
sustainability

Article

Exclusive Contexts Resolver: A Low-Power
Sensing Management System for Sustainable
Context-Awareness in Exclusive Contexts

Dusan Baek and Jung-Won Lee *

Department of Electrical and Computer Engineering, Ajou University, 206, Suwon 16499, Korea;
darkdusan@ajou.ac.kr
* Correspondence: jungwony@ajou.ac.kr; Tel.: +82-31-219-1813

Academic Editor: James J. Park
Received: 3 March 2017; Accepted: 17 April 2017; Published: 19 April 2017

Abstract: Several studies focus on sustainable context-awareness of a mobile device to which power
is supplied from a limited battery. However, the existing studies did not consider an unnecessary
sensing operation in exclusive contexts wherein it is not possible for the exclusive contexts to logically
exist at the same time and are instead occasionally inferred practically due to the inaccuracy of
the context-awareness. Simultaneously inferring two or more exclusive contexts is semantically
meaningless and leads to inefficient power consumption, and thus, it is necessary to handle this
problem for sustainable context-awareness. To this end, in the present study, an exclusive contexts
resolver (ExCore), which is a low-power sensing management system, is proposed for sustainable
context-awareness in exclusive contexts. The ExCore takes the sensor behavior model to the
developer and identifies the sensing operation inferring the exclusive contexts through unnecessary
sensing operation search rules. It also generates low-power sensing operations. The application
and middleware were evaluated with the low-power sensing operations generated by the ExCore.
The results indicated an average power efficiency improvement of 12–62% depending on the test
scenario. The ExCore helps application developers or middleware developers in providing sustainable
context-aware service in exclusive contexts.

Keywords: low-power; context-aware; sustainable; exclusive contexts; sensor management; sensing
behavior model; context-sensing model

1. Introduction

The availability of a mobile device equipped with various sensors allows users to utilize
context-aware services [1,2]. The context-aware service senses the physical environment around
the user by using various sensors to offer a well-fitted service. However, the context-aware service
requires continuous sensing to monitor a user’s context, and thus, it consumes a high amount of power.
Specifically, the limited power supply from the battery becomes an important issue for the mobile
device in question [3].

Hence, several studies have focused on the sustainable context-awareness of mobile devices.
Generally, there are two kinds of solutions for sustainable context-awareness: application-independent
solutions and application-dependent solutions. However, the application-independent solutions have
limitations in solving power-related problems in mobile devices due to the over consumption of
resources by the faulty design of applications [4]. If the system indiscriminately blocks application
commands to preserve power efficiency, this causes a direct drop in QoS (Quality of Service).
Conversely, if the system accepts a request for an unnecessary operation due to a simple design error,
this results in inefficient power consumption. Thus, application-dependent solutions are required and

Sustainability 2017, 9, 647; doi:10.3390/su9040647 www.mdpi.com/journal/sustainability

http://www.mdpi.com/journal/sustainability
http://www.mdpi.com
http://www.mdpi.com/journal/sustainability

Sustainability 2017, 9, 647 2 of 18

ongoing research focuses on low power to solve these problems. This research aids researchers or
developers in localizing the energy bug [5] (that is also termed the energy black hole [6,7] or energy
leak [8]), which causes inefficient power consumption at the application level (component level or
instruction level in detail). This information can be used by developers to fix the energy bugs and
improve power efficiency.

Despite the contributions of extant research, mobile device users continue to suffer from limited
battery power. As previously mentioned, context-awareness consumes additional power, and thus
power efficiency is an extremely important issue. Thus, a few studies focused on sustainable
context-awareness and proposed additional low-power methods. Specifically, they used the similarity
of contexts or context hierarchy information to prevent the occurrence of identical sensing operations
or to perform sensing operations that are maximally efficient among the sensing operations that enable
the same context [9,10]. That is, in the case of a context-aware application, an additional low-power
option can be achieved by using a context-specific low-power scheme in addition to a traditional
low-power scheme.

However, in spite of these efforts, the previous studies had limitations because they do not
consider an unnecessary sensing operation in exclusive contexts wherein it is not possible for the
contexts to exist logically at the same time. For example, in an indoor/outdoor context-aware service,
indoor and outdoor contexts can be inferred when a Wi-Fi signature is acquired and the GPS (Global
Positioning System) signal is received, respectively. It is not possible for indoor and outdoor contexts
to coexist logically at the same time. However, the afore-mentioned contexts are often inferred by Wi-Fi
and GPS sensors simultaneously (for example, at an edge of a building). In a manner similar to this
case, it is semantically meaningless to infer two or more exclusive contexts simultaneously, and this
leads to inefficient power consumption. Hence, it is necessary to handle the problem for sustainable
context-awareness. Figure 1 shows the context classified by an operational categorization used in a
previous study [11] to illustrate the practical reasons for the occurrence of exclusive contexts.

Sustainability 2017, 9, 647 2 of 18

researchers or developers in localizing the energy bug [5] (that is also termed the energy black hole

[6,7] or energy leak [8]), which causes inefficient power consumption at the application level

(component level or instruction level in detail). This information can be used by developers to fix the

energy bugs and improve power efficiency.

Despite the contributions of extant research, mobile device users continue to suffer from limited

battery power. As previously mentioned, context-awareness consumes additional power, and thus

power efficiency is an extremely important issue. Thus, a few studies focused on sustainable context-

awareness and proposed additional low-power methods. Specifically, they used the similarity of

contexts or context hierarchy information to prevent the occurrence of identical sensing operations

or to perform sensing operations that are maximally efficient among the sensing operations that

enable the same context [9,10]. That is, in the case of a context-aware application, an additional low-

power option can be achieved by using a context-specific low-power scheme in addition to a

traditional low-power scheme.

However, in spite of these efforts, the previous studies had limitations because they do not

consider an unnecessary sensing operation in exclusive contexts wherein it is not possible for the

contexts to exist logically at the same time. For example, in an indoor/outdoor context-aware service,

indoor and outdoor contexts can be inferred when a Wi-Fi signature is acquired and the GPS (Global

Positioning System) signal is received, respectively. It is not possible for indoor and outdoor contexts

to coexist logically at the same time. However, the afore-mentioned contexts are often inferred by Wi-

Fi and GPS sensors simultaneously (for example, at an edge of a building). In a manner similar to this

case, it is semantically meaningless to infer two or more exclusive contexts simultaneously, and this

leads to inefficient power consumption. Hence, it is necessary to handle the problem for sustainable

context-awareness. Figure 1 shows the context classified by an operational categorization used in a

previous study [11] to illustrate the practical reasons for the occurrence of exclusive contexts.

Figure 1. Context classification by the operational categorization.

As shown in Figure 1, the primary context corresponds to the raw value obtained from actual

sensing operations such as GPS location fix and acceleration value. This is utilized to inform

secondary contexts based on the business logic of a context-aware application. In conventional

methods for low-power consumption, low-power can be achieved by caching the secondary context.

Conversely, the inference of the exclusive contexts occurs in the primary context. With respect to the

assumption that context 1 and context 2 in Figure 1 are exclusive contexts, sensing data values, such

as (S1 and S2), (S4 and S5), or (S2 and S4), which generate these secondary contexts will not be

obtained at the same time. However, in a realistic scenario, the afore-mentioned sensing data values,

such as (S3 and S4) or (S1 and S3), are occasionally sensed simultaneously. This is because the

accuracy of a context-aware service does not perfectly match the primary context and the secondary

context. As a result, the power consumed for inference is unnecessary because the inferred exclusive

contexts are not logically meaningful. Therefore, it is necessary to reduce unnecessary power

consumption in exclusive contexts for sustainable context-aware service, and this entails the

following process.

Figure 1. Context classification by the operational categorization.

As shown in Figure 1, the primary context corresponds to the raw value obtained from actual
sensing operations such as GPS location fix and acceleration value. This is utilized to inform secondary
contexts based on the business logic of a context-aware application. In conventional methods for
low-power consumption, low-power can be achieved by caching the secondary context. Conversely,
the inference of the exclusive contexts occurs in the primary context. With respect to the assumption
that context 1 and context 2 in Figure 1 are exclusive contexts, sensing data values, such as (S1 and
S2), (S4 and S5), or (S2 and S4), which generate these secondary contexts will not be obtained at
the same time. However, in a realistic scenario, the afore-mentioned sensing data values, such as
(S3 and S4) or (S1 and S3), are occasionally sensed simultaneously. This is because the accuracy of
a context-aware service does not perfectly match the primary context and the secondary context.

Sustainability 2017, 9, 647 3 of 18

As a result, the power consumed for inference is unnecessary because the inferred exclusive contexts
are not logically meaningful. Therefore, it is necessary to reduce unnecessary power consumption in
exclusive contexts for sustainable context-aware service, and this entails the following process.

