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Abstract: Excavators are one of the most energy-intensive elements of earthwork operations.
Predicting the energy consumption and CO2 emissions of excavators is therefore critical in order
to mitigate the environmental impact of earthwork operations. However, there is a lack of method
for estimating such energy consumption and CO2 emissions, especially during the early planning
stages of these activities. This research proposes a model using an artificial neural network (ANN) to
predict an excavator’s hourly energy consumption and CO2 emissions under different site conditions.
The proposed ANN model includes five input parameters: digging depth, cycle time, bucket payload,
engine horsepower, and load factor. The Caterpillar handbook’s data, that included operational
characteristics of twenty-five models of excavators, were used to develop the training and testing sets
for the ANN model. The proposed ANN models were also designed to identify which factors from all
the input parameters have the greatest impact on energy and emissions, based on partitioning weight
analysis. The results showed that the proposed ANN models can provide an accurate estimating
tool for the early planning stage to predict the energy consumption and CO2 emissions of excavators.
Analyses have revealed that, within all the input parameters, cycle time has the greatest impact on
energy consumption and CO2 emissions. The findings from the research enable the control of crucial
factors which significantly impact on energy consumption and CO2 emissions.
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1. Introduction

Earthwork operations are important activities in building and infrastructure projects, where
heavy construction machines are used for excavation, transportation and placement or disposal of
materials. These heavy construction machines consume a large amount of energy and have a significant
impact on the environment [1–3]. Heavy construction machines account for more than 50% of the
total emissions from construction operations [4]. According to reports from the National Institute of
Environmental Research (NIER) and the Korean Statistical Information Service (KSIS), construction
equipment consumes the largest quantity of diesel fuel of all industries in the construction sector
in Korea [5], and on-site construction equipment produced 6.8% of the total emissions generated in
Korea, with carbon dioxide being a main component of these emissions [6]. In Denmark in 2004,
construction machinery accounted for 71% of most fuel use, accounting for 50% of all CO2 emissions
produced by the construction industry [7]. Within this industry, excavators are a major contributor to
the emissions from heavy construction machines [8]. Consequently, excavation operations dominate
in terms of total emissions from construction sites because of the prolonged usage of excavators
during construction projects [9]. In an extensive study involving twenty-six types of construction
equipment in the United States, excavators accounted for 15% of the total energy consumption and CO2
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emissions from construction equipment and machinery [10]. Excavators/backhoes are placed second
in the top three contributors to CO2 emissions (26%) for on-site construction in respect of total carbon
emissions [11]. A 35% reduction in usage time of excavators leads to a reduction of approximately 15%
in excavator emissions, and 10% of the total emissions of on-site construction [9]. Therefore, predicting
the energy consumption and CO2 emissions from excavators is critical to mitigate the environmental
impact of earthwork operations [12].

Climate change due to greenhouse gas emissions is considered a major environmental issue [13,14].
The largest contributions from human sources comes from burning fossil fuels [15] where the emissions
of carbon dioxide (CO2) is considered to be the major component contributing to approximately 60%
of the global warming effects [16]. In addition, since the early 1990s, CO2 emissions have been the
focus of taxation policies in the industrial sectors in most Scandinavian countries [17]. The Swedish
Transport Administration (STA) has recently set the target to have a climate neutral infrastructure by
2045 in an effort to reduce both energy use and CO2 emissions in infrastructure projects [18]. These
goals will be transformed into procurement criteria on CO2 emissions that the contractors need to fulfill
and be able to estimate, and thus control when construction projects are in the early planning stages.

Despite a number of studies of construction machinery, most of the research has focused on
measuring, analysis, or assessing fuel and emissions data based on steady-state engine dynamometer
tests [19–21], roller dynamometers [22], chassis dynamometers [23] and, more recently, on-board
measurements using Portable Emission Measurement Systems (PEMS) [24]. Some of these studies
focused on developing quantifiable emission inventory data, such as using PEMS to quantify the
emissions factor with respect to time or fuel consumption depending on engine load and duty cycle
components [25]. Others focused on measuring, analyzing, and reporting real-world fuel use and
emissions of excavators [26], and on determining the emission characteristics of excavators and wheel
loaders in China [27]. Some investigated the impact of specific parameters on total emissions such
as idle time effects on the fuel consumed and the CO2 emissions of non-road diesel construction
equipment [28], and using engine performance data to develop a model for estimating fuel consumed
and emissions [29]. PEMS has been proposed as a framework to measure, monitor, benchmark, and
possibly reduce the air pollution caused by construction equipment [30]. A portable exhaust emissions
analyzer, SEMTECH DS by Sensors, has been used to measure the gaseous exhaust emissions from
excavators [31]. Another option has been an estimating tool based on the productivity rate with
fuel use rate and emission factors from the EPA’s NONROAD model that can estimate excavator
emissions [32]. Similarly, there is an estimation taxonomy for fuel use and pollutant emissions rates of
Non-road Construction Vehicles [33], and there is also the ENPROD MODEL for estimating the carbon
footprint of heavy duty diesel (HDD) construction equipment [34].

Although most research in this field has recognized the need for emission assessments, procedures
for construction equipment assessment remain inadequate, and they have not yet been fully
investigated [6]. This is partly due to the limited number of studies of the planning phases in
this area [35]. Furthermore, most construction estimators pay little attention to the environmental
impact of the machinery that they use [34]. Thus, it is necessary to find a method that can estimate the
emissions generated at earthworks sites during the planning phase [36–38]. However, for earth-moving
operations, no methods have been proposed for early planning stage estimations of the energy
use and CO2 emissions of excavators that can be used with limited information. This is largely
because, at this stage of the operation, there are insufficiently detailed data regarding the construction
process [39]. However, there are considerable general data available in respect of the quantity survey
and geotechnical investigations during the pre-planning stage of construction projects. These data
include parameters such as excavation depth, density of material excavation, bucket payload, default
cycle time and horsepower for available excavators, and this information can be used as a primary
data source to predict the hourly energy consumption and CO2 emissions of excavators. Therefore,
it becomes less expensive to consider the environmental impact at an earlier stage of construction
projects [39,40] where available alternatives can be examined and the best selected.
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The aim of this study was to develop a model that can help planners predict, during the
early planning stages, energy consumption and CO2 emissions from excavators used in earthworks
operations, thereby overcoming the problem of the shortage of detailed information from the
construction process. In addition, the model would be able to indicate which factors have large
impacts on the energy and CO2 emissions from among all of the model’s input parameters, and
provide insight into the relative importance of the output of the model for each of them (i.e., energy
and emissions). This would then allow planners to compare different alternative excavators in order
to reduce the likely CO2 emissions from the construction work. The proposed model is based on
artificial neural networks (ANN), and the study puts forward a mathematical formula for predicting
the environmental impact of excavator operations based on the operational characteristics for different
excavator models and the parameters of the earth excavation. The results from a multivariate linear
regression (MLR) analysis of the same input and output parameters are compared with the results
of the proposed ANN model, thus demonstrating the efficiency of the ANN model as a prediction
formula. The model’s output can help planners to estimate the energy consumption and CO2 emissions
of the chosen excavators based on digging depth (Dp), cycle time (Tc), bucket payload (Bp), bank density
of excavation materials (Bd), and horsepower of excavator engine (Hp). In addition, planners can
easily employ the results of the proposed model using an Excel spreadsheet, Matlab, or any other
computational program, depending on their preference.

