Estimating Residents’ Preferences of the Land Use Program Surrounding Forest Park, Taiwan
Abstract
:1. Introduction
2. The Research Framework of the Land Use Programs
2.1. Introduction to DFP and the Community Population
2.2. Choice of Experiment Design for the Land Use Preference
2.2.1. Agricultural Farming Type
2.2.2. Biodiversity
2.2.3. Water Provision
2.2.4. Land Use Type
2.2.5. Ecotourism Mode
2.2.6. Willingness to Pay
2.2.7. Willingness to Work
2.3. The Choice Experiment for the Questionnaire Design
2.4. Sample Design and Data
2.5. Theory of Preference Function and the Marginal Effect on Land Use Preference
2.5.1. Models
2.5.2. Welfare Measures for the Marginal Effects
2.5.3. Hypothetical Land-Use Management Scenarios
- Scenario I—Natural conservation: The wetland area increases in size and a restoration effort is carried out by the surface water. Surface water and biodiversity increase. Land-use is devoted to ethnobotany and wetland areas. As for the agricultural farming type and ecotourism mode, we maintain the status quo.
- Scenario II—Environmental-friendly agriculture: The organic farming area and surface water provision increase. The organic farming area, biodiversity, surface water, and ethnobotany area increase. The ecotourism mode retains the status quo.
- Scenario III—Ecotourism development: The ecotourism package is integrated and the healthy environment area increases. The organic farming area and biodiversity increase, and an ecotourism package is integrated. Land-use is devoted to the ethnobotany area, wetland area, and integrated ecotourism. Water provision retains the status quo.
3. Empirical Results
3.1. Estimating the Land Use Preference Function
3.2. Welfare Analysis
3.3. Heterogeneity Test of the LCM Results
3.4. Welfare Changes for Hypothetical Land Use Management Scenarios
4. Discussion
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Blondel, J. The ‘design’ of Mediterranean landscapes: A millennial story of humans and ecological systems during the historic period. Hum. Ecol. 2006, 34, 713–729. [Google Scholar] [CrossRef]
- Díaz, S.; Fargione, J.; Chapin, F.S., III; Tilman, D. Biodiversity loss threatens human well-being. PLoS Biol. 2006, 4, 1300–1305. [Google Scholar] [CrossRef] [PubMed]
- The Economics of Ecosystems and Biodiversity (TEEB). TEEB for National and International Policy Makers; Earthscan: London, UK; Washington, DC, USA, 2010. [Google Scholar]
- Harrison, P.A. Ecosystem services and biodiversity conservation: An introduction to the RUBICODE project. Biodivers. Conserv. 2010, 19, 2767–2772. [Google Scholar] [CrossRef]
- Mira, I. Milieurapport Vlaanderen; Vlaamse Milieumaatschappij: Aalst, Belgium, 2010. [Google Scholar]
- Liekens, I.; Schaafsma, M.; De Nocker, L.; Broekx, S.; Staes, J.; Aertsens, J.; Brouwer, R. Developing a value function for nature development and land use policy in Flanders, Belgium. Land Use Policy 2013, 30, 549–559. [Google Scholar] [CrossRef]
- Johnston, R.J.; Swallow, S.K.; Bauer, D.M. Spatial factors and stated preference values for public goods: Considerations for rural land use. Land Econ. 2002, 78, 481–500. [Google Scholar] [CrossRef]
- Arriaza, M.; Cañas-Ortega, J.F.; Cañas-Madueño, J.A.; Ruiz-Aviles, P. Assessing the visual quality of rural landscapes. Landsc. Urban Plan. 2004, 69, 115–125. [Google Scholar] [CrossRef]
