thirdly, in the Bohai region (Beijing, Tianjin, and Hebei),
a notable shift occurred during the study period. Early in the study period (1997 and 2002), Beijing and
Tianjin exhibited the HH pattern, indicating high PHCEs surrounded by provinces with high PHCEs.
However, for 2007 and 2014, the adjacent Hebei province began to show a significant LH pattern,
indicating low PHCEs surrounded by higher PHCEs. It is likely that this divergence during the course
of the study period was driven by diverging PHCEs patterns within the Bohai region, with PHCEs
rising rapidly in Beijing and Tianjin. Finally, it is worth noting that, in many regions of China, there
were no significant patterns of local spatial autocorrelation, which is important to note in light of the
significant patterns of global spatial autocorrelation. Most of northwest and northeastern China had
no patterns of PCHEs spatial autocorrelation, nor did the Yangtze River Delta centered on Shanghai,
Jiangsu, and Zhejiang. The latter example was particularly notable because the Yangtze River Delta,
along with the Bohai region and Guangdong, was one of China’s most economically developed regions
with relatively high PHCEs, yet, unlike the other two urban metropolises, the Yangtze Delta exhibited
no patterns of local spatial autocorrelation in PHCEs.
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3.2.3. Geographical Distribution of PHCEs in China

We used ArcGIS10.3 to analyze the gravity center of PHCEs in China following Zhao and Zhao [50].
The semi-major axis of the SDE represents the direction of distribution, whilst the short half axis of the
SDE represents the range distribution. The greater the gap between the semi-major and short half axis,
the more obvious the direction of distribution. If the length of the half shaft is completely equal to
that of the semi-major axis, this means there is no direction characteristic [48]. As shown in Figure 5a,
we can find that the gap between the semi-major axis and the short half axis of the SDE was not large
in any year, which means that the gravity center offset of PHCEs in China is not obvious. Although
there was little directional orientation to the location of PHCEs in China, important temporal trends
did emerge. As shown in Figure 5b, the center of PHCEs in China during the study period was located
between 34◦30′–34◦50′ N and 112◦50′–113◦50′ E. The movement of the SDE in PHCEs can be divided
into three stages: firstly, from 1997 to 2003, it was located where the gravity center of PHCEs varied
within a relatively small area; secondly, from 2004 to 2007, it was located where the gravity center of
PHCEs moved approximately 60 km southeast; and thirdly, from 2007 to 2012, it was located where
the center of PHCEs moved approximately 40 km to the northwest. As important as the individual
patterns, it is worth noting that at all times during the study period, with the exception of 2003, 2004,
2013, and 2014, there was a relatively consistent pattern of movement in the center of gravity.
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3.3. Spatial Panel Data Model of PHCEs in China

Based on the Hausman test, H2 was rejected while H1 was accepted, indicating that a variable
intercept and constant coefficients model is most suitable [46]. Since the variables used in this work
are co-integrated, the results for the four-type spatial panel data models (pooled regression model,
spatial fixed effect, time period fixed effect, and spatial and time period fixed effect) are presented
in Table 3. Comparing the estimators of R-squared, Adjusted R-squared, Log likelihood, Probability
(F-statistic), and the Akaike info criterion in these four spatial panel data models, R-squared (0.97),
Adjusted R-squared (0.96), and Log likelihood (200.47) are all higher and the Akaike info criterion
(−0.55) is lower in the spatial and time period fixed effect than the other three models. Hence, the
spatial and time period fixed effect model should be considered a fit model in this work. Based on the
spatial and time period fixed effect model (Table 3), the parameter estimations of individual variable
coefficients have important but slightly different influences on PHCEs in China.

As shown in Figure 6, PI (Per capita income), EL (Education level), and UR (Urbanization) have
a positive impact on PHCEs. HS (Household size) and EI (Energy intensity) have a negative impact
on PHCEs. Based on the spatial panel data model, of the factors influencing PHCEs in China, PI (Per
capita income) has a positive impact and the highest regression coefficient of 0.6990, followed by EL
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(Education level), and UR (Urbanization). As shown in Table 3, a 1% increase in PI, EL, and UR will
result in 0.6990%, 0.0149%, and 0.0044% increases in PHCEs, respectively. HS (Household size) has
a negative impact, with the highest regression coefficient of −0.0496, followed by PD (Population
density). A 1% increase in HS and PD will result in 0.0496% and 0.0003% decreases in PHCEs,
respectively. However, the coefficient of EI (Energy intensity) is not significant at the 5% level. Of the
factors influencing PHCEs, we find that PI, EL, and UR have a positive influence, HS has a negative
influence, and PD has a statistically significant negative influence, although very slight. The influence
of EI on PHCEs, while negative, is not significant at the 5% level.