This paper is organized as follows. First, in Section 1, the introduction explains the relevance
and importance of this study, including related literature and models for assessing the CO2 emissions
of construction equipment, the current knowledge gap, and the contribution of the study. Section 2
describes the methodology for the proposed models and data generation, Section 3 contains results
and discussion and, in the final section, the conclusions, limitation and future research directions
are discussed.

2. Methodology of the Proposed Model for Forecasting the Energy Use and CO2 Emissions

The method used in this research included the steps shown in Figure 1 where the process flows
from the start point to production of the final prediction formula. Each step is described in the
following (Sections 2.1–2.5).
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Figure 1. A framework for the main process used to create an estimation formula.

2.1. Extraction of A Database Based on the Excavator Manufacturer’s Handbook

Typically, an artificial neural network needs a huge database that can be used for building,
training and testing it in order to produce a good prediction formula. The basic excavator database
was extracted from the Caterpillar handbook 42.0 that covered twenty-five models of excavator [41],
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as shown in Table 1. The selected excavators were divided into several groups based on the nature of
the types of digging recommended for each specific excavator model in the handbook. In addition,
duty cycles of excavators were used in the analysis of digging the earth from cutting level to loading
onto a truck.

Table 1. Suitable types of earth excavation and range density for different excavators.

Caterpillar Excavator Model Suitable Type of Earth Bank Density (kg/m3)

307C, 308D CR, 308D CR SB, 311D LRR, 312D,
312D L, 315D L, 319D L, 319D LN Decomposed Rock-Packed Earth 960–2260

M313D, M315D, M316D, M318D, M322D Sand/Gravel 1370–2082

320D, 320D RR, 321D CR, 323D, 324D, 328D LCR,
329D, 336D, 345D, 365C L and 385C Hard Clay 1089–2415

2.2. Collecting Mass Excavation Characteristics of Different Types of Earth

The characteristics of earth excavation (i.e., density, swell factor, and load factor) were investigated
using inventory information for three groups of earth (i.e., decomposed rock-packed earth, sand/gravel,
and hard clay), according to the recommended use for the excavator models selected (see Table 1).
The bulk and loose densities of the selected types of earth depend on the type of earth, digging depth
and other geotechnical properties for each layer of excavation.

2.3. Generating the Excavator Database Using Different Characteristics of Mass Excavation to Produce the
Input Data for the ANN Model

To generate a sufficiently large dataset for the excavator database, it was necessary to include
a wide range of variables related to an excavator’s work and the different job conditions and
requirements. For each analysis iteration cycle, each excavator type was tested for different scenarios,
including different soil types (St), digging depths (Dp), bucket sizes (Bs), bucket payloads (Bp), cycle
times (Tc), load factors (Lf), and the engine horsepower of the excavator (Hp). For example, with
different types of earth excavation (e.g., packed earth, sand, gravel, and hard clay), each type has
various values of earth density, and these values can be put into ranges as shown in Table 1, and then
tested for different digging depths with a different bucket size and fill factor for each depth. To illustrate
this, Equation (1) was used to calculate bucket payload based on bucket size (Bs) for each model of
excavator, together with bucket fill factor (Bf), with a range of 0.65 to 1.1 (see Table 2), and based on the
type and density of material being excavated and its shape when loaded in the bucket.

Bp = Bs.B f (1)

where Bp is the bucket payload representing the actual volume (m3) of material hauled by the excavator
bucket (also referred to as heaped bucket capacity); Bs is the design volume (m3) of the excavator
bucket (also referred to as struck bucket capacity); and Bf is the percentage of materials actually carried
in respect of the excavator bucket’s available volume [41]. An extensive analysis procedure was
undertaken, using Excel, to test twenty-five models of Caterpillar excavator with sixteen different
values of bucket size within the group’s range, with four different values of bucket fill factor for each
one, and different values of load factor based on different density values for each type of earth to be
excavated. This analysis led to the production of 5092 rows of data in the database (i.e., each row
has a unique set of values), each row having five columns. The final results of this analysis can be
expressed as a matrix (with a dimension of 5092 × 5) in order to provide the input matrix for the ANN
model. In addition, an energy consumption and CO2 emissions database for each operational scenario
of the excavators was created based on the principle equation from Filas 2002 [42]. This approach
was proposed in order to estimate fuel consumption, relationships between fuel specifications, load
factor (decimal), and engine horsepower (kW) for each excavator’s operational scenario. Equations (2)
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and (3) can be used to generate energy and emissions (CO2), and also to provide the output database
matrices for the ANN and MLR models (with dimensions of 5092 × 1) for each of the energy and CO2

emissions outputs.

Ed =

(
SFC .Hp.L f .Ec f

ρ f uel

)
(2)

Emd =

(
SFC .Hp.L f .Emc f

ρ f uel

)
(3)

where Ed and Emd are, respectively, the energy consumption (MJ/h) and CO2 emissions (kg/h) of the
excavator. SFC is specific fuel consumption (0.22 kg/kW h) [43,44], to be set to a suitable value for
engines with power in the range 28.8 to 370 kW [43]. Hp is the horsepower of the excavator engine
(kW), which represents the maximum power level designed for the excavator engine [45]. Ecf is a
conversion factor for the energy of each liter of diesel fuel (36 MJ/L) [46]. ρfuel is the specific gravity
of the diesel fuel to be consumed (0.85 kg/L) [47–52], ranging between 0.83 and 0.87 kg/L. Emcf is a
conversation factor for the carbon dioxide (CO2) of each liter of diesel fuel (2.6569 kg CO2/L) [53]. Lf is
the engine load factor (decimal). The engine load factor is greatly affected by the usage patterns of the
NONROAD engine [45], and typically this has a range of values depending on engine type and level
of utilization [42]. However, this parameter was developed to identify the practical average proportion
of engine rated horsepower used, based on work conditions, to take into account the effect of both idle
and partial load situations when the machine is being operated [54]. Load factor values are used in
Equations (2) and (3) to generate an energy and GHG emission database for the excavators, based on
the approach mentioned by [35] in respect of terms described in the manufacturer’s handbook [41],
and as described in [55,56], which refer to the density of the excavated material as “bank density”.
Thus, a load factor database with material density values (i.e., bank density) was compiled from
different sources, and this was then clustered based on three categorized groups, as shown in Table 1.
Consequently, forty-two values of load factor with their density values were processed and analyzed
using a first degree of exponential algorithms by fitting curve regression analysis to find an acceptable
relationship between the two variables (see Equation (4)).

L f = 0.0366e0.00136BD (4)

where BD is the bank density (kg/m3) (i.e., the material density in its natural state before disturbance,
either in place or in situ). The load factor formula is considered a good representation of the relationship
between the densities and load factor based on a goodness of fit report that shows values for R-square
of 0.9342, a minimum error of 5.7073 × 10−4, and a maximum error of 0.1292 for specific values of
bank density (in the range 960–2415 kg/m3) and load factor (0.15–0.91). Figure 2 shows the flowchart
for the generation of training data sets for the ANN model. Figure 3 shows an integrated definition
for function modeling (IDEFO), which represents a simplified process for generating the energy
consumption and CO2 emission data of excavators used for earth-moving in construction projects.
Table 2 shows the boundary conditions and range limits applied in order to test and analyze various
characteristics for excavators related to earth type, thus generating a very large database.

Table 2. Boundary conditions for database generation for different excavator models.