- Sevenant, M.; Antrop, M. Cognitive attributes and aesthetic preferences in assessment and differentiation of landscapes. J. Environ. Manag. 2009, 90, 2889–2899. [Google Scholar] [CrossRef] [PubMed]
- Shoyama, K.; Managi, S.; Yamagata, Y. Public preferences for biodiversity conservation and climate-change mitigation: A choice experiment using ecosystem services indicators. Land Use Policy 2013, 34, 282–293. [Google Scholar] [CrossRef]
- Mallawaarachchi, R.; Morrison, M.D.; Blamey, R.K. Choice modelling to determine the significance of environmental amenity and production alternatives in the community value of peri-urban land: Sunshine Coast, Australia. Land Use Policy 2006, 23, 323–332. [Google Scholar] [CrossRef]
- Broch, S.W.; Strange, N.; Jacobsen, J.B.; Wilson, K.A. Farmers’ willingness to provide ecosystem services and effects of their spatial distribution. Ecol. Econ. 2013, 92, 78–86. [Google Scholar] [CrossRef]
- García-Llorente, M.; Martín-López, B.; Nunes, P.A.L.D.; Castro, A.J.; Montes, C. A choice experiment study for land-use scenarios in semi-arid watershed environments. J. Arid Environ. 2012, 87, 219–230. [Google Scholar] [CrossRef]
- Lienhoop, N.; Brouwer, R. Agri-environmental policy valuation: Farmers’ contract design preferences for afforestation schemes. Land Use Policy 2015, 42, 568–577. [Google Scholar] [CrossRef]
- Garrod, G.; Ruto, E.; Willis, K.; Powe, N. Heterogeneity of preferences for the benefits of Environmental Stewardship: A latent-class approach. Ecol. Econ. 2012, 76, 104–111. [Google Scholar] [CrossRef]
- Cerda, C.; Ponce, A.; Zappi, M. Using choice experiments to understand public demand for the conservation of nature: A case study in a protected area of Chile. J. Nat. Conserv. 2013, 21, 143–153. [Google Scholar] [CrossRef]
- Tai, H.-S. Cross-Scale and Cross-Level Dynamics: Governance and Capacity for Resilience in a Social-Ecological System in Taiwan. Sustainability 2015, 7, 2045–2065. [Google Scholar] [CrossRef]
- Wu, C.-H.; Lo, Y.-H.; Blanco, J.; Chang, S.-C. Resilience Assessment of Lowland Plantations Using an Ecosystem Modeling Approach. Sustainability 2015, 7, 3801–3822. [Google Scholar] [CrossRef]
- Lee, C.-H. Tourist’s Preference toward Community Ecotourism in Forest PARKA Case of Taiwan. In Proceedings of the 12th WEAI International Conferences, Singapore, 7–10 January 2016. [Google Scholar]
- Chang, T.-Y.; Tsai, B.-W. Indigenous Traditional Territory: Research Report; Council of Indigenous People, Executive Yuan: Taipei, Taiwan, 2003.
- Hwaung, Y.-H. Hometown of Others: On Displacement and Autonomy Movement of Karowa Indigenous People from the Perspective of Space Hegemony; National Dong Hwa University: Hualien, Taiwan, 2003. [Google Scholar]
- Messier, C.; Puettmann, K.J.; Coates, K.D. Managing Forests as Complex Adaptive Systems: Building Resilience to the Challenge of Global Change; Routledge: Oxon, UK, 2013. [Google Scholar]
- Hanley, N.; Mourato, S.; Wright, R.E. Choice Modelling Approaches: A Superior Alternative for Environmental Valuatioin? J. Econ. Surv. 2001, 15, 435–462. [Google Scholar] [CrossRef]
- Chen, Y.-H. Environmentally Friendly Direct Payment Policies in Taiwan and Germany; Council of Agriculture, Executive Yuan: Taipei, Taiwan, 2012.
