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Abstract: Organic fertilizers are generally thought to be an effective way to sustain soil fertility
and plant growth. To promote the productivity of chrysanthemum, five sources of liquid organic
fertilizers (L1–L5), as well as a chemical fertilizer, were applied at an early stage of the growth cycle
to investigate their effects on plant growth. In the short-term pot experiment, the liquid organic
fertilizers significantly promoted root and aboveground growth by 10.2–77.8% and 10.7–33.3%,
respectively, compared with the chemical fertilizer. The order of growth promotion was: L1 (shrimp
extracts) > L2 (plant decomposition) > L4 (seaweed extracts)/L5 (fish extracts) > L3 (vermicompost).
Morphological and chemical analyses indicated that, compared with other organic fertilizers,
the treatment with shrimp extract (L1) produced the greatest increases in root dry weight, total
length, surface area, volume, tips, and thick root length, respectively. Furthermore, the shrimp extract
treatment significantly increased the nutrient contents and altered the soil’s functional microbial
community at the rhizospheric level compared with the chemical fertilizer treatment. Thus, the shrimp
extract liquid organic fertilizer could be part of an effective alternative to chemical fertilization during
the early stage of chrysanthemum growth.
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1. Introduction

Chrysanthemum (Chrysanthemum morifolium Ramat.), which originated in Asia and Northeastern
Europe, has been cultivated for more than 1600 years [1,2]. It is widely cultivated for ornamental,
culinary, and medicinal uses throughout the world. For instance, in Italy, chrysanthemum production
covers 1180 ha with 437 million plants and continues to grow [3]. The current trends in the chrysanthemum
industry are focused on improving flower quality and creating environmentally-friendly production
systems [4,5]. To achieve these goals and accelerate chrysanthemum production, further innovation is
needed in improving fertilization regimes and other production techniques [6,7]. In many areas of the
world, especially in China, chrysanthemum plants are cultivated under greenhouse conditions, and the
over-application of chemical fertilizers has influenced the soil quality and caused serious environmental
problems [8,9]. In addition, chrysanthemum plants are sensitive to chemical fertilizers, and their
improper use affects the plant’s reproductive growth and the secondary metabolism of chrysanthemum
plants [10,11]. Moreover, chrysanthemum has a great demand for nutrients, especially at the early stage
of the growth cycle, and the nutrient status during the first seven weeks of chrysanthemum growth
has a strong effect on flower size and quality [4]. Thus, growth regulation and fertilizer optimization
at the early stage play critical roles during the growth cycle of chrysanthemum.
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Organic fertilizers are effective in promoting environmental sustainability and plant growth
after long-term use, but previous studies have focused primarily on the conventional solid organic
fertilizer product, such as straw and manure [12,13]. Specialized horticultural production has fostered
the emergence of new liquid organic fertilizers [14], which have usually been derived from natural
products and their biological activities occur at limited doses. Compared with conventional organic
fertilizer, the abundant organic matter and soluble nutrients in the liquid organic fertilizers could
maintain soil sustainability and plant health [15,16]. In addition, the integration of watering and
fertilization patterns could improve the nutrient use efficiency and decrease the risk of nutrient
loss [17,18]. Moreover, the special compounds in liquid organic fertilizers, such as chitin, humic and
fulvic acids, and other biopolymers, can be biostimulants to plants [19–22]. Canfora et al. reported
that liquid organic fertilizers containing stillage and vermicompost promoted the root growth of
tomato and improved the soil microbial communities Eubacterial and Archaeal diversity, and this
was in accordance with the results of liquid residues from lipopeptide production that could promote
tomato growth and increase the diversity of the soil’s microbial community, as well as the related
enzyme activities and nutrient cycles [23,24]. Given the ecological and economic benefits of liquid
organic fertilizer, evaluating plant growth under organic versus chemical fertilizer use and studying
the possible mechanisms of action are promising steps in developing an effective alternative fertilizer
for chrysanthemum production [25,26].

The root systems of terrestrial plants perform two primary functions: acquiring nutrients and
water from soil-based resources and recruitment of desired microbial partners for greater mutualistic
benefits [27–30]. In a previous study, Xu et al. found that restricted the growth of shoot-borne roots of
maize decreased nutrient absorption, leaf formation, and shoot growth [31]. The rhizosphere is the
thin layer of soil contacted by the root and is the habitat for soil microbial communities [32]. Ecological
processes in the soil are often complex interactions between the plant’s roots, soil nutrients, and the
rhizosphere’s microorganisms [33,34]. Soil microorganisms in the rhizosphere play critical roles in
nutrient cycling and soil structure maintenance, which could further promote nutrient cycles and plant
growth [34,35]. The Biolog microplate technique is a powerful tool for monitoring the soil bacteria’s
functional diversity, although it cannot determine the total microbial community but, rather, the active
microbes, which can indicate environmental changes [36,37]. Therefore, root growth and rhizosphere
microbial community changes appear to be extremely vital to evaluating liquid organic fertilizers.