Excavator Model Dp (m) Tc (min) Bs (m3) Bf (%) Hp (kW) Lf (%)

307C, 308D CR, 308D CR SB, 311D LRR, 312D,
312D L, 315D L, 319D L, 319D LN 1.5–3.0 0.22–0.28 0.37–1.05 0.8–1.1 41–93 0.15–0.91

M313D, M315D, M316D, M318D, M322D 2.0–4.0 0.17–0.23 0.8–1.37 0.9–1.0 95–123 0.15–0.91

320D, 320D RR, 321D CR, 323D, 324D, 328D
LCR, 329D, 336D, 345D, 365C L and 385C 2.3–5.6 0.23–0.35 1.05–5.0 0.65–0.95 103–355 0.15–0.91
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2.4. Designing the Predictive ANN Model with Forwards/Backwards Propagation Learning Algorithms

Building an ANN model requires the predetermination of a preliminary design that can address
three points. First, a decision has to be made regarding the number of parameters that can be utilized
as input to the number of nodes in the input layer. Following on from the final database that resulted
from the analytical processes carried out in Section 2.3, five main parameters associated with the
excavator operating cycle were determined as the input parameters for the ANN model with five
nodes at the input layer. These parameters represented digging depth (Dp), total cycle time (Tc),
bucket payload (Bp), horsepower of the excavator engine (Hp), and load factor (Lf). A second issue
is that there should be no rule applied to determine the number of hidden layers in the ANN [57]
since using more than one hidden layer can be considered to produce more filtering and weights
modification of the ANN’s output [58]. Despite this, one hidden layer is used by most researchers for
predicting objectives [59–61], this may be problematic for the expression of the final prediction formula,
as complicated weightings result when there are many hidden layers [61]. A common practice for
determining the number of nodes in the hidden layer is to use trial-and-error or experimentation [59]
because there is no fully proven theoretical or algorithmic procedure to determine the nodes in the
hidden layer [57,59,62]. In addition, investigative studies of ANNs have shown that the number of
hidden layers has no significant effect on prediction performance [59]. In this study, one hidden layer
was used in each prediction model (energy consumption and CO2 emission).

According to [57–61], trial-and-error is used to select the optimum number of hidden nodes that
meets a minimum value of mean square error for the performance training and testing data subsets
in the proposed ANN model. The data for the 5092 cases generated by analysis of the operational
characteristics for excavators was divided into two parts: the training set and the testing set. There
are no accepted mathematical rules for determining the size of the dataset to be used for training and
testing, and the number of training cycles or iterations is almost always decided on by rule of thumb,
based on experience and trial-and-error, in order to reach a minimum percentage value of mean square
errors [35,63]. Therefore, trials with various sizes of training and testing databases, created from the
whole database, were carried out using 75–93% and 25–7%, respectively, of the data for the training and
testing database subsets in both ANN models (see Tables A1 and A2). Perception Multilayer (PML)
networks, a backward propagation learning method based on the Levenberg–Marquardt algorithm,
were used for the training data in the neural network. Here, a multi-layer feed forward and backward
propagation using a supervised learning technique was implemented with a sigmoid activation function
to develop and train the neural network. The procedure for data processing inside an ANN model
can be divided into three parts. The first part involves using training subset data to update the weight
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connections in the network layers using backward propagation at the training stage. The second part,
in parallel with the learning process, uses the testing subset to identify the responses of the designed
neural network to data that do not form part of the training data, but which are a part of the whole
dataset and within its boundaries. In the third part, the neural network utilizes data examples that do
not belong to the other two subsets (i.e., training and testing) to produce a validation data subset that
provides a final indication of model acceptability and validity. In this study, several trials were carried
out in order to select an optimum design for the nodes in the hidden layer, and for the size of the training
and testing data subsets. Tables A1 and A2 in the Appendix A show the main results for the best seven
cases of hidden nodes after 42 trials on various subset sizes selected for both of the ANN models.

The optimum combination figure from among the best forty-two trials of the ANN model running
the training and testing data subsets was found to be 40. This was based on the minimum value of
mean square error for the training data subset, which is considered the essential criterion to represent
the best performance for the backward propagation learning method used for the ANN model adopted
to select the best combination [63]. In addition, the value correlation coefficient (R) is considered
more useful for comparing appropriate models with the different number of predictors for ANNs [58].
R also represents the correlation value between the prediction and the actual output value of a neural
network [63]. However, R is a poor measure when it is zero or near zero (which indicates a lack of a
relationship between the predicted and actual output of the ANN model) [63]. Thus, a value for R
of 1 (or near 1) is seen as a robust indicator of good relevance between the predicted and the actual
output [63]. Therefore, 0.9 is a minimum value of R in order for the neural network model to be
considered a good model, one that represents a perfect fit between the target and actual output [63].

The final decision made for this study was to build two ANN models, using one hidden layer
with fifteen hidden nodes. A single parameter in the output layer was used, given that the target
value is only the energy consumption per hour of material hauled by the excavator; this represents
the first model. For this, 90% of the data (i.e., 4629) were used in the training of the neural network,
and the remaining 10% (i.e., 463) of the total data were used for testing the constructed network and
to verify the final results. This design of ANN model for energy prediction was selected based on
the minimum value of mean square error (0.00000851) produced by this combination (5-15-1) with
R-values of 0.99972 and 0.99974 for training and testing output versus target respectively, at a level of
learning rate of 0.1 and with 15 iterations to obtain an optimum representation. Similarly, a second
ANN model used the prediction of CO2 emissions per hour of material hauled by the excavator as a
single output parameter, together with one hidden layer with fifteen hidden nodes. Again, 90% of the
data (i.e., 4629) were used in the training of the neural network, and the remaining 10% (i.e., 463) of the
total data were used both for testing the constructed network and for verifying the final results. This
model was also selected based on the minimum value of mean square error (0.00000895) produced by
this combination (5-15-1) with R-values of 0.99970 and 0.99975 for training and testing output versus
target respectively, at a level of learning rate of 0.1 and with 21 iterations to achieve an optimum
representation. The architectural structure of the optimal ANN models is shown in Figure 4, showing
three layers with their connections.

In order to produce an accurate estimation formula based on the ANN model, the data used in
the model should first be preprocessed (i.e., through normalizing and scaling) to modify the training
environment of the neural network [60,64–66]. The input and output data were scaled within the range
0.1 to 0.9 in order to avoid the problem of a slow learning rate at the edges of the data boundaries,
and to ensure precision of the output range based on the quality of the sigmoid function in the
backward propagation learning algorithms in relation to the default scaled data between 0.0 to 1.0 [60].
The scaling formula for input and output data is shown in Equation (5), which was used here to scale
the data within the ranges 0.1 to 0.9 [60].

Xs =

(
0.8

xmax − xmin

)
xi +

(
0.9 − 0.8xmax

xmax − xmin

)
(5)



Sustainability 2017, 9, 1257 9 of 25

where Xs represents the normalizing/scaling value of the input data, xi is the value of input data for each
parameter (i.e., 1, 2, 3, . . . , n), xmin is the minimum value of the input data for each parameter, and xmax is
the maximum value of the input data for each parameter. In order to develop a prediction formula based
on the best result from the ANN model, the values of weight connections and thresholds (i.e., bias) for
input to hidden layer and hidden to output layer are essential elements in formulating a final expression
for predicting energy consumption and CO2 emissions per hour of excavators. The matrix representation
of the prediction formula for both ANN models was preferred because it offers the simplest version
for users and practitioners in the field. The following (Sections 2.4.1 and 2.4.2) describe the matrices
for weight connections between the input and hidden layers and the hidden and output layers, input
parameters and bias values. In addition, mathematical operations were used on the matrices to produce a
final estimation for energy and CO2 emissions per hour of material hauled by an excavator.Sustainability 2017, 9, 1257  9 of 26 
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Figure 4. Architectural structure for the optimal ANN model to predict energy consumption or
CO2 emissions.