- Christensen, T.; Pedersen, A.B.; Nielsen, H.O.; Mørkbak, M.R.; Hasler, B.; Denver, S. Determinants of farmers’ willingness to participate in subsidy schemes for pesticide-free buffer zones—A choice experiment study. Ecol. Econ. 2011, 70, 1558–1564. [Google Scholar] [CrossRef]
- Westerberg, V.H.; Lifran, R.; Olsen, S.B. To restore or not? A valuation of social and ecological functions of the Marais des Baux wetland in Southern France. Ecol. Econ. 2010, 69, 2383–2393. [Google Scholar] [CrossRef]
- Guimarães, M.H.; Madureira, L.; Nunes, L.C.; Santos, J.L.; Sousa, C.; Boski, T.; Dentinho, T. Using Choice Modeling to estimate the effects of environmental improvements on local development: When the purpose modifies the tool. Ecol. Econ. 2014, 108, 79–90. [Google Scholar] [CrossRef]
- Gibson, J.M.; Rigby, D.; Polya, D.A.; Russell, N. Discrete Choice Experiments in Developing Countries: Willingness to Pay Versus Willingness to Work. Environ. Resour. Econ. 2016, 65, 697–721. [Google Scholar] [CrossRef]
- Fan, S.; Brzeska, J. Sustainable food security and nutrition: Demystifying conventional beliefs. Glob. Food Secur. 2016, 11, 11–16. [Google Scholar] [CrossRef]
- Šrůtek, M.; Urban, J. Organic Farming A2—Jørgensen, Sven Erik. In Encyclopedia of Ecology; Fath, B.D., Ed.; Academic Press: Oxford, UK, 2008; pp. 2582–2587. [Google Scholar]
- Lefebvre, M.; Langrell, S.R.H.; Gomez-y-Paloma, S. Incentives and policies for integrated pest management in Europe: A review. Agron. Sustain. Dev. 2015, 35, 27–45. [Google Scholar] [CrossRef]
- Juutinen, A.; Mitani, Y.; Mäntymaa, E.; Shoji, Y.; Siikamäki, P.; Svento, R. Combining ecological and recreational aspects in national park management: A choice experiment application. Ecol. Econ. 2011, 70, 1231–1239. [Google Scholar] [CrossRef]
- Birol, E.; Karousakis, K.; Koundouri, P. Using a choice experiment to account for preference heterogeneity in wetland attributes: The case of Cheimaditida wetland in Greece. Ecol. Econ. 2006, 60, 145–156. [Google Scholar] [CrossRef]
- Spalding, R. Water Management in the High Alpujarra, Granada Province, Andalucía, Spain: Prospects for Sustainability. In II Anglo Spanish Symposium on Rural Geography; University of Valladolid: Valladolid, Spain, 2000. [Google Scholar]
- Hearne, R.R.; Santos, C.A. Tourists’ and Locals’ Preferences Toward Ecotourism Development in the Maya Biosphere Reserve, Guatemala. Environ. Dev. Sustain. 2005, 7, 303–318. [Google Scholar] [CrossRef]
- Rai, R.K.; Scarborough, H. Nonmarket valuation in developing countries: Incorporating labour contributions in environmental benefits estimates. Aust. J. Agric. Resour. Econ. 2015, 59, 479–498. [Google Scholar] [CrossRef]
- Louviere, J.J.; Hensher, D.A.; Swait, J.D. Stated Choice Methods: Analysis and Application; Cambridge University Press: Cambridge, UK, 2000. [Google Scholar]
- Lee, C.-H. Evaluation of Forest Ecosystem Functions and Eco-Compensation Mechanism; Ministry of Science and Technology: Hualien, Taiwan, 2014.