First, it is necessary to identify the exclusive contexts and the unnecessary sensing operation.
In this study, it is assumed that target services are scalable and that their developers could be different.
Hence, a context-sensing model is proposed to express the context and sensing operation in each service.
The context-sensing model is used to identify unnecessary sensing operations in exclusive contexts
and to suggest the means for an efficient operation. The context-sensing model is based on the ease of
use and extensibility, and therefore, it is lightweight when compared with the existing sensing models
based on interoperability, robustness, and self-adaptability. In particular, all necessary information
can be extracted from the automata for the sensing behavior model that is basically generated in the
development process, and thus, this does not require the additional effort of a developer representing
the context-sensing model. The system proposed in this study (that is, the Exclusive Contexts
Resolver; ExCore) can automatically perform a translation from automata to the context-sensing
model. The context-sensing model is utilized as a fact in the expert system in ExCore, and it identifies
unnecessary sensing operations in the exclusive contexts.

Second, it is necessary to efficiently control the inefficient sensing operation in exclusive contexts
for a sustainable context-aware service. To this end, the ExCore provides an environment to suggest
and retrieve an efficient sensing operation method. The rules of identifying the inefficient sensing
operation in the exclusive contexts as well as dealing with the same can be applied to the expert system
in the ExCore. In addition, efficient sensing operation methods in exclusive contexts are shared by a
large number of developers, and thus, there is room for improvements in terms of the power efficiency.
As a result, the proposed system helps application developers or middleware developers in providing
sustainable context-aware services with respect to exclusive contexts.

In this study, the ExCore presented is applied to a scenario in which exclusive contexts occur.
The results indicate an improvement of 12%–62% in the power efficiency of the exclusive contexts.
It is expected that the ExCore will aid in more efficient power consumption in future heterogeneous
situations, as the number of context-aware applications is expected to increase in the future.

The remainder of this study is organized as follows. Section 2 reviews the literature related
to the models and methods for sustainable context-awareness. Section 3 addresses the exclusive
contexts and the reasons for the related existing problems. Section 4 proposes the ExCore that identifies
the inefficient sensing operation in exclusive contexts and provides an efficient sensing operation
method. Section 5 evaluates the ExCore by applying an efficient sensing operation for the application
and the middleware in Android OS. Finally, Section 6 presents the conclusions and directions for
future research.

2. Related Work

2.1. Models for Sustainable Context-Awareness

The representation of context-awareness is classified into general models for multiple applications,
domain-specific models for specific applications, and no-models that directly use sensing data based
on a classification in a previous study [12,13]. In order to manage and operate multiple applications
for sustainable context-aware service, it is essential to express their context-aware services by using
general models. There are various types of general models as described below [13]:

1© Key-value models represent the simplest data structure for modeling contexts by exploiting pairs
of two items, namely a key (attribute name) and its value.

2© Markup scheme models use XML-based representations to model a hierarchical data structure
consisting of markup tags, attributes, and contents.

3© Object-oriented models use the benefits of the object-oriented approach, namely encapsulation
and reusability, and each class defines a new context type with associated access functionalities.

Sustainability 2017, 9, 647 4 of 18

4© Logic-based models use the high expressiveness intrinsic to the logic formalism, and the context
contains facts, expressions, and rules, while new knowledge can be derived by inference.

5© Ontology-based models use ontologies to represent context and utilize the expression capability
related to even complex relationships, and data validity is typically expressed by imposing
ontology constraints.

It is necessary for the criteria to select the most suitable models for sustainable context-awareness
among the various types of the models. This entails the following: First, context-aware services have
their own distinct business logic. Therefore, it is not possible to pre-define all the context-related
information nor it is possible to enforce selection from several pre-defined models. Additionally,
context-aware services emphasize creativity and independence as opposed to interoperability.
Therefore, it is not possible to predefine the model through technology such as ontology. It is
necessary to provide a reference model such that developers can express their own situation and sensor
information. Second, the model should be expressed at a level that does not overburden the developer.
Currently, context-aware applications are developed without considering the integration of services.
Therefore, additional information required by the afore-mentioned model could pose a burden to the
developer, and thus these types of activities do not benefit developers.

Given the above reasons, studies on sustainable context-awareness define their individualized
models to represent services, contexts, and sensor information. A previous study [9] used
an XML-based model to define sensor state and transition. This method is simple and can reduce the
burden on the developer and has the added advantage that it can be extended to various services,
situations, and sensing operation methods. An extant study [6] defined a logic-based model, that is,
an application execution model to analyze sensory data utilization. This model enables rule-based
reasoning, and it is possible to apply information flow tracking through tainting propagation. However,
it is difficult to apply this model to a context-aware service because it is based on a sensor level. Another
study [10] used a logic-based model to display sensors and contexts. Logic-based models have the
advantage of reasoning as well as the disadvantage that it is necessary for a developer to separate
efforts to generate the models as specified in an extant study [6].

2.2. Low-Power Methods for Sustainable Context-Awareness

Studies for sustainable context-awareness can be divided into studies for low-power methods
of general mobile services and studies of context-aware services. First, mobile manufacturers or OS
vendors work towards improving the power efficiency of mobile devices. Mobile manufacturers
developed a ‘big-little architecture’, which selectively uses high-performance and low-end tasks [14].
Additionally, they proposed a ‘sensor hub’ that processes sensor events with a processor that consumes
less power when compared with that of a CPU [15]. The application of these methods allows the
achievement of power efficiency at the system level. Recently, Google, which is an OS vendor,
has adopted new technology to reduce power consumption whenever a new version of Android is
released at the OS level. An example involves ‘batching’ that processes sensing operations through a
processor that consumes less power and periodically processes the sensor data in a batch to reduce
the power of the application processor (AP). Another example is that of the ‘Doze mode’ that reduces
power consumption by delaying CPU and network activity when not in charge and when switched off.
Additionally, ‘Project svelte’ reduces the reception power of broadcasts by eliminating nonessential
implicit broadcasts [16].

Furthermore, studies related to low-power consumption are also underway at the
application-level. They can be classified into studies that identify the causes of inefficient power
consumption and studies that remove the causes. The goal of the former studies includes aiding
developers to localize the energy bug (also called energy black hole or energy leak) that causes
inefficient power consumption [17–19]. The afore-mentioned studies involved creating a power
model at the component level [17,18] or at the instruction level [19] and estimating and analyzing the
power consumption of the context-aware service by using the model. However, these studies have a

Sustainability 2017, 9, 647 5 of 18

disadvantage as they only provide information regarding the amount of the power consumption
without any additional information. An extant study [6] proposed an approach to remedy the
shortcoming of the previous studies by systematically diagnosing energy inefficiency problems.
This approach provides information related to the misusage of the sensor listener and underutilization
of the sensory data by analyzing the sensor utilization. The goal of the latter studies involves aiding
a developer in fixing the localized energy bugs. An extant study [20] presents APE, which is an
annotation language and middleware service that eases the development of an energy-efficient Android
application. In this manner, a developer can identify and improve the energy bug to enable efficient
power consumption.

In addition to low-power studies for general mobile services, low-power studies are also
conducted for context-aware services. They focus on the context of context-aware applications and use
the same for efficient sensing operations. An extant study [3] presented a rate-adaptive positioning
system that adjusts the periodic duty-cycle of GPS based on required accuracy. A study [9] examined a
design framework for sensor management to substitute existing sensors with a minimum set of sensors
that consumes lower power. Another study [10] proposed an ACE (Acquisitional Context Engine),
which is a middleware that exploits the sensing data cache or infers a context from a previously-known
context without redundant additional sensing. These studies provide solutions to address inefficient
power consumption. However, the studies do not consider the exclusive contexts. Therefore, it is
hard to establish efficient power consumption with respect to the exclusive contexts. In order to
provide the sustainable context-awareness in consideration of the exclusive contexts, we proposed a
low-power sensing management method in a previous study [21]. However, the study only focused on
the possibility to reduce the power consumption in the exclusive contexts. Therefore, the responsibility
of identifying unnecessary sensing operation and remedying the operation is assigned to the developer.
On the other hand, ExCore could identify the unnecessary sensing operations according to the
developer’s context and generate the efficient sensor operating instruction automatically.

3. Exclusive Contexts

3.1. Problem Definition

This subsection discusses the problem definition to aid in understanding the meaning of exclusive
contexts and the reason as to why exclusive contexts cause inefficient power consumption by describing
a scenario. The scenario includes the following:

• Scenario.