2.4.1. Matrix Expressions and Final Formula for Energy Prediction from the Proposed ANN Model

A matrix representation for calculating a final formula for predicting energy consumption per hour
of material hauled by excavators was based on the minimum error performances of the proposed ANN
model. Consequently, a matrix “A” represents the weight connection matrix between the input and
hidden layers (For i = 1, 2, . . . , n; j = 1, 2, . . . , m; n = 15 and m = 5), a matrix “B” represents the scaled
values for the input parameters (where b = 1, 2, . . . , q; q = 5) (i.e., element “b1” is digging depth, “b2”
cycle time, “b3” bucket payload, “b4” engine horsepower, and “b5” load factor), a matrix “C” represents
the bias values (i.e., threshold) of nodes in the hidden layer (where c = 1, 2, . . . , p; p = 15), a matrix “H”
represents the weights connection vector matrix between the hidden and output layers (where h = 1, 2,
. . . , O; O = 15), and “θy” represents the bias value (i.e., threshold) of nodes in the output layer.
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A =

 a11 · · · a1m
...

. . .
...

an1 · · · anm

 =



−3.677440852 24.87161224 0.230334205 2.77829259 2.048167107
−0.783522219 −20.3477818 0.091329902 −1.350110155 −5.047222675
1.210378856 −36.25181866 1.066618194 −0.061475221 2.359664691
−1.78089240 −39.8347403 2.380665381 1.397899295 3.405365199
0.598010012 14.03162418 1.132821397 1.884720928 −9.695198703
1.965179487 −24.83972655 −1.189684237 −4.795409234 −2.675121029
0.589117574 −22.65447344 0.448604827 9.226369571 −3.636648591
−1.550104999 26.20085586 −4.170588501 −3.950077672 2.759830409
−1.000885315 33.53601337 −1.069650459 −1.132045451 −7.870716572
2.949168183 −16.30107761 −0.895845652 2.673408158 6.756733837
−3.090251924 18.18235518 −1.028676606 −0.744436922 1.971393336
−0.483710257 −20.06434442 −0.254584121 −5.088372385 2.110576752
−0.038781499 15.2462722 0.071688992 −6.48936298 −3.847359832
3.595497425 23.64906064 −0.002827065 −3.534576821 −7.779734048

0.1821617149 33.18636295 −1.749536489 0.000998579 −1.317994885



B =


b1

b2

b3

b4

b5

 =


Dp

Tc

Bp

Hp

L f

, C =



c1

c2

c3

c4

c5

c6

c7

c8

c9

c10

c11

c12

c13

c14

c15



=



−15.01115942
21.12359166
0.979837263
6.543720316
2.545187274
12.94563099
13.23282958
−3.863214871
0.030145205
4.186390388
0.481771314
5.203474183
−1.191674147
−15.03200076
2.572996221



, H =



h1

h2

h3

h4

h5

h6

h7

h8

h9

h10

h11

h12

h13

h14

h15



=



1.191438535
−3.831172259
0.867321744
1.142845893
0.139621243
−0.720376136
1.035986148
1.115930615
−0.296046874
0.886885171
1.996181905
−1.269110415
−1.393150816
−2.114183064
1.564485917



, θy = −2.19303

D = A.B (6)

E = D + C (7)

F = [1./(1 + exp(−E))] (8)

K = [ f1.h1; f2.h2; f3.h3; f4.h4; f5.h5; . . . . . . . . . . . . . ; f13.h13; f14.h14; f15.h15] (9)

S =

[
n

∑
i=1

Ki

]
+ θy (10)

Ens = [1/(1 + exp(−S))] (11)

where “D” represents the resultant matrix of the multiplication of the weight connections and scaled
input parameters matrices, “E” represents a summation matrix for “D” and “C”, “F” represents a
matrix resulting from applying a sigmoid function to each weight connection between the input and
hidden layers, consisting of fifteen elements (i.e., f 1; f 2; f 3; f 4; f 5; f 6; f 7; . . . . . . ..; f 15), “K” is a vector
matrix for elements facing each other in both the “F” and “H” matrices (note that this step is not
typical for matrix multiplication, but it is regarded as multiplication only for parallel elements in both
of them), “S” represents the summation values of the bias value of the node output layer and the
summation values for the elements of the “K” matrix (For i = 1, 2, . . . , n; n = 15), and “Ens” represents
a prediction value for excavator hourly energy consumption (MJ/h) of material excavated.
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2.4.2. Matrix Expressions and Final Formula for CO2 Emission Prediction from the Proposed ANN Model

A matrix representation for calculating the final formula for predicting CO2 emissions per hour
of material hauled by excavators is based on the minimum error performances and robust values of
the correlation coefficient for the proposed ANN model. Consequently, a matrix “AA” represents the
weight connections matrix between the input and hidden layers (For i = 1, 2, . . . , n; j = 1, 2, . . . , m;
n = 15 and m = 5), a matrix “B” represents scaled values for input parameters (where b = 1, 2, . . . , q;
q = 5) (i.e., element “b1” is digging depth, “b2” cycle time, “b3” bucket payload, “b4” engine horsepower,
and “b5” load factor), a matrix “CC” represents the bias values (i.e., threshold) of nodes in the hidden
layer (where cc = 1, 2, . . . , p; p = 15), a matrix “HH” represents the weight connections vector matrix
between the hidden and output layers (where h = 1, 2, . . . , O; O = 15), and “θyy” represents the bias
value (i.e., threshold) of nodes in the output layer.

AA =

 aa11 · · · aa1m
...

. . .
...

aan1 · · · aanm

 =



−0.4757506 29.12955939 −0.160843513 0.307060003 −5.602866944
2.481485221 26.46861733 0.134640784 4.157525728 1.657506315
−1.14626361 18.39758311 1.321084251 2.09972573 −2.241111846
−0.193346605 −26.46519817 1.133358366 −0.605252423 −3.971679668
1.177548971 23.64087064 2.019983714 2.884648668 0.472446143
0.116910441 −23.76656761 0.78359844 −1.233544298 5.221240991
0.323100743 −0.136202793 0.002228071 −3.285636792 −1.255103818
−1.138930305 7.07177589 −0.126403941 −4.829413491 7.370063713
0.429372669 19.18136427 −0.020521201 0.383704305 9.323541691
1.31537238 −8.749605712 0.199810391 −0.070577057 −4.505048027

−1.144256899 17.1303975 2.124259607 0.851584715 9.548548579
−1.373247571 44.19420242 −1.603009642 −1.389546762 1.791743692
−0.660774917 −32.73286819 −1.148778597 −1.184811764 4.557070412
0.819274785 −29.18099733 1.384286893 0.266956694 1.101330944
−0.555057189 30.8692482 0.464645729 −2.292821486 0.928414584



B =


b1

b2

b3

b4

b5

 =


Dp

Tc

Bp

Hp

L f

, CC =



cc1

cc2

cc3

cc4

cc5

cc6

cc7

cc8

cc9

cc10

cc11

cc12

cc13

cc14

cc15



=



5.292331696
−22.89861344
−2.287247727

0.3087176
−8.439022771
12.03529867
4.416817449
−0.817624795
−9.779244899
−3.955954137
−12.68635901
−12.12530243
7.783408736
3.386430439
−8.60952464