Table 3. Estimation of influencing factors on PHCEs in by the spatial panel data model.

Panel Data Model Pooled Regression
Model

Spatial Fixed
Effect

Time Period
Fixed Effect

Spatial & Time Period
Fixed Effect

C 1.7756 *** 0.4784 *** 1.2156 ***
PD 0.0001 *** 0.0001 0.0000 * 0.0003 ***
UR 0.0214 *** 0.0091 *** 0.0182 *** 0.0044 **
HS 0.0559 *** 0.3087 *** 0.1903 *** 0.0496 **
EL 0.0421 *** 0.0199 ** 0.0413 *** 0.0149 **
PI 0.4989 *** 0.5921 *** 0.6557 *** 0.6990 ***
EI 0.1241 ** 0.0237 * 0.1263 *** 0.0697 *

R-squared 0.92 0.96 0.93 0.97
Adjusted

R-squared 0.92 0.96 0.93 0.97

Log likelihood −39.44 131.46 5.96 200.47
Prob(F-statistic) 0.00 0.00 0.00 0.00

Akaike info
criterion 0.19 −0.35 0.07 −0.55

Notes: * Significant at the 10% level; ** Significant at the 5% level; *** Significant at the 1% level.
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3.4. Discussions

Base on the movement of the SDE in PHCEs, the gravity center moves eastward first and then
moves westward. There are two main reasons for this movement. First, economic development has
a positive impact on PHCEs; meanwhile, the economic development in the East of China has been
faster than in the West. Residents living in the East of China are relatively richer than those who
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live in the West of China. They have better living conditions, use more energy, and purchase more
goods. This is why the gravity center moved eastward in the preliminary study period. Second,
technology development has a substantial impact on PHCEs. The technological development in the
East of China is also much faster than in the West. People that live in the East of China can get more
information about renewable energy and clean energy, so they can enjoy the green energy welfare such
as purchasing more energy-saving products. This is why the gravity center moved westward in the
later study period.

After reviewing the spatial distribution and influencing factors of PHCEs in China, with an eye
towards reducing PHCEs in China, we identify several trends.

First, PI has an important impact on PHCEs. The result that PI has a positive impact on PHCEs
is similar with previous studies. Feng et al. [56] and Han et al. [26] showed that per capita income
has a significant positive association with per capita CO2 emissions. As regions experience economic
growth, household expenditure can be expected to rise, resulting in higher household consumption
and associated emissions. PHCEs levels increase with both regional development and income level in
this work.

Second, UR, and EL are also important factors that affect PHCEs in China in this analysis.
The results in this work indicate that the rapid development of urbanization has increased household
consumption and the related CO2 emissions. Zhang and Lin [57] pointed out that urbanization was
positively related to energy consumption and the CO2 emissions in China based on a STIRPAT model
and a spatial panel data model, respectively. Li et al. [58] revealed that there was a unidirectional causal
relationship between urbanization and household carbon emissions. A 1% increase in urbanization
may result in a 2.9% and 1.1% increase in direct and indirect household carbon emissions, respectively.
Currently, China’s urbanization rate is projected to increase by 1.5% annually. Reducing PHCEs in
the face of rapid urbanization presents a challenge and will require the decoupling of urbanization
and PHCEs. With rapid urbanization in China, people’s lifestyles and habits have changed greatly.
China’s urbanization rate is projected to increase, and this will further challenge the goal of carbon
emissions reduction. Such challenges can be overcome through policy and changes in consumer
behavior. Yang et al. [59] suggested that sustainable urban development should be highlighted and
that enforcement of the law should be strengthened in ‘China’s new Environmental Protection Law’ [59].
Moreover, the advancement of technology can reduce carbon intensity and also save CO2 emissions.
Therefore, technology should be improved to reduce environmental damage and develop more
energy-saving products to cut carbon emissions.