Tom, a graduate student, usually takes the car to the lab. He studies in the lab and attends
a seminar with a professor. He utilizes a context-aware service that provides three key functions.
First, the service blocks calls while Tom drives and sends messages informing callers about Tom’s
driving state. Additionally, the service changes the ringer to the vibrating mode when Tom studies
and to the mute mode when Tom attends seminars. The service classified context into the following
three types: The driving context (Situation A) if the GPS sensor receives satellite data. The studying
context (Situation B) if the Wi-Fi signal of the office/laboratory can be received and sound around the
device exceeds a pre-defined threshold. The seminar context (Situation C) if the Wi-Fi signal of the
office/laboratory can be received and sound around the device is less than the pre-defined threshold.

The driving, studying, and seminar contexts correspond to the exclusive contexts that cannot
logically coexist at the same time. However, if the GPS sensor receives satellite data and the Wi-Fi
sensor can receive the Wi-Fi signal of the office/laboratory, then the driving and studying context
or (Situation D) the driving and seminar context is inferred. That is, the simultaneous inference of
two or more exclusive contexts is semantically meaningless, and thus the sensing activity inferring
these contexts is unnecessary. Therefore, it is necessary to manage the sensing to infer these types of
meaningless contexts for the development of sustainable context awareness.

Sustainability 2017, 9, 647 6 of 18

3.2. Efficient Sensing in Exclusive Contexts

Figure 2 describes the problem definition based on the classification by the operational
categorization as given in a previous study [19].Sustainability 2017, 9, 647 6 of 18

Figure 2. The context classification of problem definition by the operational categorization.

As shown in the Figure 2, each context-aware application provides a service based on the context

of the user. Additionally, each context is inferred by analyzing the sensing data of the sensors in the

device. Therefore, the developer of the context-aware service sets the provision of context appropriate

to the service and then commands the sensing operation to infer the context. The sensing data

collected through the sensing operation is used to confirm whether or not the data supports the

context. The context inference algorithm used at this time is designed and implemented by the

developer. Therefore, if the accuracy of the inference algorithm is 100%, then exclusive contexts that

cannot logically exist at the same time will not be inferred simultaneously such as the driving and

seminar, driving and studying, and studying and seminar contexts. However, if the accuracy of the

inference algorithm is not 100%, then it is possible to infer exclusive contexts due to incorrect

inference of the context. If such exclusive contexts occur simultaneously, then it is not possible to

provide a well fitted-service based on the user’s context, and therefore the power consumed in this

type of a situation becomes meaningless. This study involves accounting for the exclusive contexts

that are not considered by existing context-aware services and reduces inefficient sensing operations

in exclusive contexts for sustainable context-awareness. In other words, in this paper, we try to

improve the efficiency of power consumption by correcting the inefficient power consumption

caused at the application level (faulty design, etc.) through the context-related information.

Even if the context inference algorithm is not perfect, all the exclusive contexts do not actually

occur. In the example shown in Figure 2, the studying context and the seminar context do not occur

simultaneously irrespective of the accuracy of the context inference algorithm. This is because sensing

data that supports the exclusive contexts are disjointed at the primary context level. When no Wi-Fi

signal is received, both contexts are not inferred. When a Wi-Fi signal is received, only one of the two

contexts will be inferred according to the condition based on the pre-defined volume threshold. It is

not possible for the data (events) collected by a sensor to have more than two values simultaneously,

and therefore the contexts cannot be simultaneously inferred if the types of sensors used to infer

exclusive contexts and their values are disjointed. On the other hand, in the case that the sensors or

their values are not disjointed, exclusive contexts could be inferred. In the example shown in Figure

2, the driving context uses a GPS, and the studying context and seminar context are inferred using a

Wi-Fi and a volume sensor. Therefore, exclusive contexts, such as Driving context and Studying

Context and Driving Context and Seminar context, can be inferred by a GPS, Wi-Fi, and a volume

sensor. Therefore, in order to enable sustainable context-awareness in exclusive contexts, it is

necessary to consider contexts in exclusive contexts as well as the types and conditions of the inferring

sensors.

Figure 2. The context classification of problem definition by the operational categorization.

As shown in the Figure 2, each context-aware application provides a service based on the context
of the user. Additionally, each context is inferred by analyzing the sensing data of the sensors in the
device. Therefore, the developer of the context-aware service sets the provision of context appropriate
to the service and then commands the sensing operation to infer the context. The sensing data
collected through the sensing operation is used to confirm whether or not the data supports the context.
The context inference algorithm used at this time is designed and implemented by the developer.
Therefore, if the accuracy of the inference algorithm is 100%, then exclusive contexts that cannot
logically exist at the same time will not be inferred simultaneously such as the driving and seminar,
driving and studying, and studying and seminar contexts. However, if the accuracy of the inference
algorithm is not 100%, then it is possible to infer exclusive contexts due to incorrect inference of the
context. If such exclusive contexts occur simultaneously, then it is not possible to provide a well
fitted-service based on the user’s context, and therefore the power consumed in this type of a situation
becomes meaningless. This study involves accounting for the exclusive contexts that are not considered
by existing context-aware services and reduces inefficient sensing operations in exclusive contexts for
sustainable context-awareness. In other words, in this paper, we try to improve the efficiency of power
consumption by correcting the inefficient power consumption caused at the application level (faulty
design, etc.) through the context-related information.

Even if the context inference algorithm is not perfect, all the exclusive contexts do not actually
occur. In the example shown in Figure 2, the studying context and the seminar context do not occur
simultaneously irrespective of the accuracy of the context inference algorithm. This is because sensing
data that supports the exclusive contexts are disjointed at the primary context level. When no Wi-Fi
signal is received, both contexts are not inferred. When a Wi-Fi signal is received, only one of the two
contexts will be inferred according to the condition based on the pre-defined volume threshold. It is
not possible for the data (events) collected by a sensor to have more than two values simultaneously,
and therefore the contexts cannot be simultaneously inferred if the types of sensors used to infer
exclusive contexts and their values are disjointed. On the other hand, in the case that the sensors or
their values are not disjointed, exclusive contexts could be inferred. In the example shown in Figure 2,

Sustainability 2017, 9, 647 7 of 18

the driving context uses a GPS, and the studying context and seminar context are inferred using a Wi-Fi
and a volume sensor. Therefore, exclusive contexts, such as Driving context and Studying Context
and Driving Context and Seminar context, can be inferred by a GPS, Wi-Fi, and a volume sensor.
Therefore, in order to enable sustainable context-awareness in exclusive contexts, it is necessary to
consider contexts in exclusive contexts as well as the types and conditions of the inferring sensors.

Currently, exclusive contexts are not often inferred, and thus there are limited opportunities for
generating low power through these contexts. However, upcoming IoT environments will involve the
mixing of heterogeneous devices, context-aware services, and sensors, and thus exclusive contexts
will occur frequently. The present study utilizes an expert system to present solutions in this complex
situation. An expert system is a system developed to provide a software system with the same
intellectual abilities as an original expert. It can effectively grasp complex facts and the logical
relationship between the facts. In this study, an expert system is used to identify the exclusive contexts,
and an efficient sensing operation is proposed.

4. ExCore: Exclusive Contexts Resolver

4.1. ExCore Overview (System Overview)

Figure 3 describes an overview of the proposed system used in this study, which is termed as the
‘Exclusive Contexts Resolver’ and abbreviated as ExCore.

Sustainability 2017, 9, 647 7 of 18

Currently, exclusive contexts are not often inferred, and thus there are limited opportunities for

generating low power through these contexts. However, upcoming IoT environments will involve

the mixing of heterogeneous devices, context-aware services, and sensors, and thus exclusive

contexts will occur frequently. The present study utilizes an expert system to present solutions in this

complex situation. An expert system is a system developed to provide a software system with the

same intellectual abilities as an original expert. It can effectively grasp complex facts and the logical

relationship between the facts. In this study, an expert system is used to identify the exclusive

contexts, and an efficient sensing operation is proposed.

4. ExCore: Exclusive Contexts Resolver

4.1. ExCore Overview (System Overview)

Figure 3 describes an overview of the proposed system used in this study, which is termed as

the ‘Exclusive Contexts Resolver’ and abbreviated as ExCore.

Figure 3. An overview of the ExCore system.

4.1.1. Automata Translator

It is necessary to analyze context-related information used in service and sensing-related

information to infer the context, in order to eliminate unnecessary power dissipation in exclusive

contexts. As previously mentioned, various modeling methods exist to define context and sensing-

related information. Most of the methods require very detailed and versatile information for

operations including interoperability, scalability, and self-adaptability, and this places a burden on

developers. In this study, the system only takes automata (sensing behavior model, c) as an input to

avoid this burden. However, it is not possible for the expert system to directly read automata, and

therefore it is necessary to convert the automata to a form that can be used in an expert system. The

Automata translator translates the automata into a context-sensing model (f). The ExCore inputs this

context-sensing model to the expert system as facts, and the expert system deduces the unnecessary

sensing operations related to the exclusive contexts.

