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Abstract: Food image recognition is a key enabler for many smart home applications such as smart
kitchen and smart personal nutrition log. In order to improve living experience and life quality, smart
home systems collect valuable insights of users’ preferences, nutrition intake and health conditions
via accurate and robust food image recognition. In addition, efficiency is also a major concern
since many smart home applications are deployed on mobile devices where high-end GPUs are not
available. In this paper, we investigate compact and efficient food image recognition methods, namely
low-level and mid-level approaches. Considering the real application scenario where only limited
and noisy data are available, we first proposed a superpixel based Linear Distance Coding (LDC)
framework where distinctive low-level food image features are extracted to improve performance.
On a challenging small food image dataset where only 12 training images are available per category,
our framework has shown superior performance in both accuracy and robustness. In addition, to
better model deformable food part distribution, we extend LDC’s feature-to-class distance idea
and propose a mid-level superpixel food parts-to-class distance mining framework. The proposed
framework show superior performance on a benchmark food image datasets compared to other
low-level and mid-level approaches in the literature.

Keywords: food image recognition; smart home applications; low-level and mid-level approaches;
superpixels segmentation

1. Introduction

Food image recognition has been attracting increasing attention as a key component in many
smart home applications. For instance, in smart kitchen applications, food images are collected by
a smart fridge to better plan sustainable grocery shopping; food images are used in smart oven to
assist cooking. Compared with other image/object recognition problems, food image recognition
for smart home applications have several challenges: (1) training data might be limited and with
poor quality; (2) computation power might be limited; (3) food images are deformable with large
in-class variance (e.g., different sandwiches from the same class) and small between-class variance (e.g.,
hamburgers and sandwiches from different classes). Methods providing the best performance on other
image databases (e.g., ImageNet Large Scale Visual Recognition Challenge [1]) may not be the best
choice for food image recognition in smart home applications. Therefore, more specific and efficient
food image recognition methods are still needed to satisfy the special characteristics of food images.
Recently, superpixels segmentation methods have been developed and applied to many computer
vision problems [2]. Superpixels segmentation methods are suitable for food images since they can
effectively segment a food image into food items and parts which are more meaningful in recognition
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decision. Therefore, in this work, we adopt the superpixels segmentation idea to improve performance,
efficiency and robustness of food image recognition.

During the past decade, image recognition has made great progress in various applications.
Generally speaking, recent image recognition researches can be categorized into three major directions:
low-level approaches [3–5], mid-level approaches [6–9] and deep learning approaches [10–12].
Despite the superior performance, the major drawbacks of deep learning approaches are their
high computational complexity and large memory footprint caused by the huge number of
variables and layers. High performance GPUs and large memory are desired for deep learning
applications. As a consequence, current applications are mainly based on using remote servers.
Thus reliable, fast transmission is required, which could be affected by bad wireless connections
and limited server capacity during peak periods. Furthermore, such cloud based applications may
raise privacy-related concerns. Since many food image recognition applications are based on mobile
devices, which generally are not suitable for direct employment of deep learning approaches, in this
work, we focus on cost efficient low-level and mid-level approaches.

There have been many researches tackling the problem of food image recognition via simple
low-level feature extraction and coding methods. Low-level features are hand crafted feature vectors,
such as Scale Invariant Feature Transform (SIFT) [13], Speeded Up Robust Features (SURF) [14],
Histograms of Oriented Gradient (HoG) [15], and color descriptors [16]. For an input image, low-level
features are usually densely sampled in a volume of thousands or even tens of thousands. Then the
extracted low-level features will be encoded into image representation vectors via feature encoding
methods such as Bag-of-Words (BoW), Locality-constrained Linear Coding (LLC) [4] or Fisher Vector
(FV) [5,17]. Rahmana et al. proposed a novel food image texture feature with Gabor filter banks to
capture rotation and scale invariant texture features of food images and reported good performances
in texture rich data [18]. Wazumi et al. used circle segmentations to extract rotation invariant SPIN
features suitable for circular Japanese dishes [19]. Zhu et al. employed color and texture features to
classify segmented food items in a food database with 63 images and 19 food items [20,21]. He et al. first
employed global color texture descriptors on segmented food items for classification, then incorporated
two types of contextual information co-occurrence patterns and personalized learning models to
improve the performance [22,23]. Aizawa et al. employed global color, circle, BoF and block features
and proposed improving the performance with the personal likelihood [24,25]. Anthimopoulos et al.
tested various types of features and coding methods and showed that the combination of the SIFT
with the color feature yields better performance [26].