- Bergstrom, J.C.; Dillman, B.L.; Stoll, J.R. Public environmental amenity benefits of private land: The case of prime agricultural land. Southern Journal of Agricultural. South. J. Agr. Econ. 1985, 17, 139–149. [Google Scholar]
- Willis, K.G.; Garrod, G.D. Valuing landscape: A contingent valuation approach. J. Environ. Manag. 1993, 37, 1–22. [Google Scholar] [CrossRef]
- Maxwell, S. Valuation of rural environmental improvements using contingent valuation methodology: A case study of the Marston Vale Community Forest project. J. Environ. Manag. 1994, 41, 385–399. [Google Scholar] [CrossRef]
- Breffle, W.S.; Morey, E.R.; Lodder, T.S. Using contingent valuation to estimate a neighbourhood’s willingness to pay to preserve undeveloped urban land. Urban Stud. 1998, 35, 715–727. [Google Scholar] [CrossRef]
- Birol, E.; Koundouri, P. Choice Experiments Informing Environmental Policy: A European Perspective; Edward Elgar: Cheltenham, UK, 2008. [Google Scholar]
- Garrod, K.G.; Willis, G. Economic Valuation of the Environment. Methods andCase Studies; Edward Elgar: Cheltenham, UK, 1999. [Google Scholar]
- Dachary-Bernard, J.; Rambonilaza, T. Choice experiment, multiple programmes contingent valuation and landscape preferences: How can we support the land use decision making process? Land Use Policy 2012, 29, 846–854. [Google Scholar] [CrossRef]
- Train, K. Discrete Choice Methods with Simulation, 2nd ed.; Cambridge University Press: London, UK, 2009. [Google Scholar]
- McFadden, D. Conditional logit analysis of qualitative choice behaviour. In Frontiers in Econometrics; Zarembka, P., Ed.; Academic Press: New York, NY, USA, 1974; pp. 105–142. [Google Scholar]
- Lancaster, K. A new approach to consumer theory. J. Political Econ. 1966, 74, 132–157. [Google Scholar] [CrossRef]
- Markandya, A.; Perelet, R.; Mason, P.; Taylor, T. Dictionary of Environmental Economics; Earthscan Publications Ltd.: London, UK, 2001. [Google Scholar]
- Bateman, I.J.; Carson, R.T.; Day, B.; Hanemann, M.; Hanley, N.; Hett, T.; Jones-Lee, M.; Loomes, G.; Mourato, S.; Özdemiroglu, E.; et al. Economic Valuation with Stated Preference Techniques: A Manual; Edward Elgar Publishing Ltd.: Northampton, MA, USA, 2002. [Google Scholar]
- Hausman, J.; Wise, D. A Conditional Probit Model for Qualitative Choice: Discrete Decisions Recognizing Interdependence and Heterogeneous Preferences. Econometrica 1978, 46, 403–426. [Google Scholar] [CrossRef]
- Hensher, D.; Rose, J.M.; Greene, W.H. Applied Choice Analysis. A Primer; Cambridge University Press: Cambridge, UK, 2005. [Google Scholar]
- Mulatu, D.W.; van der Veen, A.; van Oel, P.R. Farm households’ preferences for collective and individual actions to improve water-related ecosystem services: The Lake Naivasha basin, Kenya. Ecosyst. Serv. 2014, 7, 22–33. [Google Scholar] [CrossRef]
- Cranford, M.; Mourato, S. Community conservation and a two-stage approach to payments for ecosystem services. Ecol. Econ. 2011, 71, 89–98. [Google Scholar] [CrossRef]