4.1.2. Expert System

The expert system analyzes the context and sensing-related information as facts and identifies

the sensing operation that consumes unnecessary power within exclusive contexts by using pre-

defined unnecessary sensing operation search rules as defaults (a). This is followed by presenting an

efficient sensor operating instruction (h) to enable sustainable context-awareness. The context of the

sensing behavior model added by the developer corresponds to a natural language, and the meaning

differs based on each individual developer. Hence, ExCore is fed back (e,f) by querying the developer

Figure 3. An overview of the ExCore system.

4.1.1. Automata Translator

It is necessary to analyze context-related information used in service and sensing-related
information to infer the context, in order to eliminate unnecessary power dissipation in exclusive
contexts. As previously mentioned, various modeling methods exist to define context and
sensing-related information. Most of the methods require very detailed and versatile information for
operations including interoperability, scalability, and self-adaptability, and this places a burden on
developers. In this study, the system only takes automata (sensing behavior model, c) as an input
to avoid this burden. However, it is not possible for the expert system to directly read automata,
and therefore it is necessary to convert the automata to a form that can be used in an expert system.
The Automata translator translates the automata into a context-sensing model (f). The ExCore inputs
this context-sensing model to the expert system as facts, and the expert system deduces the unnecessary
sensing operations related to the exclusive contexts.

Sustainability 2017, 9, 647 8 of 18

4.1.2. Expert System

The expert system analyzes the context and sensing-related information as facts and identifies the
sensing operation that consumes unnecessary power within exclusive contexts by using pre-defined
unnecessary sensing operation search rules as defaults (a). This is followed by presenting an efficient
sensor operating instruction (h) to enable sustainable context-awareness. The context of the sensing
behavior model added by the developer corresponds to a natural language, and the meaning differs
based on each individual developer. Hence, ExCore is fed back (e,f) by querying the developer as
to whether or not the context to be added to the developer and the existing context are exclusive
contexts. Additionally, the developer can propose a more efficient sensing operation by adding an
efficient sensor operating instruction (b) as a rule. The efficient sensor operating instruction deduced
by the expert system is delivered to the developer. The developer utilizes this instruction to develop
an application or a middleware to enable an efficient sensing operation with respect to the exclusive
contexts. The sensing operation on the middleware enables efficient power consumption without
requiring additional changes in the application code. In order to perform this, it is necessary for the
middleware to possess the ability to control various sensors by following the instruction.

4.2. Context-Sensing Model

In order to improve the power efficiency in the exclusive context, it is necessary to analyze
context-related information used in the service and sensing-related information used to infer the
service. The extent of information analysis and the manner in which the analysis is handled are highly
dependent on the modeling of the information. The requirements for the modeling in the proposed
system include the following:

• Adaptability and Scalability: A model should be provided to developers such that they can
express their own context and sensor-related information.

• Simplicity: Only minimal information should be required for sustainable contexts such that
developers are not burdened.

ExCore only requires automata (sensing behavior model) with respect to the developer to satisfy
the requirements. It is assumed that the automata correspond to a minimal artifact produced during
the development of a context-aware service. However, if many sensors are used and describing all of
the sensors is difficult, the developer is required to make additional efforts in selecting and describing
only the sensors and their operations corresponding to the contexts that cause exclusive contexts.
Figure 4 shows an example of the automata that expresses the sensing behavior to infer the seminar
context of the Problem Definition as illustrated in Section 3.1.

Sustainability 2017, 9, 647 8 of 18

as to whether or not the context to be added to the developer and the existing context are exclusive

contexts. Additionally, the developer can propose a more efficient sensing operation by adding an

efficient sensor operating instruction (b) as a rule. The efficient sensor operating instruction deduced

by the expert system is delivered to the developer. The developer utilizes this instruction to develop

an application or a middleware to enable an efficient sensing operation with respect to the exclusive

contexts. The sensing operation on the middleware enables efficient power consumption without

requiring additional changes in the application code. In order to perform this, it is necessary for the

middleware to possess the ability to control various sensors by following the instruction.

4.2. Context-Sensing Model

In order to improve the power efficiency in the exclusive context, it is necessary to analyze

context-related information used in the service and sensing-related information used to infer the

service. The extent of information analysis and the manner in which the analysis is handled are highly

dependent on the modeling of the information. The requirements for the modeling in the proposed

system include the following:

 Adaptability and Scalability: A model should be provided to developers such that they can

express their own context and sensor-related information.

 Simplicity: Only minimal information should be required for sustainable contexts such that

developers are not burdened.

ExCore only requires automata (sensing behavior model) with respect to the developer to satisfy

the requirements. It is assumed that the automata correspond to a minimal artifact produced during

the development of a context-aware service. However, if many sensors are used and describing all of

the sensors is difficult, the developer is required to make additional efforts in selecting and describing

only the sensors and their operations corresponding to the contexts that cause exclusive contexts.

Figure 4 shows an example of the automata that expresses the sensing behavior to infer the seminar

context of the Problem Definition as illustrated in Section 3.1.

Figure 4. The sensing behavior model for context-awareness of the seminar context.

The automata is an event driven model that consists of states and transitions and it represents

the sensing behavior of sensors for context-awareness. Each state is maintained when it receives

sensing data that does not change beyond the threshold, and the service infers the context based on

the corresponding state. If sensing data with a change that exceeds the threshold value is received as

a result of the periodic sensing operation, then it transits to another state based on the condition of

the transition. Each automata is described by each context used to trigger the service, and this is

termed as the core context (that is, if there are three contexts, then it is necessary to create three

automata). Therefore, the automata consists of a core context and other contexts that are termed as

Figure 4. The sensing behavior model for context-awareness of the seminar context.

Sustainability 2017, 9, 647 9 of 18

The automata is an event driven model that consists of states and transitions and it represents
the sensing behavior of sensors for context-awareness. Each state is maintained when it receives
sensing data that does not change beyond the threshold, and the service infers the context based on
the corresponding state. If sensing data with a change that exceeds the threshold value is received
as a result of the periodic sensing operation, then it transits to another state based on the condition
of the transition. Each automata is described by each context used to trigger the service, and this
is termed as the core context (that is, if there are three contexts, then it is necessary to create three
automata). Therefore, the automata consists of a core context and other contexts that are termed as
‘support contexts’. The state inferring the core context is denoted as the marked state. The marked
state is used to identify the exclusive contexts.

ExCore receives the sensing behavior model of the automata type that infers individual contexts
and inputs the same as a fact in the expert system. The sensing behavior model satisfied the
requirements for the modeling as previously mentioned. However, this is not directly usable because
it is too complex to use in the expert system. Therefore, it is necessary to change the sensing behavior
model from the expert system. The Automata Translator is responsible for these tasks, and as a result,
it generates the context-sensing model. Figure 5 illustrates the context-sensing model proposed in
this study.

Sustainability 2017, 9, 647 9 of 18

‘support contexts’. The state inferring the core context is denoted as the marked state. The marked

state is used to identify the exclusive contexts.

ExCore receives the sensing behavior model of the automata type that infers individual contexts

and inputs the same as a fact in the expert system. The sensing behavior model satisfied the

requirements for the modeling as previously mentioned. However, this is not directly usable because

it is too complex to use in the expert system. Therefore, it is necessary to change the sensing behavior

model from the expert system. The Automata Translator is responsible for these tasks, and as a result,

it generates the context-sensing model. Figure 5 illustrates the context-sensing model proposed in

this study.

Figure 5. The sensing behavior model and the context-sensing model.

The bottom of Figure 5 illustrates a context-sensing model with the goal of expressing the values

of the sensing behavior model in the expert system. The context-sensing model consists of a context-

model that contains abstract information related to the context and a sensing model that is responsible

for explicit information related to the actual sensing data. Additionally, they are composed of entity-

related information and relation-related information and are designed to be easy to interpret by the

expert system. In detail, the context of a context-sensing model is composed of states, and the states

are divided into marked states deducing the core context and supporting states deducing the support

contexts. Each state is transited by the event of the sensors and has a domain state that corresponds

to the start of transition and a range state that corresponds to the arrival of the transition. The event

occurs when one or more sensors (GPS, Wi-Fi, etc.) satisfy the condition. Figure 6 shows a context-

sensing model of the sensing behavior model generated from the seminar context in Section 3.1.

Figure 5. The sensing behavior model and the context-sensing model.