, HH =



hh1

hh2

hh3

hh4

hh5

hh6

hh7

hh8

hh9

hh10

hh11

hh12

hh13

hh14

hh15



=



1.843008299
−1.568458515
1.522061848
0.711245857
1.009291993
0.397797414
−14.81641879
1.162905366
0.249474389
−0.67876766
0.218924212
1.660610719
−0.116777555
1.393303078
−3.291493725



, θyy = 8.226812

DD = AA.B (12)

EE = DD + CC (13)

FF = [1./(1 + exp(−EE))] (14)

KK = [ f f1.hh1; f f2.hh2; f f3.hh3; . . . . . . . . . ; f f13.hh13; f f14.hh14; f f15.hh15] (15)

SS =

[
n

∑
i=1

KKi

]
+ θyy (16)

Ems = [1/(1 + exp(−SS))] (17)
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where “DD” represents the resultant matrix of multiplying the weight connections and scaled input
parameters matrices, “EE” represents a summation matrix for “DD” and “CC”, “FF” represents
the matrix result after applying a sigmoid function to each weight connection between the
input and hidden layers, “KK” is a vector matrix for elements facing each other in both “FF”
(where FF = [ ff 1; ff 2; ff 3; ff 4; ff 5; ff 6; ff 7; . . . . . . ..; ff 15]) and “HH” matrices (note that this step is not
a typical matrix multiplication, but it is regarded as multiplication only for the parallel elements in
both of them) (i = 1, 2, . . . , n; n = 15), “SS” represents the summation values of the bias value of the
node output layer and the summation values for elements of the “KK” matrix, and “Ems” represents a
prediction value for excavator CO2 emissions per hour (kg/h) of material excavated.

The matrix size of the weight connections for the prediction equation is mainly dependent on the
number of hidden layers, and on having nodes in each hidden layer that have more weight connections,
which would produce a complex manual computation. However, reducing the size of the matrices
requires the selection of a minimum number of nodes in the hidden layer in order to reduce the size of
the weight connection matrix. In addition, the minimum number of hidden layers should be sufficient
to achieve an acceptable degree of accuracy and validation. Thus, the adoption of fifteen hidden nodes
gives a high degree of accuracy according to the values of mean square error and correlation coefficient,
which may give us a large, but not complex, matrix that can be solved using an Excel spreadsheet that
is available to, and widely used by, all practitioners in this field. A faster and more advanced method
could use Matlab, as used in this study.

2.5. Relative Importance and Sensitivity Analysis of Excavator Input Factor on Energy Consumption and
CO2 Emissions

When we need to select the best excavator for earthwork activities, the relative importance of the
various input parameters in the designed ANN models is significant for an understanding of the impacts
of the parameter on the desired output, and for validation. Understanding the influence of each input
parameter on the final output of the proposed ANN model is an essential procedure when comparing
different available excavator options and making an optimal choice at an earlier stage of earthwork
activities. In addition, identifying and controlling input parameters that exert more effect on the final
output of the ANN models (i.e., energy and emission) can help to reduce energy consumption and CO2

emissions associated with the excavators. For instance, if we have two models of excavators that are
different in terms of operational characteristics, we can estimate the environmental impact of each of
them for each hour of material hauled and, by comparing them with environmental conditions and the
productivity performance rate, select the optimum option. In 1991, Garson [67] proposed the partitioning
weights method to determine the effects of different input parameters on the outputs, and this method
was adopted by [68]. It has been used in this study in order to determine the relative importance of the
various input parameters that impact on excavator energy consumption and CO2 emissions per hour for
various operational conditions within all operational scenarios that were tested with generated data.

In both of the proposed ANN models, the number of hidden layers was increased to five from the
one that was used to build the prediction equations, since more hidden layers filter the data within
the neural network more. Each hidden layer has fifteen hidden nodes (see Figure 5), and each node
in each layer is fully connected to the nodes pre-layer and post-layer in the ANN model. Using the
same percentage of data from the whole database that was used to create the training and testing data
subsets, both ANN models were run several times until they achieved the same values for mean square
error as the prediction models did. Consequently, the most important parameter influencing energy
consumption and CO2 emissions per hour for the excavator in both of the proposed ANN models was
found to be the cycle time (Tc), at 67.67% and 66.16% respectively, which involves excavating, swing,
loading and returning to the digging start point. Of second highest importance was engine load factor
(Lf) (15.85% and 15.82%), followed by horsepower (Hp) (7.08% and 7.30%), digging depth (Dp) (4.98%
and 5.86%), and bucket payload (Bp) (4.51% and 4.85%), for both ANN models. This result is shown in
Figure 6, where cycle time is a demonetized factor for outputs of both models.



Sustainability 2017, 9, 1257 13 of 25

Sustainability 2017, 9, 1257  13 of 26 

 

excavating, swing, loading and returning to the digging start point. Of second highest importance was 

engine load factor (Lf) (15.85% and 15.82%), followed by horsepower (Hp) (7.08% and 7.30%), digging 

depth (Dp) (4.98% and 5.86%), and bucket payload (Bp) (4.51% and 4.85%), for both ANN models. This 

result is shown in Figure 6, where cycle time is a demonetized factor for outputs of both models. 

 

Figure 5. Architectural structure to identify the relative importance of input parameters to the energy 

consumption or CO2 emission ANN models. 

 

Figure 6. Relative importance of input parameters to the energy consumption and CO2 emission  

ANN models. 

3. Multivariate Linear Regression Formulae for Predicting Energy Consumption and CO2 

Emissions Compared with ANN Models 

A multivariate linear regression (MLR) analysis technique was applied to the energy and 

emissions database of the excavators in this study to produce the simplest formulae for predicting 

both of the target parameters in the ANN models. A regression analysis formula can be considered 

an easy expression to follow and implement, despite its inadequacy in representing nonlinear 

behaviors for real-world systems. MLR was used in this study to show the accuracy of the ANN 

predicting model by comparing the outputs of both models with those from MLR. Furthermore, 

MLR can be achieved using matrices with Matlab code [67,69], which shows the intercept value “Α” 

Figure 5. Architectural structure to identify the relative importance of input parameters to the energy
consumption or CO2 emission ANN models.

Sustainability 2017, 9, 1257  13 of 26 

 

excavating, swing, loading and returning to the digging start point. Of second highest importance was 

engine load factor (Lf) (15.85% and 15.82%), followed by horsepower (Hp) (7.08% and 7.30%), digging 

depth (Dp) (4.98% and 5.86%), and bucket payload (Bp) (4.51% and 4.85%), for both ANN models. This 

result is shown in Figure 6, where cycle time is a demonetized factor for outputs of both models. 

 

Figure 5. Architectural structure to identify the relative importance of input parameters to the energy 

consumption or CO2 emission ANN models. 

 

Figure 6. Relative importance of input parameters to the energy consumption and CO2 emission  

ANN models. 

3. Multivariate Linear Regression Formulae for Predicting Energy Consumption and CO2 

Emissions Compared with ANN Models 

A multivariate linear regression (MLR) analysis technique was applied to the energy and 

emissions database of the excavators in this study to produce the simplest formulae for predicting 

both of the target parameters in the ANN models. A regression analysis formula can be considered 

an easy expression to follow and implement, despite its inadequacy in representing nonlinear 

behaviors for real-world systems. MLR was used in this study to show the accuracy of the ANN 

predicting model by comparing the outputs of both models with those from MLR. Furthermore, 

MLR can be achieved using matrices with Matlab code [67,69], which shows the intercept value “Α” 

Figure 6. Relative importance of input parameters to the energy consumption and CO2 emission
ANN models.