The present study was conducted to investigate the short-term effects [24,38] of five liquid organic
fertilizers from different sources (shrimp extracts (L1), plant decomposition (L2), vermicompost (L3),
seaweed extracts (L4), and fish extracts (L5)), on chrysanthemum plant growth at the seedling stage
using the root architecture and plant growth parameters. To understand the effects of various liquid
fertilizers on the soil quality, the soil nutrient level and functional bacterial diversity, which sustains
microbes at the rhizosphere level, were also studied. The chief objectives of this study were: (1) to
identify the effects of liquid organic fertilizers and a chemical fertilizer on chrysanthemum growth
at the seedling stage; (2) to find a suitable source of liquid organic fertilizer to be applied at the early
stage of the growth cycle during chrysanthemum production; and (3) to study the effects of liquid
organic fertilizers on the soil characteristics at the rhizosphere level.

2. Materials and Methods

2.1. Materials, Experimental Design, and Sampling

The chrysanthemum cultivar Hangju ‘No. 2 of Jinju’ was obtained from the Amway Botanical
Research and Development Center, Wuxi, Jiangsu, China. The cutting seedlings of chrysanthemum
were cultivated on a sterilized substrate of vermiculite and perlite (1:1, v:v) without fertilization.
After rooting for 15 days, seedlings of a similar height and diameter were transplanted into plots filled
with 500 g of a peat and paddy soil (2:1, v:v) substrate and grown for 60 days, with one plant per pot.
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At transplanting and at one additional time (30 days after transplanting), the CK, NPK, and five
liquid organic fertilizers (L1: shrimp extracts; L2: plant decomposition; L3: vermicompost; L4:
seaweed extracts; L5: fish extracts) were applied to the substrate of the chrysanthemum. The major
characteristics of these fertilizers are presented in Table 1. All products were applied as a diluted
solution according to the instructions provided by the manufacturers. The total amount of the
macro-elements applied with the mineral and organic fertilizers was as follows:

NPK: 60.0 mg N pot−1; 13.1 mg P pot−1; 41.2 mg K pot−1;
L1: 36.8 mg N pot−1; 0.5 mg P pot−1; 9.1 mg K pot−1;
L2: 35.0 mg N pot−1; 2.9 mg P pot−1; 40.4 mg K pot−1;
L3: 18.4 mg N pot−1; 0.3 mg P pot−1; 24.6 mg K pot−1;
L4: 15.1 mg N pot−1; 3.3 mg P pot−1; 12.5 mg K pot−1; and
L5: 27.4 mg N pot−1; 4.1 mg P pot−1; 14.6 mg K pot−1.

Table 1. Nutrient elements content of the liquid organic fertilizers applied in the experiment.

Product Source Biostimulants pH N 1

(g/L)
P

(g/L)
K

(g/L)
Using

Instructions Providers
Production

Organic
Certification

CK / / / / / / / / /

NPK chemical
reagent / 8.9 267.7 58.2 184.4 0.20% / /

L1 shrimp extracts chitosan 7.2 98.0 1.3 23.2 0.25%

Shenbotai
Biotechnology and
Chemical Co., Ltd.,

Zhanjiang,
Guangdong, China

China OFDC 2

certified
organic

L2 plant
decomposition humic acid 10.4 140.1 11.4 169.5 0.17%

Tiancibao
Agrtcultural and
Technology Co.,
Ltd., Changsha,
Hunan, China

/

L3 vermicompost amino acids 4.0 49.0 0.7 65.5 0.25%
Wenxing Biotech

Co., Ltd., Shanghai,
China

China OFDC
certified
organic

L4 seaweed
extracts alginate 7.1 60.4 13.0 51.0 0. 17%

Qingdao Seawin
Biotech Group Co.,

Ltd., Qingdao,
Shandong, China

EU 3 certified
organic

L5 fish extracts fish emulsion 3.6 91.3 13.6 48.5 0.20%

Yirong
Bio-engineering

Co., Ltd., Ningde,
Fujian, China

China OFDC
certified
organic

Notes: 1 The concentration of N, P, and K in the mineral and organic fertilizers was determined by the chemical
analysis methods in Section 2.3; 2 OFDC, Organic Food Development Center; 3 EU, European Union.