The relationship between education and PHCEs has had mixed evaluations in the literature. Some
have found that persons with higher education levels have higher emissions [60], while others claim
that persons with higher education will help reduce carbon emissions [61,62]. There is ample grounding
for both positions. The theory that higher education levels will reduce emissions is grounded in the
belief that those with higher education levels are more aware of the adverse consequence of fossil fuel
consumption and will adopt low carbon practices. The notion that higher education levels will lead to
higher PHCEs is grounded in the belief that persons with higher education levels will purchase more
modern products such as mobile phones, computers, and automobiles, thus resulting in more carbon
emissions. Such consumer preference is also corroborated by the fact that those with higher education
levels also have higher incomes. Our results indicate that the education level of household members
positively, but only slightly, influences consumption attitudes and consumption habits, even when
controlling for income. This influence is small in magnitude but significant at the 95% confidence
level. We cannot, in this case, rule out the possibility of a latent variable, and the relationship between
education and PHCEs is a likely venue for finer grained analysis.

Third, PHCEs decrease with increasing household size. This finding is similar to the findings
of Qu et al. [8,9], who pointed out that PHCEs decreased as household size increased in northwest
China. Large families, specifically extended families living together, presented a promising way to
save energy and reduce CO2 emissions [8,9]. The same conclusion is found in Ireland [63]. When
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comparing per capita CO2 emissions between one-person households, two-person households, and
any other household size, Lyons found that a larger household size will produce fewer per capita
emissions than a lower household size.

The Chinese government has pledged to cut carbon intensity by 40% to 45% by 2020 from 2005
levels and to achieve peak CO2 emissions around 2030, which will result in more CO2 emissions from
household consumption. These goals will be challenging in the face of rising income and urbanization
levels, two factors that we have identified as influential for PHCEs. International comparisons
point towards this difficulty, with CO2 emissions rising with increased income in Ireland [63] and
China [21,26]. Thus, it is important to introduce policies to decouple increased household spending
from rising emissions.

This could be accomplished through government policies that encourage consumers to use
low-carbon products such as eco-labeling [64,65] and helping the producers of consumer goods to
produce energy-saving products. However, it is ultimately consumers who must transition from
luxurious to more frugal consumption activities [17] such as purchasing fuel-efficient cars and using
more environmental-friendly home appliances. Consumers, as the drivers of markets for many
energy-consuming items, should choose ‘green’ products to achieve a reduction in carbon emissions.
Carbon labelled products should be considered important in this choosing process [64–68]. Increasing
the ratio of renewable energy and clean energy in the total household energy usage in the future is
also a very important measure to reduce CO2 from the household sector. These findings also highlight
the importance of funding research into household emission mitigation measures.

Finally, although the connection between education level and emissions in general is ambiguous,
education activities surrounding climate change should be publicized in schools and public places,
especially in some rural areas, to explain individuals’ impact on climate change.

Although many findings highlighting the importance of this research on carbon reduction
mitigation measures, a minor uncertainty in the results of accounting for PHCEs exists, owing to
the inaccuracy or uncertainty of statistical data. First, heating usage in this study only includes the
centralized heating usage in urban China. Centralized heating is only used in urban China so the
centralized heating usage equals zero in rural China. Residents living in rural China mainly utilize
small coal stoves (by using coal or gas) for heating in winter. Second, the emissions factors used to
calculate CO2 emissions from the electricity sector (t CO2/MWh) for each province are based on data
from 2010. The mix of electric generating sources changes constantly, which varies the carbon intensity
of generation for two reasons; increasing the efficiency of fossil fuel (primarily coal) fired plans and
changes in the mix of renewable and non-renewable sources. Data for electric emissions were selected
for 2010 due to data being available for all provinces. Both of these sources of uncertainty could have a
slight influence on our results.

