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Abstract: This paper aims to explore the change of CO2 intensity in China at both national and
provincial levels. To serve this purpose, we introduce a decomposition model which integrates the
merits of index decomposition analysis and production-theoretical decomposition analysis. Based on
the decomposition, we also estimate the potential reduction of CO2 intensity for China and its
provinces. Using a panel data set including China’s 30 provinces during the period of 2006–2012,
the empirical analysis is conducted and meaningful results are obtained. First, the potential energy
intensity change was the dominant driving factor for the decrease of CO2 intensity, which contributed
to a total reduction of 19.8%. Second, the energy efficiency change and the CO2 emission factor change
also play positive roles in the CO2 intensity reduction for most provinces. Third, provinces in the
western area generally showed a relatively large potential reduction in CO2 intensity, while those in
the eastern area only demonstrated a small reduction.

Keywords: index decomposition analysis; production-theoretical decomposition analysis; China;
carbon intensity

1. Introduction

Global warming has increasingly attracted attention worldwide and has become a serious
challenge for human society. As the major component of greenhouse gas, the increase in CO2 emissions
is of particular concern. According to the International Energy Agency (IEA), the global CO2 emissions
reached 31.7 Gt CO2 in 2012, and China is the largest contributor, accounting for 26% of the world’s
total emissions. Consequently, global CO2 emission mitigation requires a commitment from China
to control and reduce emissions from all sources, especially that from fossil fuels. If this does not
occur, global CO2 emissions are expected to increase at an even faster rate, due to the contribution
of China. Therefore, understanding the features of China’s CO2 emissions is of vital importance.
There is a large body of studies analyzing the factors which are influencing China’s CO2 emission.
See, for example [1–6].

Unlike developed countries, China creates its emissions reduction target using CO2 intensity
(defined as CO2 emissions per GDP) as an important indicator. For instance, in 2009, China made
a commitment to reduce its CO2 intensity by 40%–45% from 2005 to 2020. In the “Twelfth Five-Year
Plan” (2011–2015), the CO2 intensity is scheduled to be reduced by 17%, compared to the 2010 level.
An increasing number of studies are placing an emphasis on investigating the driving force of change
in China’s CO2 intensity. Representative studies include [7–11].
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China is a large country with enormous provincial variations in resource endowments and
economic development. Accordingly, there are also large provincial diversities in the change of
CO2 intensity. Therefore, China’s emissions reduction targets are usually decomposed at a regional
level and assigned to each of its provinces. Thus, a lack of accountability for reduction efforts at the
provincial level may lead to a poor implementation of national policy [12]. As a result, tracking the
change in China’s CO2 intensity at both a national and provincial level is particularly important for
policy makers. However, as far as we know, very few studies have paid attention to the variations of
CO2 intensity change across China’s provinces. For example, Zhang et al. [13] employed the LMDI
method to explore the driving factors of carbon intensity in China’s 29 Chinese provinces, from 1995 to
2012. Furthermore, Xu et al. [14] analyzed the regional contributions to the national carbon intensity
in China in different Five-Year Plan periods. The purpose of this paper is to explore the driving
forces of China’s CO2 intensity change at the provincial level, as well as at the national level, using
a newly developed decomposition method. Specifically, we decompose the carbon intensity change
into six predefined components for each province, respectively. For the purpose of empirical study,
we analyze the carbon intensity change for China’s 30 provinces between 2006 and 2012. This can help
us gain a deeper understanding of the carbon intensity change at China’s provincial level, through
exploring the different driving forces. Similarly, we attribute the change in the carbon intensity of
China as a whole into seven predefined effects. We empirically investigate China’s carbon intensity
change on a year-by-year basis. In summary, for the analysis of the nation, we explore the time-serial
features. However, for the provinces, we focus on the cross-sectional features.

Technically, the driving factors of CO2 intensity change can be analyzed by attributing them to
several pre-defined effects, using decomposition analysis. In this context, index decomposition analysis
(IDA) has become a popular analytical tool. Xu and Ang [15] provided a comprehensive literature
review on applying IDA to CO2 emission studies. Ang [16] compared various IDA methods and
concluded that the Logarithmic Mean Divisia Index (LMDI) method was preferable, as it possesses all
of the three desirable properties: factor-reversal, time-reversal, and zero-value robust [17]. Currently,
the LMDI method is widely used in energy and environmental studies. Despite its strengths, some
fundamental factors, such as technical efficiency change and technological change, which play critical
roles in CO2 intensity change, cannot be taken into account by the existing IDA framework.