To exclude the influence of chrysanthemum roots, one more treatment, Non-R (without
chrysanthemum plant), was also included in our experiment to assess the non-rhizospheric effects.
Each treatment consisted of three pots placed in a completely randomized design. At the end of
the trial (60 days after transplanting), plant growth was monitored and the rhizospheric soil of the
chrysanthemum root was gathered by removing the loose soil and collecting the remaining soil that
was tightly adhered to the roots. The soil was divided into two parts: one air-dried for the soil
properties analyses, and the other stored at 4 ◦C for further microbial analysis.

2.2. Root Morphology and Aboveground Growth Parameters

Root morphological parameters, including total root length, root surface area, root volume,
and root tip number, were analyzed using the root analysis instrument WinRhizo-LA1600 (Regent
Instruments Inc., Quebec, QC, Canada) [39]. Thick root lengths were calculated from root diameters
>0.5 mm. Root weight was measured after determining of the root morphological parameters.
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Aboveground growth was monitored by shoot height, diameter, and dry weight, as well as leaf
width, length, area, and dry weight. The SPAD values of leaves were quantified using the hand-held
Minolta SPAD-502 (Minolta corporation, Ltd., Osaka, Japan).

2.3. Chemical Analyses of Fertilizer and Soil

The content of N, P, and K of the mineral fertilizer and L1–L5 organic fertilizers was determined
with an ICP (inductively-coupled plasma) spectrometer (Thermo Electron Corporation, Ltd., Waltham,
MA, USA) [24]. Soil NH4

+-N and NO3
−-N were extracted from the fresh soil samples with 1 M KCl

(1:10 soil:solution ratio) for 1 h, and their levels were determined using a continuous flow analyzer
(Skalar Analytical B.V., Breda, The Netherlands). The content of soil mineral N was calculated as the
sum of the soil NH4

+-N and NO3
−-N contents [40]. Available P was extracted using a 0.5 M NaHCO3

solution (1:10 soil: solution ratio) and was measured using the colorimetric method with molybdenum.
Available K was extracted with 1 M NH4OAC solution (1:10 soil:solution ratio) and was determined
using flame photometry [38]. The EC of air-dried soil was determined by means of an EC meter (Bante,
Ltd., Shanghai, China) with a soil: water ratio of 1:5 (w/v). The soil pH was measured using the pH
meter (Agilent technologies, Ltd., Palo Alto, CA, USA) with a soil: water ratio of 1:2.5 (w/v) [41].

2.4. Community Level Physiological Profile Analyses

Biolog EcoPlates (Biolog Inc., Hayward, CA, USA) and a BIOLOGEmax
TM reading (Biolog Inc.)

were used to determine the community level physiological profiles of the chrysanthemum rhizospheric
soil. Each plate contains three sets of 31 carbon substrates and one control, and uses tetrazolium
dye as the substrate utilization indicator (Janice Young, Biolog, Inc., personal communication). The
substrates were classified into six substrate sources, namely, carbohydrates, carboxylic acids, phenolic
compounds, amino acids, polymers, and amines. Briefly, 5 g of chrysanthemum rhizospheric soil was
mixed in 45 mL of a sterile NaCl solution (0.85%, m/v) and then oscillated at 180 rpm for 30 min. Using
a sterile NaCl solution (0.85%, m/v), a serial dilution was performed until a final 1:1000 dilution was
reached. Then, 150 µL of the supernatant was added to each well. Microplates were incubated at 25 ◦C
for 192 h, and the influence of turbidity on the OD values at 590 nm and 750 nm were recorded every
12 h and calculated by subtracting the absorbance values of the two wavelengths. The OD values at
the 96 h and 192 h of incubation were used for subsequent statistical analyses. All of the treatments
had three replications. The well absorbance values were adjusted by subtracting the absorbance of
the control well (water only) before the data analyses. Negative readings (OD < 0) were excluded
from all subsequent analyses. The microbial activity in each microplate, expressed as the average well
color development (AWCD), was determined as follows: AWCD = ∑ODi/31, where ODi is the optical
density value from each well. The Shannon diversity index was calculated as follows: H = −∑Pi(ln Pi),
where Pi is the ratio of the activity on each substrate (ODi) to the sum of activities on all substrates
(∑ODi). The Shannon evenness index was calculated as E = H/ln(richness), where richness refers to
the number of substrates utilized [36].