The bottom of Figure 5 illustrates a context-sensing model with the goal of expressing the
values of the sensing behavior model in the expert system. The context-sensing model consists of a
context-model that contains abstract information related to the context and a sensing model that is
responsible for explicit information related to the actual sensing data. Additionally, they are composed

Sustainability 2017, 9, 647 10 of 18

of entity-related information and relation-related information and are designed to be easy to interpret
by the expert system. In detail, the context of a context-sensing model is composed of states, and
the states are divided into marked states deducing the core context and supporting states deducing
the support contexts. Each state is transited by the event of the sensors and has a domain state that
corresponds to the start of transition and a range state that corresponds to the arrival of the transition.
The event occurs when one or more sensors (GPS, Wi-Fi, etc.) satisfy the condition. Figure 6 shows a
context-sensing model of the sensing behavior model generated from the seminar context in Section 3.1.Sustainability 2017, 9, 647 10 of 18

Figure 6. The context-sensing model of the seminar context in Section 3.1.

In Figure 6, some events are composed of two more sensing conditions such as

wifiscan_success&&vlume_high. The context-sensing model has a way to represent the AND and OR

transitions, and Figure 7 is an example that illustrates the basic, AND, and OR transitions.

Figure 7. The context-sensing model of basic, AND, and OR transitions.

In basic transition case in Figure 7, when the Sensor1 satisfies Condition1, then Eventα is

triggered, and it makes a transition from the StateA to the StateB. In the AND transition case, the

Eventβ could be triggered when both the Sensor1 and Sensor2 satisfy the Condition1 and Condition2 at

the same time, respectively. For adapting our model to the expert system, we should use only the

static number of tuples for the model. For this reason, we separate one hasCondition into two

hasConditions for representing the AND transition. In the OR transition case, a transition from the

StateA to the StateB is triggered when either Sensor1 satisfies Condition1 or Sensor2 satisfies Condition2.

Therefore, we separate the event making transition into two events for each sensing trigger, such as

the Eventγ and the Eventδ. By using a combination of these transition expressions, we can represent

all kinds of sensing behavior models as the context-sensing model.

4.3. Low-Power Sensing

The Context-Sensing model generated by the Automata Translator is added as facts to the expert

system. Figure 8 shows the templates for the facts added to Jess, which is one of the famous expert

Figure 6. The context-sensing model of the seminar context in Section 3.1.

In Figure 6, some events are composed of two more sensing conditions such as
wifiscan_success&&vlume_high. The context-sensing model has a way to represent the AND and
OR transitions, and Figure 7 is an example that illustrates the basic, AND, and OR transitions.

Sustainability 2017, 9, 647 10 of 18

Figure 6. The context-sensing model of the seminar context in Section 3.1.

In Figure 6, some events are composed of two more sensing conditions such as

wifiscan_success&&vlume_high. The context-sensing model has a way to represent the AND and OR

transitions, and Figure 7 is an example that illustrates the basic, AND, and OR transitions.

Figure 7. The context-sensing model of basic, AND, and OR transitions.

In basic transition case in Figure 7, when the Sensor1 satisfies Condition1, then Eventα is

triggered, and it makes a transition from the StateA to the StateB. In the AND transition case, the

Eventβ could be triggered when both the Sensor1 and Sensor2 satisfy the Condition1 and Condition2 at

the same time, respectively. For adapting our model to the expert system, we should use only the

static number of tuples for the model. For this reason, we separate one hasCondition into two

hasConditions for representing the AND transition. In the OR transition case, a transition from the

StateA to the StateB is triggered when either Sensor1 satisfies Condition1 or Sensor2 satisfies Condition2.

Therefore, we separate the event making transition into two events for each sensing trigger, such as

the Eventγ and the Eventδ. By using a combination of these transition expressions, we can represent

all kinds of sensing behavior models as the context-sensing model.

4.3. Low-Power Sensing

The Context-Sensing model generated by the Automata Translator is added as facts to the expert

system. Figure 8 shows the templates for the facts added to Jess, which is one of the famous expert

Figure 7. The context-sensing model of basic, AND, and OR transitions.

In basic transition case in Figure 7, when the Sensor1 satisfies Condition1, then Eventα is triggered,
and it makes a transition from the StateA to the StateB. In the AND transition case, the Eventβ could be
triggered when both the Sensor1 and Sensor2 satisfy the Condition1 and Condition2 at the same time,
respectively. For adapting our model to the expert system, we should use only the static number

Sustainability 2017, 9, 647 11 of 18

of tuples for the model. For this reason, we separate one hasCondition into two hasConditions for
representing the AND transition. In the OR transition case, a transition from the StateA to the StateB is
triggered when either Sensor1 satisfies Condition1 or Sensor2 satisfies Condition2. Therefore, we separate
the event making transition into two events for each sensing trigger, such as the Eventγ and the Eventδ.
By using a combination of these transition expressions, we can represent all kinds of sensing behavior
models as the context-sensing model.

4.3. Low-Power Sensing

The Context-Sensing model generated by the Automata Translator is added as facts to the
expert system. Figure 8 shows the templates for the facts added to Jess, which is one of the famous
expert systems and one example among the facts of the seminar context in Section 3.1 according to
the templates.

Sustainability 2017, 9, 647 11 of 18

systems and one example among the facts of the seminar context in Section 3.1 according to the

templates.

Figure 8. The templates for the facts and one example among the facts according to the templates.

All name of entities and relations are named by a developer using natural language. To identify

each element of the context-sensing models, we add an id slot to all entities, and all relations could

refer the entities only using this id.

When the facts for a new context are added, the expert system queries the developer as to

whether or not the new context makes new exclusive contexts with the contexts which have been

stored as the facts in the expert system. If it is part of the exclusive contexts, it is also added as a fact.

Then, the expert system deducts the sensing operation that consumes unnecessary power using the

unnecessary sensing search rule defined in this paper. Here are the necessary and sufficient

conditions for the unnecessary sensing operation:

① There are no sensors of the same type used for the exclusive contexts, and the exclusive contexts

are inferred at the same time.

② If the conditions of the sensors that have the same type and which are used for the exclusive

contexts are not same, they are not disjointed. Also, the exclusive contexts are inferred at the

same time.

First of all, for identifying the unnecessary sensing operation, we should check whether there

are any sensors of the same type used for the exclusive contexts. Rule 1 is responsible for this as

shown in Figure 9. After Rule 1 is fired by the facts in the expert system, the latter of the unnecessary

sensing operation ② would be checked. Otherwise, the former ① would be checked.

The unnecessary sensing operation could be divided into two types based on the result of Rule

1, and each of them is discerned by applying different forward chaining rules. First, Rule 2 finds the

unnecessary sensing operation when there are no sensors of the same type in Figure 10. It checks

whether there exists a fact satisfying the conditions (2–13) among the facts in the expert system by

the existential quantifier (1). If there is an unnecessary sensing operation, the fact (14) is added in the

expert system. To examine this rule closely, it checks whether there are two different contexts (2, 4)

which are the exclusive contexts (3) in the expert system. Then, it identifies the core state (7, 8) among

the states inferring them (5, 6). After that, it checks the sensors and the conditions of the event (11,

12) that makes the transition (9, 10) to the core states. Finally, it checks whether there is the fact, the

usedSameSensors (13), in the expert system.

Figure 8. The templates for the facts and one example among the facts according to the templates.

All name of entities and relations are named by a developer using natural language. To identify
each element of the context-sensing models, we add an id slot to all entities, and all relations could
refer the entities only using this id.

When the facts for a new context are added, the expert system queries the developer as to whether
or not the new context makes new exclusive contexts with the contexts which have been stored as the
facts in the expert system. If it is part of the exclusive contexts, it is also added as a fact. Then, the expert
system deducts the sensing operation that consumes unnecessary power using the unnecessary sensing
search rule defined in this paper. Here are the necessary and sufficient conditions for the unnecessary
sensing operation:

1© There are no sensors of the same type used for the exclusive contexts, and the exclusive contexts
are inferred at the same time.

2© If the conditions of the sensors that have the same type and which are used for the exclusive
contexts are not same, they are not disjointed. Also, the exclusive contexts are inferred at the
same time.

First of all, for identifying the unnecessary sensing operation, we should check whether there are
any sensors of the same type used for the exclusive contexts. Rule 1 is responsible for this as shown in

Sustainability 2017, 9, 647 12 of 18

Figure 9. After Rule 1 is fired by the facts in the expert system, the latter of the unnecessary sensing
operation 2© would be checked. Otherwise, the former 1© would be checked.Sustainability 2017, 9, 647 12 of 18

Figure 9. Rule1: The rule for checking whether the same sensors are used.

Figure 10. Rule 2: The unnecessary sensing operation search rule ①.

Second, Rule 3 finds the unnecessary sensing operation when some of sensors are of the same

type in Figure 11. As mentioned in the previous section, in this case, the sensing conditions of the

unnecessary sensing operation in exclusive contexts should not be disjointed (16).

Figure 11. Rule 3: The unnecessary sensing operation search rule ②.