- Lizin, S.; Van Passel, S.; Schreurs, E. Farmers’ perceived cost of land use restrictions: A simulated purchasing decision using discrete choice experiments. Land Use Policy 2015, 46, 115–124. [Google Scholar] [CrossRef]
- Lindberg, K.; Veisten, K. Local and non-local preferences for nature tourism facility development. Tour. Manag. Perspect. 2012, 4, 215–222. [Google Scholar] [CrossRef]
Attributes | Levels | Variable Name * | |
---|---|---|---|
Agricultural Farming Type | a. Status quo (conventional farming) | FA± | |
b. Increase organic farming area | FA+ | ||
Biodiversity | a. Status quo (244 nationwide plant, animal, fish, and insect species) | BI± | |
b. Increase in populations of species | BI+ | ||
Water Provision | a. Status quo (tap water or groundwater abstraction) | WA± | |
b. Increase surface water provision | WA+ | ||
Land Use Type | a. Status quo (artificial and mixed forest) | LU± | |
b. Increase natural forestry area | LU1 | ||
c. Increase ethnobotany area | LU2 | ||
d. Increase wetland area | LU3 | ||
Ecotourism Mode | a. Status quo (individual tourism) | EC± | |
b. Integrated framework for the ecotourism | EC+ | ||
Welfare foundation | (A) Willingness to Pay | a. Status quo (no payment) | FUND |
b. $500 NTD/year/person | |||
c. $1000 NTD/year/person | |||
d. $1500 NTD/year/person | |||
e. $2000 NTD/year/person | |||
(B) Willingness to work | a. Status quo (no contribution) | TIME | |
b. 6 h/month/person | |||
c. 12 h/month/person | |||
d. 18 h/month/person | |||
e. 24 h/month/person |
Attributes and Levels | WTP | WTW | ||
---|---|---|---|---|
Coefficient | t Value | Coefficient | t Value | |
ASC | 0.674 | 4.27 *** | 0.407 | 2.67 *** |
FA+ | 0.268 | 3.22 *** | 0.155 | 1.87 * |
BI+ | −0.09 | −0.76 | −0.103 | −0.87 |
WA+ | 0.363 | 4.66 *** | 0.45 | 5.8 *** |
LU1 | −0.052 | −0.42 | 0.063 | 0.52 |
LU2 | 0.252 | 2.29 ** | 0.133 | 1.23 |
LU3 | 0.408 | 2.65 *** | 0.38 | 2.52 *** |
EC+ | 0.194 | 3.63 *** | 0.225 | 4.25 *** |
FUND | −0.00079 | −6.18 *** | - | - |
TIME | - | - | −0.07473 | −7.10 *** |
Log-likelihood | −1895.60 | −1928.60 |
Attributes and Levels | Farmer (n = 146) | Non-Farmer (n = 510) | ||||||
---|---|---|---|---|---|---|---|---|
WTP | WTW | WTP | WTW | |||||
Coefficient | t Value | Coefficient | t Value | Coefficient | t Value | Coefficient | t Value | |
ASC | −0.585 | −1.81 * | −1.139 | −3.59 *** | 1.07 | 5.79 *** | 0.843 | 4.71 *** |
FA+ | −0.089 | −0.48 | −0.176 | −0.92 | 0.379 | 4.03 *** | 0.255 | 2.73 *** |
BI+ | 0.472 | 1.77 * | 0.675 | 2.48 ** | −0.253 | −1.88 * | −0.299 | −2.24 ** |
WA+ | 0.581 | 3.37 *** | 0.825 | 4.62 *** | 0.304 | 3.46 *** | 0.366 | 4.19 *** |
LU1 | 0.047 | 0.17 | 0.282 | 0.99 | −0.077 | −0.55 | 0.022 | 0.16 |
LU2 | −0.111 | −0.44 | −0.449 | −1.78 * | 0.348 | 2.81 *** | 0.276 | 2.24 ** |
LU3 | −0.193 | −0.61 | −0.343 | −1.05 | 0.597 | 3.34 *** | 0.575 | 3.29 *** |
EC+ | 0.215 | 1.82 * | 0.427 | 3.66 *** | 0.203 | 3.33 *** | 0.202 | 3.34 *** |
FUND | −0.002 | −6.37 *** | - | - | −0.00049 | −3.39 *** | - | - |
TIME | - | - | −0.19 | −7.5 *** | - | - | −0.046 | −3.9 *** |