2.5. Statistical Analyses

Statistical analyses of data were conducted with the SPSS software program (ver. 20.0 for Windows,
Chicago, IL, USA). Variations among chrysanthemum root morphological and aboveground growth
parameters, the chemical analyses of rhizospheric soil properties, carbon utilization, and diversity
index were analyzed using a two-way analysis of variance. Duncan’s test was used to determine
the different treatment levels. The PCA was conducted to analyze the substrate utilization pattern
based on the Biolog EcoPlates data at 96-h after incubation and was performed to visualize the carbon
utilization characteristics using CANOCO for Windows 4.5. All of the graphs were created with
OriginPro 8.5 (OriginLab Corporation, Northampton, MA, USA).
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3. Results

3.1. Effects of Organic Fertilizers on the Root Architecture and Aboveground Growth of Chrysanthemum

The root architecture of chrysanthemum is of great importance in nutrient uptake and transport.
The statistical results of the effects on the root architecture of the various fertilizers are shown in
Figure 1. Each liquid organic fertilizer had a positive effect on root growth. Compared with the CK and
NPK treatments, the application of liquid organic fertilizers significantly promoted the root growth
by 76.2–179.6% and 10.2–77.8%, respectively. L1 showed the highest promotional effect on the root
growth of chrysanthemum than the other liquid organic fertilizer treatments. The root dry weight,
root total length, root surface area, root volume, root tips, and thick root length of chrysanthemum
under the L1 treatment was higher than the NPK treatment by 63.4%, 63.9%, 65.6%, 67.8%, 115.4%,
and 90.5%, respectively. The L2 treatment had the second highest promotional effect and the root
indices were enhanced by 35.1%, 44.2%, 41.9%, 40.1%, 75.3%, and 43.6%, respectively, compared with
the NPK treatment. All of the root indices under L3, L4, and L5 treatments were similar to each other
and slightly higher than those of the NPK treatment even at a limited mineral nutrient input rate.
Analyses of chrysanthemum root growth showed that the application of L1 resulted in the greatest
growth-promoting effects among the various liquid organic fertilizers.
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improved by the application of liquid organic fertilizers. Each type of liquid organic fertilizer 
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Figure 1. Effects of CK, NPK, and organic liquid fertilizers (L1: shrimp extracts; L2: plant decomposition;
L3: vermicompost; L4: seaweed extracts; L5: fish extracts) treatments on the root architecture of
chrysanthemum at 60 days after transplanting. (A) Root dry weight; (B) total root length; (C) root
surface area; (D) root volume; (E) root tips; and (F) thick root length. Every value is expressed as the
mean ± standard deviation. Different letters indicate significantly statistical differences at the p < 0.05
level as determined by Duncan’s multiple range test.

The statistical results of the aboveground growth indices affected by different fertilization regimes
are shown in Figure 2. The shoot and leaf growth of chrysanthemum was significantly improved by the
application of liquid organic fertilizers. Each type of liquid organic fertilizer produced greater seedling
growth than the NPK treatment, especially in terms of shoot height and weight, leaf length, width,
area, and weight, which were enhanced by 28.9%, 30.8%, 15.9%, 18.9%, 36.2%, and 28.2%, respectively.
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The shoot heights of all the plants under the liquid organic fertilizer treatments were higher than
under the NPK treatment, and the tallest plants were exposed to the L2 treatment, having an increase
of 35.7%, but there were no significant differences among the liquid organic fertilizers treatments.
Treatments with L1, L2, and L4 showed significant promotional effects that led to the cultivation of
strong seedlings, and the shoot diameters of L1-treated plants were 1.2 times those of the NPK-treated
plants. Plants treated with L1 achieved the greatest shoot and leaf biomasses, which were greater
than the CK treatment by 70.0% and 66.7%, respectively. All of the liquid organic fertilizer treatments
significantly promoted the leaf growth of chrysanthemum, and the leaf length, width, and area under
the L5 treatment were 44.7%, 29.7%, and 90.7% greater than those under the CK treatment, respectively.
The SPAD measurements of leaves were elevated after the application of liquid organic fertilizers
and greater than under the NPK treatment (expect L3). The SPAD value of the L1 treatment was
29.3% greater than the CK treatment. Analyses of the aboveground indices of chrysanthemum showed
that the L1, L2, and L5 treatments had the greatest promotional effects on chrysanthemum shoot and
leaf growth.
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Figure 2. Effects of CK, NPK, and organic liquid fertilizers (L1: shrimp extracts; L2: plant
decomposition; L3: vermicompost; L4: seaweed extracts; L5: fish extracts) treatments on the
aboveground growth of chrysanthemum at 60 days after transplanting. (A) ∆H; (B) shoot diameter;
(C) shoot dry weight; (D) leaf length; (E) leaf width; (F) leaf area; (G) leaf dry weight; and (H)
SPAD value. ∆H indicates the shoot height change during the growth stage; leaf length and
width were measured using the largest leaf of the plant. Leaf area was estimated as follows:
leaf length × width × 0.75. Different letters indicate significant differences among treatments as
determined by Duncan’s multiple range test at the p < 0.05 level.
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3.2. Effects of Liquid Organic Fertilizers on the Nutrient Contents of Chrysanthemum Rhizospheric Soil