Figure 9. Rule1: The rule for checking whether the same sensors are used.

The unnecessary sensing operation could be divided into two types based on the result of Rule 1,
and each of them is discerned by applying different forward chaining rules. First, Rule 2 finds the
unnecessary sensing operation when there are no sensors of the same type in Figure 10. It checks
whether there exists a fact satisfying the conditions (2–13) among the facts in the expert system by
the existential quantifier (1). If there is an unnecessary sensing operation, the fact (14) is added in
the expert system. To examine this rule closely, it checks whether there are two different contexts
(2, 4) which are the exclusive contexts (3) in the expert system. Then, it identifies the core state (7, 8)
among the states inferring them (5, 6). After that, it checks the sensors and the conditions of the event
(11, 12) that makes the transition (9, 10) to the core states. Finally, it checks whether there is the fact,
the usedSameSensors (13), in the expert system.

Sustainability 2017, 9, 647 12 of 18

Figure 9. Rule1: The rule for checking whether the same sensors are used.

Figure 10. Rule 2: The unnecessary sensing operation search rule ①.

Second, Rule 3 finds the unnecessary sensing operation when some of sensors are of the same

type in Figure 11. As mentioned in the previous section, in this case, the sensing conditions of the

unnecessary sensing operation in exclusive contexts should not be disjointed (16).

Figure 11. Rule 3: The unnecessary sensing operation search rule ②.

Figure 10. Rule 2: The unnecessary sensing operation search rule 1©.

Second, Rule 3 finds the unnecessary sensing operation when some of sensors are of the same
type in Figure 11. As mentioned in the previous section, in this case, the sensing conditions of the
unnecessary sensing operation in exclusive contexts should not be disjointed (16).

Sustainability 2017, 9, 647 13 of 18

Sustainability 2017, 9, 647 12 of 18

Figure 9. Rule1: The rule for checking whether the same sensors are used.

Figure 10. Rule 2: The unnecessary sensing operation search rule ①.

Second, Rule 3 finds the unnecessary sensing operation when some of sensors are of the same

type in Figure 11. As mentioned in the previous section, in this case, the sensing conditions of the

unnecessary sensing operation in exclusive contexts should not be disjointed (16).

Figure 11. Rule 3: The unnecessary sensing operation search rule ②. Figure 11. Rule 3: The unnecessary sensing operation search rule 2©.

As an example of the problem definition in Section 3.1, the driving context and the seminar
context and the driving context and the studying context are cases where the kinds of sensors are
not the same. Therefore, all the sensing operations inferring these contexts at the same time are
unnecessary sensing operations. However, in the case of the seminar context and the studying context,
because all conditions of the sensors that have the same type are disjointed, there is no unnecessary
sensing operation.

The expert system not only identifies the inefficient sensing operation but also defines rules to
infer efficient sensing operation. In this paper, we propose a method of gradually delaying the period
of sensing operation in exclusive contexts by using a linear backoff-algorithm that follows Rule 4 in
Figure 12.

Sustainability 2017, 9, 647 13 of 18

As an example of the problem definition in Section 3.1, the driving context and the seminar

context and the driving context and the studying context are cases where the kinds of sensors are not

the same. Therefore, all the sensing operations inferring these contexts at the same time are

unnecessary sensing operations. However, in the case of the seminar context and the studying

context, because all conditions of the sensors that have the same type are disjointed, there is no

unnecessary sensing operation.

The expert system not only identifies the inefficient sensing operation but also defines rules to

infer efficient sensing operation. In this paper, we propose a method of gradually delaying the period

of sensing operation in exclusive contexts by using a linear backoff-algorithm that follows Rule 4 in

Figure 12.

Figure 12. Rule 4: The efficient sensor operating instruction rule.

Since the rules for effective sensing methods could be modified and are extensible, the expert

system continuously improves the efficiency of the sensing operation. In addition, the rules are

shared and managed externally, so that more various methods can be proposed than those that are

individually managed. Finally, the ExCore helps the application or middleware developer to perform

efficient sensing operations considering the exclusive contexts.

5. Application and Evaluation

5.1. Application into Android

The ExCore’s efficient sensor operating instruction should be modified and extended by the

involvement of various developers. In order to satisfy such a requirement, we implemented the

ExCore as a web service. Figure 13 is the architecture of the ExCore, and Figure 14 is the execution

screen of the ExCore.

Figure 13. The architecture of the ExCore.

Since the ExCore makes different inferences according to individual situations, each fact should

be managed as a personal knowledge base. However, because the efficient sensor operating rule is

generated through cooperation among various developers, they should be managed as a shred

database. The developers are separated by id and submit their own context behavior model. After

Figure 12. Rule 4: The efficient sensor operating instruction rule.

Since the rules for effective sensing methods could be modified and are extensible, the expert
system continuously improves the efficiency of the sensing operation. In addition, the rules are
shared and managed externally, so that more various methods can be proposed than those that are
individually managed. Finally, the ExCore helps the application or middleware developer to perform
efficient sensing operations considering the exclusive contexts.

5. Application and Evaluation

5.1. Application into Android

The ExCore’s efficient sensor operating instruction should be modified and extended by the
involvement of various developers. In order to satisfy such a requirement, we implemented the ExCore
as a web service. Figure 13 is the architecture of the ExCore, and Figure 14 is the execution screen of
the ExCore.

Sustainability 2017, 9, 647 14 of 18

Sustainability 2017, 9, 647 13 of 18

As an example of the problem definition in Section 3.1, the driving context and the seminar

context and the driving context and the studying context are cases where the kinds of sensors are not

the same. Therefore, all the sensing operations inferring these contexts at the same time are

unnecessary sensing operations. However, in the case of the seminar context and the studying

context, because all conditions of the sensors that have the same type are disjointed, there is no

unnecessary sensing operation.

The expert system not only identifies the inefficient sensing operation but also defines rules to

infer efficient sensing operation. In this paper, we propose a method of gradually delaying the period

of sensing operation in exclusive contexts by using a linear backoff-algorithm that follows Rule 4 in

Figure 12.

Figure 12. Rule 4: The efficient sensor operating instruction rule.

Since the rules for effective sensing methods could be modified and are extensible, the expert

system continuously improves the efficiency of the sensing operation. In addition, the rules are

shared and managed externally, so that more various methods can be proposed than those that are

individually managed. Finally, the ExCore helps the application or middleware developer to perform

efficient sensing operations considering the exclusive contexts.

5. Application and Evaluation

5.1. Application into Android

The ExCore’s efficient sensor operating instruction should be modified and extended by the

involvement of various developers. In order to satisfy such a requirement, we implemented the

ExCore as a web service. Figure 13 is the architecture of the ExCore, and Figure 14 is the execution

screen of the ExCore.

Figure 13. The architecture of the ExCore.

Since the ExCore makes different inferences according to individual situations, each fact should

be managed as a personal knowledge base. However, because the efficient sensor operating rule is

generated through cooperation among various developers, they should be managed as a shred

database. The developers are separated by id and submit their own context behavior model. After

Figure 13. The architecture of the ExCore.

Sustainability 2017, 9, 647 14 of 18

selecting the contexts that constitute the exclusive contexts with the input model, the ExCore

identifies an unnecessary sensing operation and the developer receives efficient sensor operating

instructions.

Figure 14. The execution screen of the ExCore.

The expert system is designed to deal with a large number of facts compared with the number

of facts used in this paper. Therefore, if the information about the sensors and their operation in the

automata is accurate, the performance of running the automata against the sensor events would not

be significantly affected.

5.2. Application and Middleware Using Efficient Sensor Operating Instruction

5.2.1. Environment

For evaluating the applicability and the feasibility of our system, we apply the efficient sensor

operation instruction to the mobile application and middleware. The scenario for the evaluation is

the same as the problem definition described in Section 3.1. We use the Nexus 4 for Android and

Lollipop Version 5.1.0. For the measurement of power, we use the Portable Power Measurement and

Analysis tool (PPAM) which was developed in previous work for measuring the power consumption

of a mobile device. Because PPAM is a hardware-based measurement, not a model-based estimation,

a more accurate measurement is possible [22]. We repeatedly measure the power consumption of

each evaluation in our scenario while maintaining the same environment.

Figure 14. The execution screen of the ExCore.

Since the ExCore makes different inferences according to individual situations, each fact should
be managed as a personal knowledge base. However, because the efficient sensor operating rule
is generated through cooperation among various developers, they should be managed as a shred
database. The developers are separated by id and submit their own context behavior model. After
selecting the contexts that constitute the exclusive contexts with the input model, the ExCore identifies
an unnecessary sensing operation and the developer receives efficient sensor operating instructions.