3. Multivariate Linear Regression Formulae for Predicting Energy Consumption and CO2
Emissions Compared with ANN Models

A multivariate linear regression (MLR) analysis technique was applied to the energy and emissions
database of the excavators in this study to produce the simplest formulae for predicting both of the
target parameters in the ANN models. A regression analysis formula can be considered an easy
expression to follow and implement, despite its inadequacy in representing nonlinear behaviors for
real-world systems. MLR was used in this study to show the accuracy of the ANN predicting model
by comparing the outputs of both models with those from MLR. Furthermore, MLR can be achieved
using matrices with Matlab code [67,69], which shows the intercept value “A” and slopes “ß” (i.e., Beta
coefficient) for each input parameter in the final expressions. MLR analysis was implemented on a
normal scale database, and this means users would not need to scale input data then remove that
scaling from output values. There are two formulae modeled as a MLR function of Dp, Tc, Bp, Hp and
Lf for predicting excavator energy consumption and CO2 emissions per hour of material excavated.
The analysis results are shown in the following mathematical models (see Equations (18) and (19)).
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Both the energy and the emissions prediction formulae are based on the value R-square being 0.8647
(see Figure A3a,b).

EnR = An + βn1.Dp + βn2.Tc + βn3.Bp + βn4.Hp + βn5.L f (18)

EmR = Am + βm1.Dp + βm2.Tc + βm3.Bp + βm4.Hp + βm5.L f (19)

where “EnR” and “EmR” represent, respectively, hourly energy consumption and CO2 emissions of
material hauled by the excavator; “Dp” is digging depth; “Tc” is cycle time; “Bp” is bucket payload;
“Hp” is horsepower; and “Lf” is load factor. Intercept value “A” and slope values “ß” for each formula
are shown in Table 3.

Table 3. The intercept and slope values for regression equations.

Items A ß1 ß2 ß3 ß4 ß5

EnR n −562.921 −5.79 × 10−9 8.14 × 10−9 3.25 × 10−10 4.45274 1177.95
EmR m −42.1721 1.51 × 10−10 3.16 × 10−9 6.31 × 10−10 0.33359 88.2478

4. Results and Discussion

The results of this study focused on the energy consumption and CO2 emissions of excavators,
and can be categorized thus: (1) the proposed ANN models for predicting energy consumption and
CO2 emissions; (2) identification of factors that have large impacts on the energy consumption and
emissions; and (3) comparing the results of a multivariate linear regression formula with ANN model
outputs to provide evidence for adopting ANN models as the optimum prediction formulae.

By examining different combinations of hidden node numbers, sizes of training and testing
database subsets, with a learning rate of 0.1, the ANN model was designed with fifteen hidden nodes
in a single hidden layer, based on the best performance of the neural network after training using a
trial-and-error method (see Tables A1 and A2). In addition, the selection of the number of hidden
nodes in this case was also carried out using trial-and-error, from a range of different rule-of-thumb
techniques, as suggested by various researchers. Hecht-Nielsen (1990) and Maureen (1991) suggested
that the number of hidden nodes in the single hidden layer in the neural network should be equal to
double the number of the input parameters plus one (2n + 1) [70,71]. Masters (1993) suggested the
number of hidden nodes should be equal to the square root of multiplying the number of outputs and
inputs ((n × m)1/2) [72]. Fletcher et al. (1993) stated the number of hidden nodes should be tested with
intervals of ((2(n))1/2 + m) to (2n + 1) [73]. Hegazy et al. (1994) suggested the number of hidden nodes
should be equal to one half of the total number of input and output parameters (i.e., 1.5 × (n + m)) [74],
where n and m represent, respectively, the number of input and output parameters in all expressions
given in this section. Although there are no strict rules that should be followed, based on these previous
suggestions, the proposed range for the number of hidden nodes in the ANN prediction models should
be between 3 and 11 as a guideline for finding the optimum number of hidden nodes. Therefore, the
ANN prediction models were tested with different node numbers within the selected intervals, and
showed good results with most of these numbers. However, the ANN models also showed a capacity
to reduce the mean square error (MSE) for prediction values with an increasing number of hidden
nodes. Consequently, the trials were extended to include thirteen and fifteen hidden nodes, with
trial-and-error used to pick the optimum number [63]. Therefore, fifteen hidden nodes was seen to be
the best design within the tested range of nodes for processing elements in each hidden layer in both
of the ANN prediction models. This selection is also supported by the general rule proposed by Jadid
et al. 1996, which gives the maximum number of nodes in the hidden layer [75]. Thus, the upper limit
in this study is approximately 18 nodes, based on their rule for a range value of 10.

The efficiency of both ANN prediction models was confirmed using the minimum value of MSE
for the training performance with the acceptance value of the correlation coefficient (R) [63] as shown
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in Tables A1 and A2, and Figures A1a–f and A2a–f. Furthermore, both of the proposed ANN prediction
models are considered to be good prediction formulae based on their values of MSE (0.00000851 and
0.00000895) and R (0.99974 and 0.99975), thereby providing guidelines for the selection of the best
model to meet the target function [63]. Hence, the ANN models provides an accurate prediction of the
energy consumption and also the CO2 emission using the linear relationship between fuel consumption
and CO2 proposed by Wojciech G. et al. 1999 [76], and adopted by Yutong G. et al. 2007 [77].

In both of the proposed ANN models, the input data were scaled between 0.1 and 0.9, as
mentioned in Section 2.4 and based on Equation (5). This was done in order to reduce the noise
from data at the boundaries. Thus, the values produced using the prediction Equations (11) and (17)
are the scaled values for energy consumption and CO2 emissions. Consequently, these values should
be rescaled using Equation (20) to arrive at the actual prediction values for energy consumption and
CO2 emissions per hour.

Yr =

(
ymax − ymin

0.8

)
ys − 0.9

(
ymax − ymin

0.8

)
+ ymax (20)

where Yr represents the value of rescaling output data (i.e., actual prediction values), ys is the
normalizing/scaling value of the output (i.e., the value calculated using the prediction Equations (11)
and (17)), ymin is the minimum value of the original output data, and ymax is the maximum value of the
original output data.

A sensitivity analysis was carried out to identify which of the input parameters had the largest
effect on the target output. The relative importance of both the input parameters and the output
parameter for both of the proposed ANN models was assessed using MATLAB code, based on the
premise that partitioning weights is an acceptable approach for this objective [67,68]. Cycle time is the
dominant factor on the output values for all five main input parameters for both of the proposed ANN
models. The Caterpillar performance handbook presents excavator specifications and cycle times based
on working conditions [78]. However, cycle time is affected by other operational parameters such as
bucket size, swing angle, and truck position [79]. In this study, the proposed model uses a cycle time
identified from the manufacturer’s handbook using specific swing angle, depth of cut, type of earth,
and minimum distance to truck [41,79], for various earth densities with different excavating depths.
Therefore, the cycle time for each excavator can be estimated for different operating conditions in the
project such as excavating depths and type of earth [80] based on physical quantities [41,78] such as the
cutting and loading force required for digging. This allows for the selection of the optimal excavator
based on typical engineering project characteristics such as earth type and digging depth [41].