The above works mostly focused on less challenging food image datasets. Considering the
real scenario in smart home applications where only limited training data is available, Chen et al.
introduced a challenging Pittsburgh Fast-Food Image Dataset (PFID) database of popular fast food
items which contains 1098 images in 61 categories [27]. Figure 1a shows image samples from the
PFID fast food images database. Tests on the PFID database show poor performance when using the
basic color and SIFT features with the BoW model. Yang et al. proposed a unique feature learning
framework to learn pairwise features based on semantic clustering of image pixels into food items [28].
Qi et al. proposed a co-occurrence local binary pattern which shows significant improvements on
the PFID database [29]. However, the usage of these pairwise feature approaches is limited by the
dimensionality. For example, the dimension of the image representation of Orientation and Midpoint
(OM) in [28] will increase dramatically with the increasing number of food items (e.g., n3). Recently
Wang et al. proposed Linear Distance Coding (LDC) to transform low-level features to a feature-to-class
distance pattern [30]. The results on PFID yield state-of-the-art performance. However, the LDC feature
transformation structure does not consider the food component information and color information
that are crucial in food images. Also, since in LDC, for each image feature, the method calculates the
distances with nclass codebooks, it requires nclass times more computational cost when compared with
a regular coding scheme. In this work, we improve LDC for food images by incorporating superpixels
segmentation. We extract color information within each superpixel and SIFT descriptors on the edge
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of superpixels. In this way, we can better extract food component color information while retaining
discriminative edge information between neighbouring superpixels. Furthermore, the proposed
approach greatly reduces the computational cost for LDC since we only extract a small number of
discriminative SIFT features and calculate distance features. We test the proposed framework on PFID
and UEC Food 100 datasets.

(a) PFID database (b) UEC Food 100 database

Figure 1. Image samples from (a) the PFID fast food image database (PFID); (b) the UEC Food 100
image database. Each row contains images from the same class.

Although low-level features are simple, fast and effective, since their discriminative power is
limited by their small patch size and low dimensionality, they have been shown to be less powerful in
capturing image components with higher complexity in images (e.g., a wheel of a car) [6]. When more
data is available (e.g., 10,000), researchers found that mid-level visual elements with larger sampling
patches are more adaptable to the real-world objects and scene appearance distributions [7,8]. Mid-level
visual elements are to capture more complex object parts when compared with edges and corners that
can be captured by low-level local features. In order to describe mid-level features, many researches
apply HoG patches (with the dimension around 2000) [6–9] and show good results in scene recognition.
However, since food dishes are highly deformable, unlike scene parts (doors, wheels), food parts are
mostly with arbitrary shapes and sizes, thus the square HoG patches have been shown to be less
effective on food image recognition [31]. Another limitation of HoG is that it needs thousands of
tests to match a HoG patch in an image, thus its potential in real time mobile based applications is
limited. Recently, Bossard et al. proposed a superpixel based mid-level feature extraction approach [31].
Instead of creating thousands of square HoG patches, this approach creates only 30 meaningful patches
with arbitrary shapes that are represented by Improved Fisher Vector (IFV).

Once mid-level food parts are extracted, relationships between parts and classes can be discovered.
In LDC, the k-means clustering is applied to the feature space within each class to create a set
of discriminative features as the class manifolds. Each local feature is then compared with class
manifolds to model the feature-to-class distances. However, when applied to high dimensional
mid-level parts, both k-means clustering and the l2 distance metric perform poorly because of the
“curse of dimensionality”. In the literature, many researches sample parts and test their probabilities
of appearances across all classes, then select discriminative parts that appear more frequently in
each class. Doersch et al. proposed a mean shift estimation of density ratio to mine discriminative
HoG patches [6]. However, this process requires a large amount of testing HoG patches to find
the most discriminative ones. Bossard et al. proposed a Random Forest (RF) based method to
find high probability parts for each class, and it was shown to be effective for food images [31].
However, this RF based approach also requires a large amount of training data and shows less
competitive results on a smaller dataset (with 10,000 data points). In this work, we focus on the
limited training data problem to simulate the real scenario in smart home applications. Therefore,
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we expand the LDC’s feature-to-class distance mining framework to a mid-level food parts-to-class
distance mining framework by introducing the following aspects: (1) extracting and representing food
parts using superpixels segmentation and IFV representation, in this way better food part selection
and representations are formed; (2) constructing food parts density ratio maps across all classes since
the number of parts within each class is greatly reduced; and (3) selecting discriminative parts by
density ratio and cosine similarity, then an image-to-class distance representation can be formed for
each image and further fed into classifiers. A short version of this mid-level approach can be found in
a conference version of this paper [32].

To summarize, the main contributions of this work are stated as follows:

1. To tackle the limited data problem, we propose a efficient superpixel based LDC low-level feature
extraction framework based on superpixels segmentation to extract discriminative food color
and edge distance features. We test the proposed feature extraction framework on a small yet
challenging food image dataset, PFID 61, and show improvements in recognition accuracy and
robustness against noise and occlusions.

2. To tackle the problem when more training data is available, we expand the LDC’s feature-to-class
distance mining framework to a mid-level food parts-to-class distance mining framework
to learn food parts based on superpixels segmentations. Our proposed framework achieves
state-of-the-art performance in the single feature tests. When combining with multiple
features, the proposed food image recognition framework can achieve significant performance
improvement on the UEC Food 100 database with 10,000 images [33].