Sustainability 2017, 9, 647 15 of 18

The expert system is designed to deal with a large number of facts compared with the number
of facts used in this paper. Therefore, if the information about the sensors and their operation in the
automata is accurate, the performance of running the automata against the sensor events would not be
significantly affected.

5.2. Application and Middleware Using Efficient Sensor Operating Instruction

5.2.1. Environment

For evaluating the applicability and the feasibility of our system, we apply the efficient sensor
operation instruction to the mobile application and middleware. The scenario for the evaluation is
the same as the problem definition described in Section 3.1. We use the Nexus 4 for Android and
Lollipop Version 5.1.0. For the measurement of power, we use the Portable Power Measurement and
Analysis tool (PPAM) which was developed in previous work for measuring the power consumption
of a mobile device. Because PPAM is a hardware-based measurement, not a model-based estimation,
a more accurate measurement is possible [22]. We repeatedly measure the power consumption of each
evaluation in our scenario while maintaining the same environment.

5.2.2. Application Using Efficient Sensor Operating Instruction

We have applied an efficient sensor operating instruction to the application. We have developed
an application that performs unnecessary sensing operations in exclusive contexts. The application
infers the contexts in our scenario using Wi-Fi, GPS, and the Volume sensor and consumes unnecessary
power in the exclusive contexts. To solve the problem, we have modified the application by referring
to the effective sensor operating instruction generated from the ExCore. The first proposed instruction
is a linear backoff-algorithm that improves power efficiency by increasing the period of sensing when
the unnecessary sensing operation is detected. The second proposed instruction is to use the 3-axis
acceleration sensor to determine the next sensing time for avoiding the unnecessary sensing operation.
Figure 15 shows the power consumption of the applications, and Figure 16 shows cumulative amount
of difference of the power consumption between the default application and the modified applications
using the efficient sensor operating instruction.

Sustainability 2017, 9, 647 15 of 18

5.2.2. Application Using Efficient Sensor Operating Instruction

We have applied an efficient sensor operating instruction to the application. We have developed

an application that performs unnecessary sensing operations in exclusive contexts. The application

infers the contexts in our scenario using Wi-Fi, GPS, and the Volume sensor and consumes

unnecessary power in the exclusive contexts. To solve the problem, we have modified the application

by referring to the effective sensor operating instruction generated from the ExCore. The first

proposed instruction is a linear backoff-algorithm that improves power efficiency by increasing the

period of sensing when the unnecessary sensing operation is detected. The second proposed

instruction is to use the 3-axis acceleration sensor to determine the next sensing time for avoiding the

unnecessary sensing operation. Figure 15 shows the power consumption of the applications, and

Figure 16 shows cumulative amount of difference of the power consumption between the default

application and the modified applications using the efficient sensor operating instruction.

Figure 15. Power consumption of the context-aware application above the test scenario.

Figure 16. Cumulative amount of the difference of the power consumption between the tested

applications.

Figure 15. Power consumption of the context-aware application above the test scenario.

Sustainability 2017, 9, 647 16 of 18

Sustainability 2017, 9, 647 15 of 18

5.2.2. Application Using Efficient Sensor Operating Instruction

We have applied an efficient sensor operating instruction to the application. We have developed

an application that performs unnecessary sensing operations in exclusive contexts. The application

infers the contexts in our scenario using Wi-Fi, GPS, and the Volume sensor and consumes

unnecessary power in the exclusive contexts. To solve the problem, we have modified the application

by referring to the effective sensor operating instruction generated from the ExCore. The first

proposed instruction is a linear backoff-algorithm that improves power efficiency by increasing the

period of sensing when the unnecessary sensing operation is detected. The second proposed

instruction is to use the 3-axis acceleration sensor to determine the next sensing time for avoiding the

unnecessary sensing operation. Figure 15 shows the power consumption of the applications, and

Figure 16 shows cumulative amount of difference of the power consumption between the default

application and the modified applications using the efficient sensor operating instruction.

Figure 15. Power consumption of the context-aware application above the test scenario.

Figure 16. Cumulative amount of the difference of the power consumption between the tested

applications.
Figure 16. Cumulative amount of the difference of the power consumption between the
tested applications.

As shown in Figure 15c, the default application cannot react in two or more exclusive contexts,
and this leads to inefficient power consumption. Conversely, as shown in Figure 15a,b, the application
can manage the sensor for efficient power consumption by increasing the period of sensing or by
determining the next sensing time. In the case of Figure 15b, we adapt the linear backoff-algorithm to
the application (10 s, 20 s, 30 s,..., max = 50 s). The result shows that the power efficiency is improved
by 12% compared to the unmodified application, but the response time to the transition is postponed
because of the increasing period of sensing. In the case of Figure 15a, we utilize the 3-axis sensor to
determine the transition. The result shows that the power efficiency is improved by 29% compared
to the unmodified application evaluated in the above scenario, and the response time is also as fast
as the unmodified application. Figure 16 is a graph showing the cumulative amount of the power
consumption in Figure 15. As shown in Figure 16, by adapting the efficient sensor operating instruction
to the application, the application can save the power consumption continuously while staying in
exclusive contexts.

5.2.3. Middleware Using Efficient Sensor Operating Instruction

It is very useful to adapt the efficient sensor operating instruction to the middleware of the
OS because it allows for efficient sensing operation without modification of the application. In this
evaluation, we have implemented a middleware that operates according to the instruction to cope
with the exclusive contexts by using the 3-axis acceleration sensor introduced in Section 5.2.2. We have
modified the Location Framework of the AOSP (Android Open Source Project) to control the operation
of the Wi-Fi and the GPS sensor. The application used in this evaluation recognizes the exclusive context.
If there is no movement for 1 min in the exclusive context, then it stops operation of the Wi-Fi and GPS
sensor. On the other hand, the modified middleware operating through the instruction immediately
stops operating the Wi-Fi and GPS sensor if movement is not detected by the 3-axis acceleration sensor
in the exclusive contexts. Figure 17 is a graph comparing the power consumption between the default
AOSP and the modified AOSP which reflects the efficient sensor operating instruction.

Although it is highly dependent on the scenario, modifying the middleware can improve the
efficiency of the power consumption by about 62%. Furthermore, when modifying the middleware,
it can apply efficient sensing operation in the exclusive contexts without modifying the individual
application. However, modifying the middleware to control the sensor means that a modification of
the OS is required. Therefore, it has limitations on being able to adapt to a non-commercial OS.

It can be seen that the power consumption is significantly lower when modifying the middleware
compared to the application in Section 5.2.2. However, this is because the default power consumption
of the commercial OS and AOSP is very different.

Sustainability 2017, 9, 647 17 of 18

Sustainability 2017, 9, 647 16 of 18

As shown in Figure 15c, the default application cannot react in two or more exclusive contexts,

and this leads to inefficient power consumption. Conversely, as shown in Figure 15a,b, the

application can manage the sensor for efficient power consumption by increasing the period of

sensing or by determining the next sensing time. In the case of Figure 15b, we adapt the linear backoff-

algorithm to the application (10 s, 20 s, 30 s,..., max = 50 s). The result shows that the power efficiency

is improved by 12% compared to the unmodified application, but the response time to the transition

is postponed because of the increasing period of sensing. In the case of Figure 15a, we utilize the 3-

axis sensor to determine the transition. The result shows that the power efficiency is improved by

29% compared to the unmodified application evaluated in the above scenario, and the response time

is also as fast as the unmodified application. Figure 16 is a graph showing the cumulative amount of

the power consumption in Figure 15. As shown in Figure 16, by adapting the efficient sensor

operating instruction to the application, the application can save the power consumption

continuously while staying in exclusive contexts.

5.2.3. Middleware Using Efficient Sensor Operating Instruction

It is very useful to adapt the efficient sensor operating instruction to the middleware of the OS

because it allows for efficient sensing operation without modification of the application. In this

evaluation, we have implemented a middleware that operates according to the instruction to cope

with the exclusive contexts by using the 3-axis acceleration sensor introduced in Section 5.2.2. We

have modified the Location Framework of the AOSP (Android Open Source Project) to control the

operation of the Wi-Fi and the GPS sensor. The application used in this evaluation recognizes the

exclusive context. If there is no movement for 1 min in the exclusive context, then it stops operation

of the Wi-Fi and GPS sensor. On the other hand, the modified middleware operating through the

instruction immediately stops operating the Wi-Fi and GPS sensor if movement is not detected by

the 3-axis acceleration sensor in the exclusive contexts. Figure 17 is a graph comparing the power

consumption between the default AOSP and the modified AOSP which reflects the efficient sensor

operating instruction.

Although it is highly dependent on the scenario, modifying the middleware can improve the

efficiency of the power consumption by about 62%. Furthermore, when modifying the middleware,

it can apply efficient sensing operation in the exclusive contexts without modifying the individual

application. However, modifying the middleware to control the sensor means that a modification of

the OS is required. Therefore, it has limitations on being able to adapt to a non-commercial OS.