To investigate the soil’s chemical properties influenced by the application of liquid organic
fertilizers, several main nutritional parameters of rhizospheric soil were measured and the results are
shown in Table 2. The nutrient content in the non-rhizosphere (Non-R) treatment was significantly
different from the rhizospheric soil. The contents of mineral nitrogen and available potassium were
much higher in the Non-R treatment. In the rhizospheric soil, the mineral N content was significantly
increased with the addition of L1, whereas the content was the lowest under the NPK treatment, with
a gap of 12.46 mg/kg. The available P and K contents under the L4 treatment were greater than
under other treatments, and were enhanced by 49.0% and 13.4%, respectively, compared with the
CK treatment. The EC measurements of rhizospheric soil significantly increased with the application
of liquid organic fertilizers, which was consistent with the change in the mineral N content. The L1
treatment showed the highest EC value, followed by the L3 treatment, and no significant differences
were observed among the other fertilizer treatments. The pH value of rhizospheric soil changed under
different fertilizer treatments, and this was partly due to the different pH values of the fertilizers
themselves, and because of different influences on the root exudates of chrysanthemum. Compared
with that of the NPK, the pH values of the liquid organic fertilizer treatments were closer to that of
the CK.

Table 2. The mineral nitrogen (N), available phosphorus (Avail-P), available potassium (Avail-K),
electric conductivity (EC), and pH of chrysanthemum rhizospheric soil at the end of the trial *.

Treatment Mineral N (mg/kg) Avail-P (mg/kg) Avail-K (mg/kg) EC (us/cm) pH

Non-R 29.9 ± 2.7 a 15.6 ± 0.3 d 48.3 ± 1.9 a 228.0 ±17.1 b 5.1 ± 0.1 e
CK 11.9 ± 0.6 d 17.4 ± 0.7 cd 18.3 ± 0.3 b 139.6 ± 5.1 c 5.3 ± 0.1 b

NPK 7.4 ± 0.7 e 18.7 ± 0.5 bcd 17.4 ± 1.3 b 186.8 ± 15.9 bc 5.5 ± 0.1 a
L1 19.8 ± 1.2 b 19.4 ± 1.1 bcd 17.3 ± 0.5 b 340.3 ± 39.6 a 5.2 ± 0.1 cd
L2 12.5 ± 1.1 cd 21.0 ± 0.9 bc 18.5 ± 1.1 b 194.6 ± 9.8 bc 5.4 ± 0.1 a
L3 11.4 ± 0.4 d 17.0 ± 0.7 d 18.7 ± 1.1 b 294.0 ± 10.1 bc 5.1 ± 0.1 de
L4 13.1 ± 1.3 cd 25.9 ± 2.5 a 20.8 ± 1.3 b 171.4 ± 28.9 c 5.3 ± 0.1 bc
L5 16.3 ± 1.0 bc 22.4 ± 1.3 ab 19.0 ± 0.8 b 209.3 ± 21.5 bc 5.2 ± 0.1 bcd

Notes:* Treatments included: Non-R: non-rhizosphere; CK: control; NPK: chemical fertilizer; L1: shrimp extracts;
L2: plant decomposition; L3: vermicompost; L4: seaweed extracts; and L5: fish extracts. Different letters indicate
significant differences among treatments as determined by Duncan’s multiple range test at the p < 0.05 level.