The rest of the paper is organized as follows: Section 2 will introduce the proposed superpixel
based LDC low-level feature extraction framework and mid-level food parts mining framework,
a short version of the presented mid-level food parts mining framework can be found in a conference
version of this paper [32]; in Section 3, experiment results will be presented; and Section 4 will draw
conclusions and overview future works.

2. Materials and Methods

2.1. Superpixel Based Linear Distance Coding

Here we present the proposed superpixel based LDC low-level feature extraction framework for
food image classification. As stated in the previous section, LDC has shown impressive performance
by introducing a feature-to-class distance feature. However, LDC brings considerable additional
computational cost to the classification process. To improve LDC’s efficiency and performance for food
image classification, a powerful feature extraction framework for food images is needed to: (a) extract
food image edge and color information as well as distance features; (b) reduce computational cost of
LDC distance transformation and the following feature quantization problem. The recently developed
Simple Linear Iterative Clustering (SLIC) Superpixels Segmentation algorithm [2] has the ability to
segment images into meaningful image segments, which are small food pieces in this research, such
as a blueberry on a blueberry muffin. Thus, we integrate SLIC Superpixels Segmentation to improve
LDC’s efficiency and performance for food images.

2.1.1. Introduction to LDC

Low-level local features such as SIFT with common coding frameworks, such as BoW, Soft
Assignment BoW and LLC, will introduce information loss due to the feature encoding, which limits
the image classification performance. To address this issue, Naive Bayes Nearest Neighbor (NBNN)
is introduced to employ an image-to-class distance representation for image classification. LDC is
recently introduced in [30] to incorporate NBNN’s distance feature between local feature and class as
a more discriminative feature to avoid local feature information loss in the feature encoding process
and to improve image classification performance.
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In NBNN, the distance between a local feature xi and a class c is denoted as [30]:

d(xi, c) = min
x∈Fc
||xi − x||2 = ||xi − xc

i ||2 (1)

where Fc is the local feature set of class c, xc
i is the mapping point of xi in class c. Since the NBNN

method intends to find xc
i from the whole set of Fc, two problems arise: (1) distance measure d(xi, c)

is highly sensitive to noise and outliers in local feature sets {Fc}; (2) computational cost is expensive.
LDC tackles these problems by sampling discriminative local features within each class. LDC calculates
class manifold Mc of class c by clustering the local feature set Fc = {xc

j} into nc anchor points {mc
i }

nc
i=1.

Similar to the codebook in BoW coding, class manifold can be denoted as [30]:

Mc = [mc
1, mc

2, . . . , mc
nc ] (2)

Then LDC searches xi
′s mapping point xc

i in Mc. One can note that in this way, the complexity
is reduced from O(NNDlogND) to O(NNcnclog(Ncnc)), where ND is the number of all training local
features, Nc is the number of classes and Ncnc << ND. Finally, LDC calculates the distance feature
as [30]:

d(xi, c) = min
x∈Mc

||xi − x||2 = ||xi − xc
i ||2 (3)

d(xi, c) is further normalized with minimum subtraction.

2.1.2. Superpixel Based LDC

Although LDC shows significant performance improvements on the PFID dataset in the literature,
it adds additional complexity O(NNcnclog(Ncnc)) to the overall classification cost. Furthermore, food
color and structure information are critical for food image recognition. To improve LDC for food
images feature extraction, SLIC Superpixels Segmentation is incorporated into the LDC framework.

Superpixels segmentation clusters pixels of an image into meaningful pixel groups which are
perceptible by humans. Among various superpixels segmentation algorithms, SLIC Superpixels
Segmentation algorithm has outstanding adherence to image boundaries [2]. SLIC is able to segment
an input image into a given number of superpixels in similar size with low computational cost.
For a given image, the algorithm first samples ns superpixels centers C = [r, g, b, x, y]> on a regular
grid, where [r, g, b] are the 3 color components, [x, y] are the pixels’ position. Then the algorithm
assigns each pixel to its nearest center with an adaptive distance measure D given by [2]:

D =

√
(

dc

mc
)2 + (

ds

ms
)2 (4)

where dc and ds are the Euclidean distances of color and spatial components between pixels and
centers, mc and ms are normalization coefficients decided by the maximum observed color and
spatial distances. The algorithm iteratively performs pixel assignments and cluster center updates
until residual error is below a threshold. Figure 2 shows some sample food images from the PFID
database. As can be observed from the images, food dishes are composed of small food pieces with
different color and shape. For instance, a sandwich is composed of green lettuce, brown bread, scarlet
beef and yellow cheese. Those food pieces can be easily segmented by SLIC Superpixels Segmentation
(Figure 2). Inside each superpixel, color information is consistent and rich while between superpixels
edge and corner information is rich. In this work we adopt SLIC Superpixels to extract 300 superpixels
{Sj} for an input image Xi.