It can be seen that the power consumption is significantly lower when modifying the

middleware compared to the application in Section 5.2.2. However, this is because the default power

consumption of the commercial OS and AOSP is very different.

Figure 17. Comparison of the power consumption without and with modification of the middleware.

Figure 17. Comparison of the power consumption without and with modification of the middleware.

6. Conclusions

In this study, ExCore (Exclusive Contexts Resolver), which is a low-power sensing management
system, was proposed to decrease inefficient power consumption in exclusive contexts. ExCore takes
the sensor behavior model of the user and adds it as a fact to the expert system. This is followed
by the identification of a sensing operation that infers the exclusive contexts through an efficiency
search rule and presents a low-power sensing operation. The system was evaluated by examining
the application and middleware with a low-power sensing operation that was proposed through
the system. The results indicate an increase in the average power efficiency that corresponds to
12%–62% depending on the test scenario. However, if an application or middleware cannot control the
sensor according to the instruction, power saving is impossible. Therefore, a future study will involve
implementing a study to determine the exclusive contexts without user intervention and a middleware
that is capable of accommodating a variety of low-power sensing operations.

Acknowledgments: This research was supported by the MSIP (Ministry of Science, ICT & Future Planning), Korea,
under the ITRC (Information Technology Research Center) support program (IITP-2016-H8501-16-1006) supervised
by the IITP (Institute for Information & communications Technology Promotion) and was also supported by the
National Research Foundation of Korea (NRF) grant funded by the MSIP (NRF-2016R1A2B1014376).

Author Contributions: All authors contributed to the design of the proposed system and the writing of the paper.
Jung-Won Lee contributed to the data modeling and the rule description. Dusan baek implemented the system
and performed the experiment evaluation.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Albayram, Y.; Khan, M.M.H.; Bamis, A.; Kentros, S.; Nguyen, N.; Jiang, R. Designing challenge questions for
location-based authentication systems: A real-life study. Hum.-Centric Comput. Inf. Sci. 2015, 5, 17. [CrossRef]

2. Vanus, J.; Smolon, M.; Martinek, R.; Koziorek, J.; Zidek, J.; Bilik, P. Testing of the voice communication in
smart home care. Hum.-Centric Comput. Inf. Sci. 2015, 5, 15. [CrossRef]

3. Paek, J.; Kim, J.; Govindan, R. Energy-efficient rate-adaptive GPS-based positioning for smartphones.
In Proceedings of the 8th International Conference on Mobile Systems, Applications, and Services,
San Francisco, CA, USA, 15–18 June 2010; pp. 299–314.

4. Saravanan, V.; Pralhaddas, K.D.; Kothari, D.P.; Woungang, I. An optimizing pipeline stall reduction algorithm
for power and performance on multi-core CPUs. Hum.-Centric Comput. Inf. Sci. 2015, 5, 2. [CrossRef]

5. Pathak, A.; Hu, Y.C.; Zhang, M. Bootstrapping energy debugging on smartphones: A first look at energy
bugs in mobile devices. In Proceedings of the 10th ACM Workshop on Hot Topics in Networks, Cambridge,
MA, USA, 14–15 November 2011; p. 5.

http://dx.doi.org/10.1186/s13673-015-0032-3
http://dx.doi.org/10.1186/s13673-015-0035-0
http://dx.doi.org/10.1186/s13673-014-0016-8

Sustainability 2017, 9, 647 18 of 18

6. Liu, Y.; Xu, C.; Cheung, S. Where has my battery gone? Finding sensor related energy black holes in
smartphone applications. In Proceedings of the 2013 IEEE International Conference on Pervasive Computing
and Communications (PerCom), San Diego, CA, USA, 18–22 March 2013; pp. 2–10.

7. Mei, H.; Lü, J. GreenDroid: Automated diagnosis of energy inefficiency for smartphone applications.
In Internetware; Springer: Singapore, 2016; pp. 389–438.

8. Zhang, L.; Gordon, M.S.; Dick, R.P.; Mao, Z.M.; Dinda, P.; Yang, L. Adel: An automatic detector of energy
leaks for smartphone applications. In Proceedings of the Eighth IEEE/ACM/IFIP International Conference
on Hardware/Software Codesign and System Synthesis, Scottsdale, AZ, USA, 28 October 2010; pp. 363–372.

9. Wang, Y.; Lin, J.; Annavaram, M.; Jacobson, Q.A.; Hong, J.; Krishnamachari, B.; Sadeh, N. A framework of
energy efficient mobile sensing for automatic user state recognition. In Proceedings of the 7th International
Conference on Mobile Systems, Applications, and Services, Wroclaw, Poland, 22–25 June 2009; pp. 179–192.

10. Nath, S. ACE: Exploiting correlation for energy-efficient and continuous context sensing. In Proceedings
of the 10th International Conference on Mobile Systems, Applications, and Services, Ambleside, UK,
25–29 June 2012; pp. 29–42.

11. Perera, C.; Zaslavsky, A.; Christen, P.; Georgakopoulos, D. Context aware computing for the internet of
things: A survey. IEEE Commun. Surv. Tutor. 2014, 16, 414–454. [CrossRef]

12. Strang, T.; Linnhoff-Popien, C. A context modeling survey. In Proceedings of the First International
Workshop on Advanced Context Modelling, Reasoning and Management at UbiComp 2004, Nottingham,
UK, 7 September 2004.

13. Bellavista, P.; Corradi, A.; Fanelli, M.; Foschini, L. A survey of context data distribution for mobile ubiquitous
systems. ACM Comput. Surv. (CSUR) 2012, 44, 24. [CrossRef]

14. ARM big. LITTLE Technology. Available online: https://www.arm.com/products/processors/technologies/
biglittleprocessing.php (accessed on 26 January 2017).

15. Shen, H.; Balasubramanian, A.; LaMarca, A.; Wetherall, D. Enhancing mobile apps to use sensor hubs
without programmer effort. In Proceedings of the 2015 ACM International Joint Conference on Pervasive
and Ubiquitous Computing, Osaka, Japan, 7–11 September 2015; pp. 227–238.

16. Android Developers. Available online: http://developer.android.com/reference/ (accessed on
26 January 2017).

17. Pathak, A.; Hu, Y.C.; Zhang, M. Where is the energy spent inside my app?: Fine grained energy accounting
on smartphones with eprof. In Proceedings of the 7th ACM European Conference on Computer Systems,
Bern, Switzerland, 10–13 April 2012; pp. 29–42.

18. Hao, S.; Li, D.; Halfond, W.G.; Govindan, R. Estimating mobile application energy consumption using
program analysis. In Proceedings of the 2013 35th International Conference on Software Engineering (ICSE),
San Francisco, CA, USA, 18–26 May 2013; pp. 92–101.

19. Lee, S.; Jung, W.; Chon, Y.; Cha, H. EnTrack: A system facility for analyzing energy consumption of Android
system services. In Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous
Computing, Osaka, Japan, 7–11 September 2015; pp. 191–202.

20. Nikzad, N.; Chipara, O.; Griswold, W.G. APE: An annotation language and middleware for energy-efficient
mobile application development. In Proceedings of the 36th International Conference on Software
Engineering, Hyderabad, India, 31 May–7 June 2014; pp. 515–526.

21. Baek, D.; Park, J.; Lee, B.; Lee, J. A Low-Power Sensing Management Method for Sustainable
Context-Awareness in Exclusive Contexts. In Proceedings of the International Conference on Computer
Science and its Applications, Bangkok, Thailand, 19–21 December 2015; Springer: Singapore, 2016;
pp. 950–956.

22. Choi, K.-Y.; Lee, J.-W. Portable power measurement system for mobile devices. J. KIISE Comput. Pract. Lett.
2014, 3, 131–142.

© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/SURV.2013.042313.00197
http://dx.doi.org/10.1145/2333112.2333119
https://www.arm.com/products/processors/technologies/biglittleprocessing.php
https://www.arm.com/products/processors/technologies/biglittleprocessing.php
http://developer.android.com/reference/
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	Models for Sustainable Context-Awareness
	Low-Power Methods for Sustainable Context-Awareness

	Exclusive Contexts
	Problem Definition
	Efficient Sensing in Exclusive Contexts

	ExCore: Exclusive Contexts Resolver
	ExCore Overview (System Overview)
	Automata Translator
	Expert System

	Context-Sensing Model
	Low-Power Sensing

	Application and Evaluation
	Application into Android
	Application and Middleware Using Efficient Sensor Operating Instruction
	Environment
	Application Using Efficient Sensor Operating Instruction
	Middleware Using Efficient Sensor Operating Instruction

	Conclusions