The results of this study can be implemented practically, especially given that the findings of
previous research regarding excavator work management have also highlighted that cycle time is an
important factor in terms of controlling excavator performance and productivity rates [66,80]. Cycle
time is considered a basic metric for loading performance, one that impacts the productivity rates of
construction equipment [80,81]. Cycle time for each operation mode is one of the main operational
parameters that effect on the level emission of excavators of earthmoving operations [79]. Efficient
excavating cycle time is a best idea that leads to fuel saving [82]. Moreover, Komatsu [83] noted the
major benefit of reducing cycle time by about 11%, leading to a fuel consumption saving of 23% in
excavator operations when adjustment for other factors relevant to fuel consumption, such as engine
power, are made. Thus, identifying the major effect of this parameter on the output can be seen as
beneficial when controlling and reducing the energy consumption and CO2 emissions of excavators in
the earlier stages of construction projects. It allows an ideal plan to be designed which minimizes time
lost during excavator operations over each cycle. Figure 7a,b shows the variation in the actual and
predicted values (for both ANN and MLR) for energy consumption and CO2 emissions for different
excavator models for the various cycle times that work in the different site conditions , showing good
agreement between the actual and predicted values for ANN models. It can be seen that the highest
values of energy and emissions were produced from each excavator model at the longer cycle time
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for the same specific conditions and characteristics for each operational scenario. In addition, load
factor was considered the second most important factor that impacted on the energy and emission of
excavators by Mario et al. (2016) who showed the variation of load factor values in different operational
scenarios [43]. However, load factor effects investigated for other heavy duty diesel equipment such as
bulldozers have shown that a reduction 15% of load factor may have a significant effect on reducing
fuel consumption and emission CO2 [84].
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with various operating conditions.

Multivariate linear regression (MLR) analysis was carried out twice on the same generated data
for the five input parameters for each output parameter in order to predict energy consumption and
CO2 emissions per hour, respectively. Furthermore, regression analysis can be considered as both
evidence of, and a method to demonstrate, the validity of specific results of the prediction values from
both of the proposed ANN models. The images in Figure 7a,b are constructed to demonstrate the
accuracy of the ANN models in comparison with the MLR of various excavators in different work
conditions. The x-axis represents the various work situations produces the different cycle-time for
different excavators where each excavator operates at a specific cycle time, depth and earth type
generating the engine load shown on the y-axis as energy or CO2 emissions. In this case, based on the
comparison between the actual values (i.e., the original data used to train both models) for energy and
CO2 emission with two predicted values (i.e., ANN and MLR), we can see consistency between the
results of the ANN models with actual data for all operational scenarios through the specific ranges,
while MLR results show divergent behavior with the actual data for several operational scenarios
(see Figure 7a,b). Although these results are acceptable, based on the best value for R-square (0.8647)
in both the regression models, it is still a linear model and does not represent an accurate picture of
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the complex connections between independent parameters. Thereby, this demonstrates the efficiency
of the proposed ANN models as prediction formulae for use at an early stage of the construction
process in the planning phase when there is a lack of detailed information. The ability of ANN to
tackle complex relationships between independent variables that cannot be solved by more traditional
methods has been demonstrated by other researches [85–87].

In addition, the originality value of this research lies in providing a method to estimate energy
consumption and emissions (CO2) in the early planning stages of construction projects despite the
practicalities of the shortage of information and details about construction processes during this
stage [39]. To overcome this shortfall, the availability of other details from preliminary surveys
and investigations on geotechnical information, level/density of cutting layers, and the operational
characteristics of the machines available to a construction company or contractor are employed.
Furthermore, existing methods to estimate energy use and CO2 emissions might need more detailed
information and effort before application or the calculation of certain parameters or details, for instance,
productivity rate [35,88], engine speed and other engine operational characteristics [3], in order for
those formulas to be applied. The research’s results will thus be of interest to those planning and
estimating earthmoving and similar operations in construction projects because it can provide an
indication of energy consumption and CO2 emissions before the construction phase commences.

5. Conclusions

For construction management, most studies published have linked artificial neural networks
(ANN), an advanced programming technique with a feedforward neural network, with a
backpropagation learning algorithm to deal with nonlinear problems. The main aim of this paper was
to present models for predicting the energy consumption and CO2 emissions of excavators per hour of
material hauled. To do this, data relating to energy consumption have been applied to artificial neural
networks in order to model energy consumption and CO2 emissions per hour for excavators. In each
prediction model, five input parameters were used with one output parameter, with the ANN model
proving that the neural network is capable of modeling and predicting with high accuracy. Moreover,
the ANN model has shown the relative importance of the input parameters and their effects on the
output. The cycle time of excavators is the dominant factor (≈67%) for levels of energy consumption
and CO2 emissions per hour of material hauled by the excavator; the load factor is the second most
dominant factor (≈15.9%). Multivariate linear regression (MLR) analysis was carried out to confirm
that the results from the ANN prediction models were the best prediction values. The ANN model has
displayed an excellent correlation with independent parameters in respect of developing an efficient
predictive formula that can compensate for the lack of construction process details when projects are
in the early planning stages. The ANN prediction equations, in the form of matrices, are a good aid for
planners and practitioners in construction project management when estimating energy consumption
and CO2 emissions for each hour of earth-moving in the early (i.e., planning) stage (i.e., limited details)
of construction projects, and when selecting the optimum excavator for earth-moving while also
considering environmental impacts.

These ANN models can be used to predict energy use and emissions from all types of excavators
that fall within the range of the operational characteristics for excavators listed in Tables 1 and 2. One
limitation of this research could be considered the assumption that excavators operate in a steady
state and with the same performance efficiency throughout excavation operations. Another limitation
could be considered to be that using basic data extracted from the manufacturer’s handbook for the
excavators to generate the input data of the proposed models ignores the effects of uncertain conditions
such as a long idle time when the excavator has to be moved to a new location, as well output data
for energy and CO2 emission depend on indirect measurement. The model presented here will be
further extended to use different values of performance efficiencies for excavator fleets in order to
cover all real-life operational scenarios where excavators are employed in earth-moving operations.
Furthermore, study of other parameters that highly affect behavior under different conditions of earth
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density and bucket payload such as engine torque to compare the prediction efficiency of the proposed
model in the case of use engine load factor or engine torque would be interesting. In addition, the
model will be adapted consider other types of greenhouse gas (GHG) emissions and particulate matter.
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Table A1. Trials of different combinations within ANN model to select the optimal energy
model performance.