Based on the aforementioned research results, the first way to reduce PHCEs is to narrow the
difference of provincial PHCEs in China. Policy-makers should consider provincial differences when
making policies impacting household emissions. China’s rapid development of urbanization has
a great impact on PHCEs and thus policy-makers should; (1) consider the different urbanization
ratios of different provinces and (2) seek ways to decouple urbanization from an increase in PHCEs.
Provinces with higher PHCEs in China should have more responsibility to reduce emissions by taking
on different responsibilities in a domestic form.

4. Conclusions

4.1. Conclusions

In this paper, we have investigated the spatial variations and determinants of per capita household
CO2 emissions (PHCEs) in China. By analyzing the distributions of PHCEs in China, we examine the
influencing factors of PHCEs using a spatial panel data model.
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PHCEs at the provincial level grew rapidly from 1997 to 2014, with certain spatial patterns of
variation enduring while others changed. The PHCEs of provinces ranged from 0.60 t CO2/person
in 1997 to 6.18 t CO2/person in 2014, differing by one order of magnitude. Higher PHCE emitting
regions are concentrated in eastern China, including Beijing, Shanghai, Zhejiang, and Tianjin. Lower
PHCEs emitting regions are predominately in northwest and central China, including Guangxi, Anhui,
Hainan, Qinghai, Gansu, and Ningxia. While individual provinces differed in their ranks in specific
years, regional patterns of higher and lower PHCEs did not change during the study period. To lessen
regional disparities and realize balanced development, regional compensation mechanisms, distinct
development, and regional energy supply and demand must also be balanced.

To analyze the factors influencing PHCEs, geographically spatial dependence cannot be ignored.
Based on the global Moran’s I index, we find a significant spatial autocorrelation of provincial PHCEs
in China. We also reveal that the regions with high PHCEs tend to be adjacent to other regions with
high PHCEs; regions with low PHCEs are also adjacent to each other. However, the gravity center
offset of PHCEs in China is not obvious. The gravity center of PHCEs in China has moved between
34◦30′–34◦50′ N and 112◦50′–113◦50′ E, showing a distinct eastward movement between 2002 and
2007, with westward movement from 2007 to 2014.

We analyzed factors influencing PHCEs across Chinese provinces by using panel datasets. Our
results show that PHCEs are increased by per capita income (PI), education level (EL), and urbanization
(UR). A 1% increase in per capita income, education level, and urbanization will result in 0.6990%,
0.0149%, and 0.0044% increases in PHCEs, respectively. Household size (HS) has a negative impact
with the highest regression coefficient of −0.0496, followed by population density (PD).

4.2. Policy Recommendations

Household CO2 emissions (HCEs) are increasing in China due to economic development and
accelerated urbanization. Per capita income (PI) will keep growing in China, which will result in
more CO2 emissions from household sector. Based on the results of spatial panel data model in
this study, per capita income has a great impact on per capita household CO2 emissions (PHCEs).
As regions experience different economic growth, policy makers should consider the impact of issues
of increasing income and income disparity on PHCEs. It is urgent to introduce policies to decouple
increased household spending from rising emissions.

Urbanization (UR) also has a positive impact on PHCEs in China and is likely to continue to
do so in the future. One problem facing China is how to reduce carbon emissions in the face of
rapid urbanization progress. It is necessary to guide residents to change their lifestyles and habits,
yet there are positive signs in this regard. The proliferation of bike sharing services in China has
increased the use of bike riding within close ranges, and the purchasing low-carbon and energy-saving
products has increased. Education plays an important role in carbon reduction awareness. Our results
reveal that an individual’s education level slightly influences their attitudes towards consumption and
consumption habits, so it is very important to emphasize education in different regions. Education
activities surrounding climate change should be publicized in schools and public places, especially in
some rural areas, to promote environmental awareness to address climate change.

Although China’s PHCEs are much lower than those of developed countries, it is also important
to prevent further increases of PHCEs. To achieve peak CO2 emissions around 2030, it is suggested to
advance technology and establish a carbon emission trading system to reduce carbon intensity and
reduce CO2 emissions from household consumption.

There are many factors affecting household CO2 emissions, including population, economic
development, and demographic traits, all of which are identified by our spatial panel data model,
which can give some suggestions for meaningful theoretical and policy implications. Measures
for household carbon emission abatement should be proposed at the government and consumer
levels. These findings also highlight the importance of funding research into household emission
mitigation measures.
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