Following superpixels segmentation, color information can be extracted within each superpixel.
For each superpixel, a 56-bin histogram is formed which consists of a 24-bin histogram for transformed r,
g and b distribution, and a 32-bin histogram for Hue component in HSV color space. Since food images
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are taken under various lighting conditions, a scale-invariant and shift-invariant RGB transformation is
further applied by normalizing the pixel value distributions according to the following equations [16]:

R′ =
R− µR

σR
(5)

G′ =
G− µG

σG
(6)

B′ =
B− µB

σB
(7)

where µ and σ are the mean and standard deviation of each color component.

Figure 2. SLIC Superpixels Segmentation results of example images from the PFID fast food
image database.

For SIFT features, other than densely sample SIFT patches and treat dense SIFT features equally in
LDC process, we only sample SIFT patches at the edge of superpixels where edge information is more
salient. In this work we select SIFT patches which cover the superpixel edges for each food image
as salient SIFT features. The resulting number of SIFT features is around 15% to 20% of the dense
sampled SIFT features. Our reported results show that this sampling scheme is sufficient to capture
edge information while reduces the number of data points significantly.

2.1.3. Final Image Representation

In addition to two distance features calculated from superpixel-SIFT and superpixel-Colour
features, we extract SIFT and color patch features following [30]. Then an encoding process is applied
to each feature channel to generate 4 image representations: RSIFT, RCOLOR, RSIFT−LDC, RCOLOR−LDC.
To combine different image representations, there are two existing approaches: (1) concatenate different
image representations with pre-normalization or post-normalization and feed into one classifier; (2) feed
different image representations into different classifiers with following late fusion. Regarding the food
image recognition problem, [30] adopted the first approach with pre-normalization; [33–36] adopted the
second approach with late fusion. In this work, we concatenate two local feature image representations
(RSIFT , RColor) as RLow and two distance feature image representations (RSIFT−LDC, RColor−LDC) as
RLDC separately with pre-normalization, then feed RLow and RLDC into two linear SVMs classifiers [37].
Finally, late fusion is applied to these two classifiers’ outputs YLow and YLDC to generate the final
label Yi.

2.1.4. System Flowchart

Figure 3 shows the flowchart of the proposed superpixel based LDC framework, which consists
of the following major steps:

1. For an given food image Xi, segment 300 superpixels {Sj} by the SLIC Superpixels Segmentation.
2. Extract SIFT features from Xi, based on {Sj}, and extract color features and sample discriminative

SIFT features. Then calculate LDC features from color features and Sampled SIFT features.
Finally apply the feature encoding process to generate image representations: (RSIFT , RColor,
RSIFT−LDC, RColor−LDC).
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3. Concatenate two local feature representations (RSIFT , RColor) as RLow and two distance feature
representations (RSIFT−LDC, RColor−LDC) as RLDC separately with pre-normalization. Then feed
RLow and RLDC into two linear SVMs classifiers [37]. Finally, late fusion is applied to these two
classifiers’ outputs YLow and YLDC to predict the image label Yi.

Figure 3. Flowchart of the proposed improved LDC low-level feature extraction framework for food
image recognition.

2.2. Expand Low-Level Linear Distance Coding to Mid-Level Food Parts-to-Class Similarity Mining

Although the proposed superpixel LDC framework has already shown improvements in food
image recognition as well as computational efficiency on small food image dataset, its performance is
limited by low-level local features’ discriminative power. Since low-level features have a small patch
size, they are capable of capturing only low-level edge and corner information. When more data is
available (10,000 data points), more powerful mid-level based method shows superior performance in
the literature. To better model deformable food part distribution, we expand LDC’s feature-to-class
distance coding for low-level features to a mid-level food parts-to-class distance mining, which has the
ability to capture larger food parts with higher complexity and discriminative power. Our proposed
framework has three main steps: (1) extracting and representing food parts using superpixels
segmentation and IFV representation, in this way better food part selection and representations
are formed; (2) constructing food parts density ratio maps across all classes since the number of parts
within each class is greatly reduced; (3) selecting discriminative parts by density ratio and cosine
similarity, then an image-to-class distance representation can be formed for each image and further
fed into classifiers. Here we will present the proposed mid-level food parts-to-class distance mining
framework in detail. A short version of this mid-level approach can be found in a conference version
of this paper [32].