3.3. Effects of the Organic Fertilizers on Microbial Community Functions in Chrysanthemum Rhizospheric Soil

The AWCD was used as an indicator of the microbial activity in the soil. As presented in Figure 3,
the AWCD of the rhizospheric soil was almost zero over the first 50 h of incubation, and it experienced
a rapidly increasing stage, subsequently. The highest AWCD values were achieved under L1 and
L2 treatments, while the lowest AWCD values were exhibited under the Non-R and CK treatments.
The addition of liquid organic fertilizers significantly increased the AWCD values after incubation,
and the AWCD values of rhizospheric soil treated with L1–L5 were 2.46, 2.43, 1.70, 1.35, and 1.83 times
greater, respectively, than those of the CK soil. Thus, the addition of liquid organic fertilizers generally
improved the functions of chrysanthemum rhizospheric soil’s microbial community. Additionally,
treatments with L1 and L2 affected the increase in the AWCD. The AWCD under treatment L5 showed
no significant variation compared with the NPK treatment, whereas the AWCD values of the L3 and L4
treatments at the preliminary stage of incubation were lower than the NPK treatment, but the AWCD
of the L3 treatment exceeded that of the NPK treatment at the end of the incubation.
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As demonstrated by the PCA (Figure 4), 59.1% of the total variance was explained, with the
first principal component explaining 43.3% of the variance. The microbial community primarily
clustered into six distinct groups: the CK, L1, L3/L4, L2/L5, NPK, and Non-R, and, as revealed by
the PCA analysis, the liquid organic fertilizer treatments, could significantly influence the bacteria’s
carbon source utilization in the rhizospheric soil. The NPK treatment was separated from the liquid
organic fertilizer treatments on the PC1 axis, and the CK treatment could be separated from the liquid
organic fertilizer treatments on the PC2 axis. The metabolic activities in the rhizospheric soil under
different fertilizers indicated that the microbial community was capable of growing by ingesting
diverse types of carbon sources under different conditions. For example, the main carbon substrates
utilized under the CK treatment was 2-hydroxybenzoic acid, whereas under the NPK treatment it
was 4-hydroxybenzoic acid. Under the L5 treatment D-mannitol and N-acetyl-D-glucosamine were
the main carbon sources. Moreover, significant differences were detected in the utilization of the
six main carbon sources (carbohydrates, carboxylic acid, phenolic compounds, amino acid, polymer,
and amines) (Figure 5). Carbohydrates and carboxylic acid were the major carbon sources for different
treatments. The highest utilization of carbohydrates was achieved under the L1 treatment, and the
optical density (OD) value was 2.29 times that of the CK treatment. This was followed by L2, and
the lowest utilization values occurred under the CK and Non-R treatments. The highest utilization
of carboxylic acid was achieved under the L2 treatment, and the OD value was 3.89 times that of the
CK treatment. There were no significant differences in the utilization of the other fertilizer treatments.
The utilization of phenolic compounds was highest under the Non-R treatment and lowest under the
CK treatment, while the utilization of amines from the rhizospheric soil under fertilizer treatments
(except L3 and L4) was higher than that observed in other unfertilized treatments. There was a similar
pattern for the utilization of amino acids and polymers, where the highest utilization occurred under
the L1 and L2 treatments and there were no significant differences among the other fertilizer treatments.
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Figure 5. The OD values of diverse carbon substrates after the incubation of chrysanthemum
rhizospheric soil treated with CK: control; NPK: chemical fertilizer treatment; L1: shrimp extracts;
L2: plant decomposition; L3: vermicompost; L4: seaweed extracts; and L5: fish extracts. Non-R:
non-rhizosphere soil. The main carbon sources were as follows: (A) carbohydrate; (B) carboxylic acid;
(C) phenolic compounds; (D) amino acid; (E) polymer; and (F) amine. Different letters indicate
significant differences among treatments as determined by Duncan’s multiple range test at the
p < 0.05 level.

The Shannon diversity and evenness indices of the soil microbial community after different
fertilization treatments were calculated from the 96-h Biolog data and are shown in Figure 6.
The Shannon diversity index for the liquid organic fertilizer treatments (except L3 and L4) was
significantly higher than for the Non-R, CK, and NPK treatments. The Shannon diversity index ranged
from 2.58 to 3.04, and the averaged index value of L1, L2, and L5 was 11.36% and 7.7% higher than
those of the CK and NPK treatments, respectively. There was no significant difference between the
Shannon diversity index under the L1, L2, and L5 treatments. The Shannon evenness index under
L1, L2, and L5 was significantly higher than that found under the other fertilized and non-fertilized
treatments. The averaged Shannon evenness index of L1, L2, and L5 was 10.9% and 6.5% higher than
those of the CK and NPK treatments, respectively. Thus, the application of liquid organic fertilizers
(especially L1, L2, and L5) had a significantly positive effect on the diversity and evenness of the soil
microbial community.
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Figure 6. Effects of the various fertilization treatments on the Shannon diversity index (A); and Shannon
evenness index (B) of the rhizospheric soil of chrysanthemum. Treatments were as follows: CK: control;
NPK: chemical fertilizer treatment; L1: shrimp extracts; L2: plant decomposition; L3: vermicompost;
L4: seaweed extracts; and L5: fish extracts. Non-R: non-rhizospheric soil. Every value shown in the
bar is expressed as the mean ± standard deviation. Different letters indicate significantly statistical
differences at the p < 0.05 level as determined by Duncan’s multiple range test.
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4. Discussion