Recently, some studies (e.g., [18–22]) have proposed another decomposition framework, based
on the production theory which is termed PDA by [22]. PDA enables us to analyze the impact of
production technology on CO2 intensity change, thereby providing a useful complementary approach
to IDA. However, as pointed out in [23], there are some inconsistencies when applying PDA to
quantify the effects of industrial structure change and energy composition change. Regarding this issue,
some studies advocate the combination of IDA and PDA. For example, Kim and Kim [24] proposed
a decomposition model combining IDA and PDA for investigating industrial CO2 emission trends
(Although Kim and Kim [24] termed the decomposition model as “production-based decomposition”,
it actually uses PDA to quantify the impacts from production theory at the sectorial level, and employs
IDA for summing up these effects at the national level, directly quantifying the effects of industrial
change and energy composition change). Lin and Du [23] developed another approach combining IDA
and PDA to explore the mechanism of energy intensity change.

This paper proposes a modification of Kim and Kim [24], based on the global Malmquist
productivity index, to explore the change in China’s carbon intensity. The introduction of global
benchmark technology avoids the calculation of cross-period distance functions, so that the issue of
infeasibility can be effectively precluded [25,26].

The remainder of this paper is structured as follows. Section 2 describes the methodology in
further detail. Section 3 presents the empirical results and discussion. Section 4 concludes the paper.
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2. Methodology

2.1. Shephard Energy Distance Function

Following [24], this paper establishes the decomposition model based on the Shephard energy
distance function. We consider a production process where energy (E) is used to produce value-added
as the desirable output (Y) and CO2 emissions as the undesirable output (C) (In literature, labor and
capital are also widely modeled as inputs. In this paper, we do not include them for the following
considerations. On the one hand, data on labor and capital in industrial subsectors in provinces in
China are unavailable. On the other hand, we can focus on the link between CO2 emissions and
energy productivity. Note, this is also a common practice in [22,24]). As different industrial sub-sectors
use different types of production technology, we construct a production frontier for each sub-sector,
respectively. The production technology for the industrial sub-sector i = 1, . . . , I at time period
t = 1, . . . , T, can be expressed as:

Tc
i,t = {(Ei,t, Yi,t, Ci,t) : Ei,t can produce(Yi,t, Ci,t)} (1)

The above definition describes the production possibility set for the industrial sub-sector i within
each time period t. Thus, it is regarded as the contemporaneous benchmark technology. Following [25,26],
we further define the global benchmark technology for the industrial sub-sector i as:

Tg
i =

{
Tc

i,1 ∪ Tc
i,2 ∪ . . . ∪ Tc

i,T

}
(2)

According to [22], the Shephard energy distance function, relative to the contemporaneous benchmark
technology and the global benchmark technology, can be described as Equations (3) and (4), respectively.

Dc
i,t(Ei,t, Yi,t, Ci,t) = sup

{
θ : (Ei,t/θ, Yi,t, Ci,t) ∈ Tc

i,t
}

(3)

Dg
i (Ei,t, Yi,t, Ci,t) = sup

{
θ : (Ei,t/θ, Yi,t, Ci,t) ∈ Tg

i

}
(4)

Using a DEA-type linear programming technique, the Shephard energy distance function can be
estimated through the following optimization problems:[

Dc
i,t(Ei,t, Yi,t, Ci,t)

]−1
= minθ

s.t.
N
∑

n=1
λnEn

i,t ≤ θEi,t

N
∑

n=1
λnYn

i,t ≥ Yi,t

N
∑

n=1
λnCn

i,t = Ci,t

λn ≥ 0, n = 1, . . . , N

(5)

[
Dg

i (Ei,t, Yi,t, Ci,t)
]−1

= minθ

s.t.
T
∑

t=1

N
∑

n=1
λn,tEn

i,t ≤ θEi,t

T
∑

t=1

N
∑

n=1
λn,tYn

i,t ≥ Yi,t

T
∑

t=1

N
∑

n=1
λn,tCn

i,t = Ci,t

λn,t≥ 0, n = 1, . . . , N, t = 1, . . . , T

(6)



Sustainability 2017, 9, 296 4 of 14

The global technology establishes a single benchmark for all of the observations in the sample.
The change of Dg

i (Ei,t, Yi,t, Ci,t) provides a measure of the energy productivity change. A global
Malmquist energy productivity index (MEPI) is defined as:

MEPIn
i,(t,τ) =

Dg
i

(
En

i,t, Yn
i,t, Cn

i,t

)
Dg

i

(
En

i,τ , Yn
i,τ , Cn

i,τ

) (7)

It is worth pointing out that, compared with the conventional Malmquist productivity
index (The term “conventional” refers to the Malmquist productivity index that is built on the
contemporaneous benchmark technology. In the context of energy efficiency, Wang et al. [27] and
Wu et al. [28] proposed two different types of Malmquist energy productivity indexes, based on the
contemporaneous benchmark technology), the global Malmquist productivity index is circular and
immune to the infeasibility problem([25,26]).