2.2.1. Candidate Food Parts Extraction and Representation

In order to extract image parts as meaningful mid-level features, some researches employed
square HoG patches with large size (around 3000 pixels) as image or object parts [6–9]. This approach
has two drawbacks: (1) the sliding window sampling and testing of HoG patches are computationally
expensive; (2) square patches are weak in capturing deformable food items [31]. To address the first
issue, Juneja et al. first introduced superpixels segmentation into mid-level feature mining as a cue to
initialize parts set [8]. Bossard et al. employed graph based superpixels segmentation to detect around
30 meaningful food parts with arbitrary shapes [31]. Furthermore, for food parts representation, they
adopted IFV to encode low-level features within each superpixel into a high dimensional discriminative
representation. In this work, dense RootSIFT and color patches are extracted following Principal
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component analysis (PCA) whitening. We adopt graph based superpixels segmentation with IFV as
in [31] to represent image parts as candidate mid-level food parts.

2.2.2. Food Parts Density Ratio Map Construction

Following candidate food parts extraction, discriminative and representative food parts need
to be selected. In LDC, discriminative local features are selected by k-means clustering to form
class manifolds for each class. However, since the feature dimension increases dramatically from
low-level features (around 100) to mid-level food parts (around 10,000), neither k-means clustering
nor l2 distance measure works as well as before. Many researches tend to evaluate mid-level features
by their probability or coverage within each class. These approaches need to test a large number of
candidate HoG patches [6–9] or superpixel patches [31] to achieve better performance. In this work, to
tackle limited training data, a novel mid-level food parts selection scheme based on density ratio maps
and cosine similarity measure is designed.

To select discriminative image parts, Doersch et al. proposed a mean-shift gradient ascent method
to sample HoG patches by density ratios [6]. Given a class c, and its feature set F+

c , one can sample a
negative set F−c . The density ratio is defined as [6]:

ri =
∑n+

j=1 max(b− dij, 0)

∑n−
j=1 max(b− dij, 0)

(8)

where dij is the distance measure between two features, b is the bandwidth which defines how much
the density is smoothed. To tackle the variance of density across negative feature space, [6] further
introduced an adaptive bandwidth method to make the process more robust. That is, to set the
denominator in (8) to a constant β and calculate adaptive bandwidth bi which satisfies [6]:

n−

∑
j=1

max(bi − dij, 0) = β (9)

ri can be further defined as [6]:

ri =
∑n+

j=1 max(bi − dij, 0)

β
(10)

In order to mine discriminative image parts, [6] samples many batches of parts and find local
maxima of density ratio distributions with the time consuming gradient ascent method. In this research,
since we have considerably small food parts set, we are able to construct a full density ratio map in each
class instead of sampling feature batches and finding local maxima of density ratio. To better compare
high dimension IFVs, we select cosine similarity which has been shown to be the most powerful
distance metric in high-dimensional space:

similarity(a, b) =
a · b
‖a‖‖b‖ (11)

Since IFV is l2 normalized as in [17], the similarity between two food parts pi and pj can be
simplified as:

s(pi, pj) = pi · pj (12)

Then for each food part pi, the density ratio ri can be defined as:
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ri =
∑n+

j=1 max(s(pi, p+
j )− bi, 0)

∑n+

j=1 max(s(pi, p+
j )− bi, 0) + β

=
∑n+

j=1 max(pi · pj − bi, 0)

∑n+

j=1 max(pi · pj − bi, 0) + β

(13)

As we can see in (13), ri is regularized to be in the range of (0, 1). It is beneficial for the following
food parts selection and image representation. Algorithm 1 summarizes the procedures of density
ratio map ({Mapc}) construction.

Algorithm 1 Construct the Density Ratio Maps

Input: Extracted Food parts set F
Output: Density ratio maps {Mapc}

1: for each class c (c = 1, ..., nclass) do

2: construct F+
c and sample F−c from F

3: for each part pi in F+
c do

4: find bi as in Eqn. 9
5: calculate ri as Eqn. 13
6: end for
7: construct the Density Ratio Map Mapc from {ri}
8: end for
9: return {Mapc}

2.2.3. Food Parts Selection and Image Representation

In order to select discriminative image parts, the intuitive way is to select the top ranked image
parts for each class c from Mapc. To make the selection more representative and diverse, [6] proposed
a purity-coverage plot constructed by counting image parts’ pixel coverage in a test set. [31] ignores
models that have more than half of the same image parts with higher ranking models after sorting.
These approaches bring additional computational cost and implementation complexity. In this work,
we propose a more directive and less complex approach. For a given class c and its density ratio map
Mapc constructed in the previous paragraph, we iteratively sort and sample image parts based on ri
and bi. In every iteration, we select the image part pi with the highest density ratio ri, then we remove
parts {pj} from the density ratio map which satisfy the following condition:

s(pi, pj)− bi ∗ (ri ∗ η) > 0 (14)

where η is a parameter to control the mining rate. With increasing ri, the number of removed parts {pj}
decreases. Thus, the proposed process tends to select more discriminative parts while also taking less
discriminative parts into account to increase diversity of selection. The selection will stop as either there
are less than a certain number of parts remaining in the density ratio map, or the number of selected
parts reaches the give number. The algorithm of food part selection is summarized in Algorithm 2.
In experiments, considering the trade off between performance and computational cost, we select
around 200 food parts per class. Figure 4 shows selected food parts with their regularized density ratio
from 3 different food categories: sushi, hamburger steak and meat sauce spaghetti. In the example
of sushi, parts of salmon, different sushi and laver are selected. In the example of hamburger steak,
different beef components and vegetables are selected. In the example of meat sauce spaghetti, meat
sauce, spaghetti, green beans and part of the plate are selected as food parts. Here, since spaghetti is
more likely to be served on a round white plate, it can be used to distinguish spaghetti from other food
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classes such as “sushi” or “eel on rice”. Therefore, spaghetti plate can be considered as a representative
food part as well.