4.1. Effects of Liquid Organic Fertilizers on the Growth of Chrysanthemum

The root systems of plants perform important roles in plant growth [42]. Here, the various
liquid organic fertilizer treatments significantly promoted root growth by 76.2–179.6% and 10.2–77.8%
compared with the CK and NPK treatments, respectively (Figure 1). The improved root growth
of chrysanthemum could be due to the liquid organic fertilizers’ abilities to supply soluble organic
nutrients and biostimulants more quickly to the plant, which supported its growth [43]. Among the
five liquid organic fertilizers, plants treated with L1 achieved greater root dry weights, root total
lengths, root surface areas, root volumes, root tips, and thicker root lengths than with the other organic
fertilizer treatments by 35.4%, 31.6%, 36.3%, 39.4%, 57.5%, and 34.5%, respectively (Figure 1), followed
by the L2 and then the L4 treatments. The L3 and L5 treatments only slightly increased the root growth
of chrysanthemum. The shoot and leaf growth of chrysanthemum showed the same trend, and the
liquid organic fertilizer treatments significantly promoted the aboveground growth by 30.2–56.5%
and 10.7–33.3% compared with the CK and NPK treatments, respectively (Figure 2). These results
are consistent with those of Martínez-Alcántara et al., in which either an animal or plant-based liquid
organic fertilizer produced a higher total biomass of citrus trees than mineral fertilizers because of the
more profuse development of new organs under the organic treatments [26]. Additionally, the shoot
diameter, SPAD value and aboveground biomass of chrysanthemum significantly increased with the
application of L1 (Figure 2), suggesting that the L1 had a positive effect on seedling growth, leaf
chlorophyll concentrations, photosynthetic activities, and nutrient uptake efficiency [44]. In addition,
the L2 treatment had a positive effect on shoot height, which may be due to the modified availability of
resources [45], whereas the application of L5 significantly enhanced the leaf growth of chrysanthemum,
which contributed toward an advanced photosynthetic efficiency [46]. Thus, compared with NPK,
the addition of L1 significantly improved the root and plant growth of chrysanthemum under the
experimental conditions. The L2 treatment had the next greatest effect, followed by the L4 and L5
treatments. The addition of L3 resulted in only a slight increase in seedling growth.

L1 was derived from shrimp extract, which is the most abundant natural resource on earth, with an
estimated chitin yield of 1010–1011 tons per year [22,47]. Additionally, seafood processing wastes
do not contain known toxic or carcinogenic materials like liquid wastes from other industries [48].
Therefore, the shrimp extract is a low-cost and environmentally-friendly resource. The chitosan
compounds deacetylated from chitin that are extracted from shrimp are effective in promoting seed
germination, and root and shoot growth, and can induce resistance to abiotic stresses, as well as
acting as biopesticides [14,22,49–51]. Therefore, the positive effect of L1 may be partly due to the
presence of chitosan. In the conventional monoculture production system, chrysanthemum is generally
affected by Fusarium wilt and other diseases [6]. The addition of L1 from this experiment may promote
root growth and ecological adaptability and reduce the occurrence of plant diseases and insect pests,
thereby improving chrysanthemum growth, and additional experiments are required to verify the
hypothesis [52,53].

4.2. Effects of Liquid Organic Fertilizers on Chrysanthemum Rhizospheric Soil’s Characteristics

Organic amendments are frequently used to improve the soil structure, microbial diversity,
and plant nutrient status [12,54]. In our study, the applications of various liquid organic fertilizers
significantly improved the nutrient level (mineral N, available P, and available K contents) by 2.9–28.3%
and 8.1–134.2% compared with the CK and NPK treatments, respectively. Increases in the available
nutrient content of rhizospheric soil after the application of liquid organic fertilizers have been
attributed to the improved diversity of the microbial community, which enhances the nutrient cycle in
the soil, increasing the soil nutrients available for plant growth [23,55]. The addition of L1 significantly
stimulated the N mineralization process (Table 2), which was different from the findings of Gutser
et al. in which the input of organic fertilizers on arable land significantly reduced the mineral-N
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content and increased the stability of the organic matter [56]. This was mainly because the organic
fertilizer form used by Gutser et al. was compost, whereas the liquid organic fertilizer used in our
experiment contained a large amount of soluble nutrients and tended to be more quickly available to
plants compared with the traditional substrate-incorporated fertilizers [57]. In our experiment, the L1
treatment produced the highest EC values, which were 15.8–143.8% higher than those of the other
treatments (Table 2). The increase in the soil EC value could be correlated with the mineralization of
organic matter after the application of liquid organic fertilizers [58], which was in accordance with the
change in the mineral N content (Table 2).