Log-likelihood | −409.5 | −401.2 | −1467.50 | −1491.80 |
Attributes and Levels | All Respondents (n = 656) | Farmer (n = 146) | Non-Farmer (n = 510) | |||
---|---|---|---|---|---|---|
MWTP (FUND) | MWTW (TIME) | MWTP (FUND) | MWTW (TIME) | MWTP (FUND) | MWTW (TIME) | |
FA+ | 339.2 | 2.07 | - | - | 773.5 | 5.54 |
BI+ | - | - | 236 | 3.55 | −516.3 | −6.5 |
WA+ | 459.5 | 6.02 | 290.5 | 4.34 | 620.4 | 7.96 |
LU2 | 319 | - | - | −2.36 | 710.2 | 6 |
LU3 | 516.5 | 5.08 | - | - | 1218.40 | 12.5 |
EC+ | 245.6 | 3.01 | 107.5 | 2.25 | 414.3 | 4.4 |
Total value | 1879.80 | 16.18 | 634 | 7.78 | 3220.50 | 29.9 |
Attributes and Levels | Class 1 | Class 2 | ||||
---|---|---|---|---|---|---|
Coefficient | t Value | MWTP | Coefficient | t Value | MWTP | |
Class 1 | ||||||
ASC | −0.44904 | −1.29 | - | 17.46 | 0.001 | - |
FA+ | 0.3147 | 1.83 * | 229.7 | −12.65 | −0.001 | - |
BI+ | 0.15644 | 0.57 | - | 21.54 | 0.001 | - |
WA+ | 0.55119 | 3.23 *** | 402.3 | 17.55 | −0.001 | - |
LU1 | −0.02796 | −0.09 | - | 3.13 | 0.001 | - |
LU2 | 0.41324 | 1.68 * | 301.6 | −15.65 | −0.001 | - |
LU3 | −0.23473 | −0.64 | - | −1.72 | −0.001 | - |
EC+ | 0.48088 | 4.01 *** | 351 | 1.22 | 0.001 | - |
FUND | −0.00137 | −5.02 *** | - | −0.02 | −0.06 | - |
Probability | 0.673 | 0.327 | ||||
Class membership parameters: Class 1 | ||||||
Constant | 0.047 | 0.13 | ||||
Monthly income more than $20,000 NTD | 1.085 | 4.13 *** | ||||
Lived at location more than 50 years | −0.231 | −1.39 | ||||
Joined the community group | 0.549 | 2.55 ** | ||||
Land owner | 0.993 | 4.98 *** | ||||
Farmer | −0.329 | −1.42 | ||||
Log-likelihood ratio | 648.8 *** | |||||
Chi Square | χ20.01(24) = 43.0 |
Attributes and Levels | Hypothetical Future Scenarios | ||
---|---|---|---|
Scenario I: Natural Conservation | Scenario II: Environmental-Friendly Agriculture | Scenario III: Ecotourism Development | |
Agricultural Farming Type | Stay the present | Increase organic farming area | Increase organic farming area |
Biodiversity | Increase | Increase | Increase |
Water Provision | Increase surface water | Increase surface water | Stay the present |
Land Use Type | Increase ethnobotany area | Increase ethnobotany area | Increase ethnobotany area |
Increase wetland area | Increase wetland area | ||
Ecotourism Mode | Maintain status quo | Maintain status quo | Integrated ecotourism package |
MWTP (FUND) | 1293.90 | 1116.40 | 1419.30 |
MWTW (TIME) | 11.11 | 8.1 | 10.18 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, C.-H.; Wang, C.-H. Estimating Residents’ Preferences of the Land Use Program Surrounding Forest Park, Taiwan. Sustainability 2017, 9, 598. https://doi.org/10.3390/su9040598
Lee C-H, Wang C-H. Estimating Residents’ Preferences of the Land Use Program Surrounding Forest Park, Taiwan. Sustainability. 2017; 9(4):598. https://doi.org/10.3390/su9040598
Chicago/Turabian StyleLee, Chun-Hung, and Chiung-Hsin Wang. 2017. "Estimating Residents’ Preferences of the Land Use Program Surrounding Forest Park, Taiwan" Sustainability 9, no. 4: 598. https://doi.org/10.3390/su9040598