Case C * N * L * Straining Stesting MSE Epochs Rtraining Rtesting

A 1 5-3-1 0.1 4073 1019 0.00001974 79 0.99755 0.98361

2 5-3-1 0.1 4364 728 0.00007876 91 0.99715 0.99748
3 5-3-1 0.1 4526 566 0.00007665 76 0.99718 0.99743
4 5-3-1 0.1 4629 463 0.00007479 71 0.99724 0.99712
5 5-3-1 0.1 4700 392 0.00026406 63 0.98964 0.98722
6 5-3-1 0.1 4752 340 0.00000995 85 0.99967 0.99968

B 7 5-6-1 0.1 4073 1019 0.00000987 71 0.99755 0.98362

8 5-6-1 0.1 4364 728 0.00007876 64 0.99715 0.99748
9 5-6-1 0.1 4526 566 0.00007665 81 0.99718 0.99743

10 5-6-1 0.1 4629 463 0.00029514 78 0.98904 0.99048
11 5-6-1 0.1 4700 392 0.00098040 38 0.96099 0.95960
12 5-6-1 0.1 4752 340 0.00000994 11 0.99795 0.99821

C 13 5-7-1 0.1 4073 1019 0.00001660 38 0.99755 0.98361

14 5-7-1 0.1 4364 728 0.00007876 42 0.99715 0.99748
15 5-7-1 0.1 4526 566 0.00007665 63 0.99718 0.99743
16 5-7-1 0.1 4629 463 0.00007479 44 0.99724 0.99712
17 5-7-1 0.1 4700 392 0.00007118 73 0.99723 0.99650
18 5-7-1 0.1 4752 340 0.00001840 60 0.99053 0.98910

D 19 5-9-1 0.1 4073 1019 0.00001970 31 0.99910 0.99034

20 5-9-1 0.1 4364 728 0.00002102 26 0.99924 0.99934
21 5-9-1 0.1 4526 566 0.00002886 22 0.99894 0.99887
22 5-9-1 0.1 4629 463 0.00001811 28 0.99933 0.99940
23 5-9-1 0.1 4700 392 0.00002936 25 0.99885 0.99865
24 5-9-1 0.1 4752 340 0.00000976 16 0.99921 0.99921

E 25 5-11-1 0.1 4073 1019 0.00000928 27 0.99926 0.99357

26 5-11-1 0.1 4364 728 0.00001489 19 0.99946 0.99954
27 5-11-1 0.1 4526 566 0.00003063 14 0.99887 0.99881
28 5-11-1 0.1 4629 463 0.00001585 22 0.99942 0.99935
29 5-11-1 0.1 4700 392 0.00001616 45 0.99937 0.99933
30 5-11-1 0.1 4752 340 0.00001847 34 0.99939 0.99945

F 31 5-13-1 0.1 4073 1019 0.00001991 33 0.99879 0.99269

32 5-13-1 0.1 4364 728 0.00004490 67 0.99837 0.99840
33 5-13-1 0.1 4526 566 0.00001674 42 0.99938 0.99944
34 5-13-1 0.1 4629 463 0.00001441 25 0.99947 0.99951
35 5-13-1 0.1 4700 392 0.00001963 42 0.99873 0.99805
36 5-13-1 0.1 4752 340 0.00000970 43 0.99897 0.99912

G 37 5-15-1 0.1 4073 1019 0.00000999 14 0.99964 0.99967

38 5-15-1 0.1 4364 728 0.00000930 43 0.99969 0.99971
39 5-15-1 0.1 4526 566 0.00000925 17 0.99968 0.99969
40 5-15-1 0.1 4629 463 0.00000851 15 0.99972 0.99974
41 5-15-1 0.1 4700 392 0.00000944 19 0.99962 0.99973
42 5-15-1 0.1 4752 340 0.00000937 47 0.99968 0.99968

C * = combination number; N * = Design of ANN model; L * = learning rate; Straining = Size of data subset training;
Stesting = Size of data subset testing; MSE = Mean square error for best training performance; Epochs = number
of iterations required to produce best output; Rtraining = Correlation coefficient for output training data subsets
(output vs. target); Rtesting = Correlation coefficient for output testing data subsets (output vs. target).
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Table A2. Trials of different combinations within ANN model to select the optimal emissions
model performance.

Case C * N * L * Straining Stesting MSE Epochs Rtraining Rtesting

A 1 5-3-1 0.1 4073 1019 0.00001990 41 0.99755 0.98361

2 5-3-1 0.1 4364 728 0.00007876 69 0.99715 0.99748
3 5-3-1 0.1 4526 566 0.00007665 66 0.99718 0.99743
4 5-3-1 0.1 4629 463 0.00007479 71 0.99724 0.99712
5 5-3-1 0.1 4700 392 0.00026406 63 0.98964 0.98722
6 5-3-1 0.1 4752 340 0.00000996 84 0.99967 0.99968

B 7 5-6-1 0.1 4073 1019 0.00008863 53 0.99755 0.98362

8 5-6-1 0.1 4364 728 0.00007876 64 0.99715 0.99748
9 5-6-1 0.1 4526 566 0.00007665 68 0.99718 0.99743

10 5-6-1 0.1 4629 463 0.00029514 78 0.98904 0.99048
11 5-6-1 0.1 4700 392 0.00098040 38 0.96099 0.95960
12 5-6-1 0.1 4752 340 0.00002858 48 0.99795 0.99821

C 13 5-7-1 0.1 4073 1019 0.00009781 71 0.99755 0.98361

14 5-7-1 0.1 4364 728 0.00007876 64 0.99715 0.99748
15 5-7-1 0.1 4526 566 0.00007665 70 0.99718 0.99743
16 5-7-1 0.1 4629 463 0.00007479 74 0.99724 0.99712
17 5-7-1 0.1 4700 392 0.00007118 73 0.99723 0.99650
18 5-7-1 0.1 4752 340 0.00009549 42 0.99053 0.98910

D 19 5-9-1 0.1 4073 1019 0.00009714 49 0.99910 0.99034

20 5-9-1 0.1 4364 728 0.00002102 62 0.99924 0.99934
21 5-9-1 0.1 4526 566 0.00002886 22 0.99894 0.99887
22 5-9-1 0.1 4629 463 0.00001811 28 0.99933 0.99940
23 5-9-1 0.1 4700 392 0.00002936 39 0.99885 0.99865
24 5-9-1 0.1 4752 340 0.00001938 69 0.99921 0.99921

E 25 5-11-1 0.1 4073 1019 0.00000999 26 0.99926 0.99357

26 5-11-1 0.1 4364 728 0.00001489 37 0.99946 0.99954
27 5-11-1 0.1 4526 566 0.00003063 45 0.99887 0.99881
28 5-11-1 0.1 4629 463 0.00001585 28 0.99942 0.99935
29 5-11-1 0.1 4700 392 0.00001616 41 0.99937 0.99933
30 5-11-1 0.1 4752 340 0.00000938 24 0.99939 0.99945

F 31 5-13-1 0.1 4073 1019 0.00000963 18 0.99879 0.99269

32 5-13-1 0.1 4364 728 0.00001990 27 0.99837 0.99840
33 5-13-1 0.1 4526 566 0.00001674 29 0.99938 0.99944
34 5-13-1 0.1 4629 463 0.00001441 25 0.99947 0.99951
35 5-13-1 0.1 4700 392 0.00003263 42 0.99873 0.99805
36 5-13-1 0.1 4752 340 0.00000923 52 0.99897 0.99912

G 37 5-15-1 0.1 4073 1019 0.00000993 28 0.99964 0.99967

38 5-15-1 0.1 4364 728 0.00000930 43 0.99969 0.99971
39 5-15-1 0.1 4526 566 0.00000925 17 0.99968 0.99969
40 5-15-1 0.1 4629 463 0.00000895 21 0.99970 0.99975
41 5-15-1 0.1 4700 392 0.00000944 19 0.99962 0.99973
42 5-15-1 0.1 4752 340 0.00000966 23 0.99968 0.99968

C * = combination number; N * = Design of ANN model; L * = learning rate; Straining = Size of data subset training;
Stesting = Size of data subset testing; MSE = Mean square error for best training performance; Epochs = number
of iterations required to produce best output; Rtraining = Correlation coefficient for output training data subsets
(output vs. target); Rtesting = Correlation coefficient for output testing data subsets (output vs. target).
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