After selection, codebook Codebookd×np containing np selected parts from all classes is built.
Given an input food part p1×d represented as a d dimension IFV, the cosine similarity score vector can
be calculated via cosine similarity weighted by density ratio:

Score1×np = p1×d ∗ Codebookd×np · {ri}1×np (15)

For the an given input food image, we apply max pooling method over cosine similarity score
vectors {Score} to form a 1× np final image representation.

(a) 0.87 0.78 0.73 0.69 0.66

(b) 0.85 0.78 0.76 0.64 0.62

(c) 0.87 0.79 0.76 0.69 0.67

Figure 4. Typical examples of selected mid-level food parts and their corresponding regularized density
ratio results, (a) sushi; (b) hamburger steak; (c) meat sauce spaghetti.

Algorithm 2 Food Parts Selection

Input: Density ratio maps {Mapc}
Output: Codebookd×np

1: for each class c (c = 1, ..., nclass) do

2: while stopping criteria not satisfied do

3: select pi with highest ri

4: remove {pj} satisfies Equationn (14)
5: end while
6: end for
7: return Codebookd×np

2.2.4. System Flowchart

Figure 5 shows the flowchart of the proposed mid-level food parts-to-class distance mining
framework, which consists of the following major steps:

1. For an given food image Xi, segment 30 superpixels {Sj} by graph based superpixels segmentation
as in [31]. Then extract SIFT and color features following IFV feature encoding process to generate
food parts set F [31].

2. Construct density ratio maps {Mapc} as described in Algorithm 1.
3. Select discriminative food parts and construct Codebookd×np as described in Algorithm 2.
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4. For each given image and its superpixels set {Sj}, cosine similarity score vectors {Score} will
be calculated by (15). Then max pooling method will be applied to form a 1× np final image
representation. A linear SVM will be applied to predict the image label Yi.

Figure 5. Flowchart of the proposed Mid-Level Food Parts-to-Class Similarity Mining Framework.

3. Results and Discussion

In this section, we evaluate the performances of the proposed superpixel based LDC for low-level
food image feature extraction framework and mid-level food parts-to-class distance mining framework.
We tested the proposed frameworks on two food image databases: the PFID food image database and
the UEC Food 100 database.

3.1. Experiment on PFID Database

We first tested the proposed low-level approach on PFID to evaluate the performance as well
as robustness through two tests with very limited training data. The PFID dataset is a small and
challenging dataset with fast food images from 13 chain restaurants acquired under both lab and
realistic settings. Each food category only contains three different instances of food (bought on different
days from different branches of the restaurant chain). Each food instance has six images from six
viewpoints (60 degrees apart), 1098 images in total.

We followed the experimental protocol proposed by Chen et al. and performed 3-fold cross-validation
for the experiments, only using the 12 images from two instances for training and the other 6 images from
the third for testing [27]. We repeated this procedure three times, with a different instance serving as the
test set and averaged the results. The protocol ensures that no image of any given food item ever appears
in both the training and testing sets and guarantees that food images are selected from different restaurants
on different days. In our experiment, to have a fair comparison, we employed common settings in feature
extraction and coding as in the literature [28,30,36]. For SLIC Superpixels Segmentation, we set ns to 300
for all images. For SIFT feature extraction, we extracted features based on image patches of 16-by-16
pixels in the scale of every 4 pixels. For color feature, we extracted 56 bins histogram of each superpixel
as stated in Section 2.1.2. For LDC, we set the size of class manifolds to 1024 as in [30]. For coding
process, in LLC, we set the codebook size to 2048. In IFV, we set the number of Gaussian mixture
model (GMM) to 256. We only applied a 3 level spatial pyramid for LLC.

3.1.1. PFID Clean Data

In this experiment we tested the performance of the proposed superpixel based LDC framework
with three different coding methods: Orientation Midpoint category (OM) [28], LLC and IFV and
compared with state-of-the-art results. In [28] the authors randomly sample 1000 pixels from each training
food image, then cluster pixels into 8 classes and construct pairwise OM features for classification. In the
experiment we extracted 300 color descriptors per image by superpixels segmentation and clustered
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them into food elements. Our superpixel based LDC approach improves OM by 4%, yet has much less
computational cost in coding process (300 * 300 compared to 1000 * 1000 searching for each food image).