The carbon substrate utilization presented by the Biolog-Eco plates was sensitive enough to detect
short-term changes in the soil environment, and the appropriate fertilizer regimes could increase the
soil’s functional microbial diversity [38,59]. In our study, the application of liquid organic fertilizers
improved the AWCD of rhizospheric soil by 35.4–146.2% and −13.5–57.3% compared with the CK and
NPK treatments, respectively (Figure 3). The addition of L1 exhibited the highest carbon substrate
utilization, and the AWCD of L1 at the end of the incubation was 1.4–81.9% higher than those of the
other liquid organic fertilizer treatments. In agreement with our results, Gomez et al. found that
organic soil amendments significantly stimulated the carbon substrate utilization [60], and this mainly
depended on the availability of soil carbon. The PCA showed that the fertilizer regimes significantly
influenced the rhizospheric soil’s functional diversity (Figure 4). Liquid organic fertilizers may induce
changes in soil properties which, in turn, influence the soil’s microbial functional diversity, resulting in
differences in the soil carbon substrate utilization and plant growth [38,61]. Under the liquid organic
fertilizer treatments, the utilization of carbohydrate, carboxylic acid, phenolic compounds, amino
acid, and polymer was much greater than in the CK and NPK treatments, and an enhancement of
these carbon sources was observed by 59.4–191.7% and 0.2–56.0% compared with the CK and NPK
treatments, respectively (Figure 5). This was in accordance with earlier work of Romaniuk et al. in
which microbial functional diversity could indicate the influence of fertilizer and management practices
in organic and conventional horticulture systems [62]. The utilization of phenolic compounds showed
a different tendency in our experiment and it was highest under the Non-R treatment and lowest for
CK treatment. This phenomenon was possible partly for the different pH values among treatments
and the pH value of the Non-R treatment was the lowest (Table 2). Additionally, phenolic compounds
were the main autotoxicity substance in rhizosphere soil of many plants and it would influence the
growth of plants; thus, the utilization of phenolic compounds was higher in Non-R treatment than the
rhizosphere soil [63,64]. The application of L1 significantly improved the utilization of the six main
carbon sources (carbohydrate, carboxylic acid, phenolic compounds, amino acid, polymer, and amine)
by 76.6, 40.1, 22.4, 81.6, 29.7, and 2.9% than the NPK treatment, respectively. The Shannon index
analysis also showed that the application of liquid organic fertilizer treatments (especially L1, L2,
and L5) significantly improved the diversity and evenness of the soil bacterial community (Figure 6),
which would be beneficial in resisting stress [61,65]. Thus, the application of liquid organic fertilizers,
especially L1, significantly increased the microbial population’s diversity in the rhizosphere.

5. Conclusions

Fertilizer management is of great importance in chrysanthemum production. In this study, five
sources of liquid organic fertilizer were applied to promote chrysanthemum growth at the early
stage. The application of liquid organic fertilizers significantly promoted the root architecture and
plant growth of chrysanthemum compared with the CK and inorganic fertilizer treatment over the
short term, even with a limited amount of mineral nutrient input. Among the five liquid organic
fertilizers treatments applied in our experiment, the L1 liquid fertilizer proved to be effective in both
root development and aboveground growth promotion, especially the root tips, SPAD value of leaves,
and the aboveground biomass. The addition of L1 liquid organic fertilizer significantly stimulated
the soil’s microbial activity and functional diversity through the enhancement the N mineralization
process at the rhizospheric level. Treating with L1 liquid organic fertilizer indicated its potential as
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an effective fertilizer regime in the chrysanthemum production system. Moreover, the successful
application of liquid organic fertilizers in our study suggested a rational way to reuse agricultural
wastes and was effective in sustaining plant growth and the health of the soil system. In the future,
more attention should be paid to quantifying the optimal fertilizer rate of the shrimp extract liquid
organic fertilizer in diverse growth periods of chrysanthemum production, and further analysis is also
required to clarify the key microbiologic population in the process.
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