Then we tested the proposed framework with LLC and compared with the state-of-the-art
performance, which is 48.45% achieved by LDC in [30]. First, we implemented SIFT + LLC/IFV
with/without LDC to reproduce performance in [30]. As in Table 1, the performances of our
implementation of SIFT + LLC and SIFT + LDC + LLC are slightly worse than [30] due to
implementation details. For better comparison of the proposed feature extraction framework, we
mainly compare the results from our own implementation. Compared with SIFT + LDC with LLC,
the proposed approach boosts the performance to 50.45%, which is an improvement of about 3%.
The reason for this improvement is that the proposed low-level feature extraction framework captures
both discriminative edge information between food components and color information inside food
components. Together a more structured food image representation is formed.

Table 1. Recognition Accuracy Results on the PFID 61 database.

Methods Accuracy

ColourH [28] 11.3%
OM [28] 28.2%
BoW [27] 30.6%
PRICoLBP [29] 45.4%
SIFT + LLC [30] 44.63%
SIFT + LDC + LLC [30] 48.45%

Colour Descriptor + OM [28] 1 32.31%

SIFT + LLC [30] 2 43.25%
SIFT + LDC + LLC [30] 2 47.42%
Superpixel LDC + LLC 50.45%

SIFT + IFV 45.72%
SIFT + LDC + IFV 46.63%
Superpixel LDC + IFV 48.63%

1 The performance of our improved implementation of OM in [28]; 2 The performance of our implementation
of the algorithms in [30].

We also tested the proposed framework with IFV and compared performance with LLC intuitively.
From results, we can see SIFT + IFV shows 2% higher accuracy than SIFT + LLC. However,
improvement of LDC with IFV is lower than LDC with LLC. When comparing LLC and IFV, LLC
does not capture distance features, while IFV captures first and second order distances between
local features and GMM centers. In addition, LDC captures the distances between SIFT and class
manifolds, which is complement of basic IFV’s distance measure. As a consequence, LDC boosts IFV
for around 1% in classification accuracy. Results of the proposed superpixel based LDC approach has
2% improvement to SIFT + LDC with IFV.

Considering the computational cost, LDC produces O(NNcnclog(Ncnc)) complexity, while the
proposed superpixel based LDC approach extracts 80% fewer numbers of local descriptors (N) than
dense SIFT sampling, which reduces LDC’s computational cost and memory footprint around 5 times.
In summary, the proposed superpixel based LDC food image feature extraction framework is effective
and efficient on food image data even with very limited training data.

3.1.2. PFID Noise Data

Since a large proportion of food image data is captured by mobile devices, noise and occlusions
may occur. Thus, robustness is also a crucial concern in food image classification. In this experiment
we evaluated robustness of the proposed improved low-level food image feature extraction framework
with PFID noise data.
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We followed experiment settings in [38] and compared performance with their approach. To tackle
corrupted image data, Bao et. al. proposed a Corruptions Tolerant Discriminant Analysis algorithm
which learns three underlying subspaces from training data to separate desired properties from
undesired properties and corruptions. To investigate their algorithm, contiguous occlusions and
random pixel corruptions are randomly added to the PFID food image dataset. For each class in PFID,
50% of training images and 50% of testing images are corrupted randomly. For contiguous occlusions,
black blocks with sizes of 80× 80 (7%), 100× 100 (11%), 120× 120 (16%) and 140× 140 (22%) are
added to different locations in the images. For random pixel corruption, 5%, 10% and 15% of image
pixels are corrupted randomly.

Figure 6 shows the superpixels segmentation result of pixel corruption and block occlusion image
data. In Figure 7, compared with baseline SIFT + LLC and SIFT + LDC + LLC, the proposed superpixel
based LDC+LLC is less sensitive to change of corruption rate and block size. Especially with increasing
block size of occlusions, the proposed approach shows more robustness improvement than the baseline
approaches. This robustness improvement can be explained in Figure 6, the blocks in the images are
successfully segmented by superpixels segmentation. We can explore that pixel noise affect superpixels
segmentation, but food image items are still extracted successfully, which guarantees the robustness of
the proposed improved LDC approach against pixel noise.

(a) PFID noisy data

(b) SLIC Superpixels Segmentation results

Figure 6. PFID noisy data and corresponding SLIC Superpixels Segmentation results. (a) Clean image,
5% pixel corruption, 15% pixel corruption, 80 * 80 block occlusion and 140 * 140 block occlusion.
(b) Corresponding SLIC Superpixels Segmentation results.

Figure 7. Classification accuracy results on the PFID noisy dataset.
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3.2. Experiment on UEC Food 100 Database

In this experiment we tested both the proposed superpixel based LDC (low-level) and mid-level
approaches on the UEC Food 100 image database. UEC Food 100 contains 100 food categories with
more than 100 images for each category. Some images contain multiple classes of food. Bounding box
information is provided in the database. The total number of food images in UEC Food 100 is 12,905.
We followed the experiment protocol as stated in [36]. For each category we selected 20 images as
testing data, and the rest are training data. We evaluated classification accuracy in 5 trials in the five-fold
cross validation manner.

For fair comparison, we employed the same settings for feature extraction and coding as in [36].
We extracted SIFT at the scale of every 6 pixels and the same color descriptors as in [36]. For the
proposed superpixel based LDC low-level feature extraction, we segmented 300 superpixels per
image and set the class manifold size to 1024. For low-level feature encoding, we employed IFV
with 64 GMMs and a 3 level spatial pyramid. For the proposed mid-level food parts approach, we
segmented 30 superpixels per image and extracted dense SIFT and color within each superpixel’s
bounding box as in [31]. Following PCA-whitening and dimension reduction, an IFV with 64 GMMs
is constructed for each superpixel. We selected 200 discriminative and representative food parts per
category and a 200× 100 image representation is formed for classification.

Figure 4 shows some selected food parts from three different food categories with their density
ratio ri. In order to make selected food parts more diverse, the proposed food parts selection scheme
selects not only discriminative parts with a high density ratio, but also less discriminative parts with
a low density ratio. We further weighted select parts with regularized density ratio and formed final
image representations based on cosine similarity.

Table 2. Recognition Accuracy Results on UEC Food 100.

Methods Accuracy

Single feature

HoG + IFV [36] 50.14%
Colour + IFV [36] 53.04%
DCNN [36] 57.87%

SIFT + IFV 48.25%
Colour + IFV [36] 1 52.80%
Mid-level approach 60.50%

Combined feature

HoG + Colour + IFV [36] 65.32%
HoG + Colour + IFV + DCNN [36] 72.26%

SIFT + Colour + IFV 66.12%
SIFT + Colour + IFV + Superpixel LDC 67.65%
SIFT + Colour + IFV + Mid-level approach 70.84%

1 The performance of our implementation of algorithm in [36].

Table 2 shows the classification accuracy of the proposed approaches and state-of-the-art results.
For single feature performance comparison, the proposed mid-level food parts-to-class approach achieves
the best performance with 60.50% and outperforms low-level feature with IFV and Deep Convolution
Neural Networks (DCNN) feature’s 57.87% in the literature. When combined with low-level feature
based methods, our implementation of RootSIFT + Colour is slightly better than RootHoG + Colour since
SIFT is considered to be more powerful than HoG. Then we tested the proposed superpixel based LDC
with RootSIFT + Colour and showed a performance improvement of 1.53%. Finally, we combined the
proposed mid-level food parts approach with the superpixel based LDC approach. Our proposed food
parts approach significantly improves the classification accuracy by 4.7%, achieving 70.84% which is only
beaten by DCNN combined approach’s 72.26% in [36]. We would like to mention that DCNN in [36] have
large memory footprint and requires large amount of training data and computation resources (e.g., one
million data). In comparison, the proposed method is more efficient with competitive performance and
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thus it is more suitable for potential smart home applications. As a result, the proposed mid-level food
parts-to-class mining framework yields the best performance in single feature tests, and comparable
performance with DCNN trained with large scale data in combined feature tests.

4. Conclusions

In this paper, we tackled the challenging smart home food image recognition problem with
different setups. For the limited data problem, we proposed a superpixel based LDC low-level feature
based approach which is suitable for very limited training data. We improved the LDC method
by extracting discriminative food item information based on the superpixels segmentation. In the
experiments on challenging PFID food image database, our proposed superpixel based LDC approach
shows promising performance improvement and robustness against noise and occlusions. In addition,
the proposed superpixel based LDC approach significantly reduces the computational cost when
compared with the original LDC approach. When more data points are available, we proposed
a mid-level food image parts based method by expanding the LDC’s local feature-to-class distance to
a mid-level food parts-to-class distance mining approach and designed a simple and effective food
parts selection scheme. In the experiments on middle-size database UEC Food 100, the proposed
mid-level approach significantly outperforms other single feature based approaches. When combined
with low-level feature based approach, the proposed mid-level approach improves classification
accuracy from 66.12% to 70.84%, only beaten by DCNN approach in [36] which was trained with one
million images.
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The following abbreviations are used in this manuscript:

LDC Linear Distance Coding
SIFT Scale Invariant Feature Transform
SURF Speeded Up Robust Features
HoG Histograms of Oriented Gradient
BoW Bag-of-Words
LLC Locality-constrained Linear Coding
FV Fisher Vector
IFV Improved Fisher Vector
PFID Pittsburgh Fast-Food Image Dataset
OM Orientation and Midpoint
RF Random Forest
SLIC Simple Linear Iterative Clustering
NBNN Naive Bayes Nearest Neighbor
PCA Principal component analysis
GMM Gaussian mixture model
DCNN Deep Convolutional Neural Networks
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