MEPI can be decomposed as:

MEPIn
i(t,τ) =

Dc
iτ
(
En

iτ , Yn
iτ , Cn

iτ
)
/Dg

i
(
En

iτ , Yn
iτ , Cn

iτ
)

Dc
it
(
En

it, Yn
it , Cn

it
)
/Dg

i
(
En

it, Yn
it , Cn

it
) × 1/Dc

iτ
(
En

iτ , Yn
iτ , Cn

iτ
)

1/Dc
it
(
En

it, Yn
it , Cn

it
)

=
BPGn

i (τ)

BPGn
i (t)

× ECn
i(t,τ)

= BPCn
i(t,τ) × ECn

i(t,τ)

(8)

BPGn
i ≤ 1 is a best practice gap between the global technology (Tg

i ) and the contemporaneous
technology (Tc

i,t), measured along the energy direction. BPCn
i,(t,τ) is the change of BPGn

i . BPCn
i(t,τ) >(<) 1,

indicates that the contemporaneous technology is moving closer to (further away from) the global
benchmark technology. Thus, BPCn

i(t,τ) provides a measure of technological change in terms of

energy use. 1/Dc
it
(
En

it, Yn
it , Cn

it
)

is the ratio of the minimum energy input (under the contemporaneous
technology) to the real energy input, which is usually defined as the energy use efficiency (denoted
as EUE). Thus, ECn

i(t,τ) is the change in energy use efficiency.

2.2. Decomposition Model

The CO2 intensity (denoted as CI) of region n = 1, . . . , N can be expressed as:

CIn
t = ∑

ij

Cn
ij,t

En
ij,t

En
ij,t

En
i,t

En
i,t/Yn

i,t

Dg
i (En

i,t, Yn
i,t, Cn

i,t)

Yn
i,t

Yn
t

Dg
i (En

i,t, Yn
i,t, Cn

i,t)

Dc
i,t(En

i,t, Yn
i,t, Cn

i,t)
Dc

i,t(En
i,t, Yn

i,t, Cn
i,t) (9)

where En
ij,t denotes the consumption of the type-j energy in the sub-sector i of region n at the period

t, and Cn
ij,t represents the CO2 emissions from En

ij,t. The above expression is a modification of [24].
Unlike [24], we introduce the global benchmark technology to establish the relationship between CO2

emissions and energy use technology. Our formulation avoids the introduction of the cross-period
distance functions, thus avoiding the infeasibility issue.

Using the LMDI method, the change in CO2 intensity between time period t and time period τ

can be decomposed as:

CIn
τ /CIn

t = DEMF × DEMX × DPEI × DSTR × DBPC × DEC (10)

where DEMF = exp

{
∑ij

L(CIn
ijτ , CIn

ijt)

L(CIn
τ , CIn

t )
ln

CIn
ijτ/En

ijτ

CIn
ijt/En

ijt

}
;

DEMX = exp

{
∑
ij

L(CIn
ijτ , CIn

ijt)

L(CIn
τ , CIn

t )
ln

En
ijτ/En

iτ

En
ijt/En

it

}
;
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DPEI = exp

{
∑
ij

L(CIn
ijτ , CIn

ijt)

L(CIn
τ , CIn

t )
ln

[En
iτ/Dc

iτ(En
iτ , Yn

iτ , Cn
iτ)]/Yn

iτ
[En

it/Dc
it(En

it, Yn
it , Cn

it)]/Yn
it

}
;

DSTR = exp

{
∑
ij

L(CIn
ijτ , CIn

ijt)

L(CIn
τ , CIn

t )
ln

Yn
iτ/Yn

τ

Yn
it /Yn

t

}
;

DBPC = exp

{
∑ij

L(CIn
ijτ ,CIn

ijt)

L(CIn
τ ,CIn

t )
ln
[

BPGn
iτ

BPGn
it

]−1
}

= exp

{
∑ij

L(CIn
ijτ , CIn

ijt)

L(CIn
τ , CIn

t )
ln
[

BPCn
i(t,τ)

]−1
} ;

DEC = exp

{
∑ij

L(CIn
ijτ , CIn

ijt)

L(CIn
τ , CIn

t )
ln

Dc
iτ(En

iτ , Yn
iτ , Cn

iτ)

Dc
it(En

it, Yn
it , Cn

it)

}

= exp

{
∑ij

L(CIn
ijτ , CIn

ijt)

L(CIn
τ , CIn

t )
ln [ECn

i(t,τ)]
−1

} .

CIn
ij,t = Cn

ij,t/Yn
t ; L(·, ·) is a weighting scheme called the logarithmic mean weight, which is

expressed as follows:

L(x, y) =

{
(x− y)/(ln x− ln y), x 6= y

x, x = y
(11)

Equation (10) shows that a change in CO2 intensity in a region over times, can be decomposed
into six components. The first component DEMF is the CO2 emission factor effect.

The second component DEMX refers to the effect of energy mix change. The third component
DPEI captures the energy intensity change under the scenario without energy inefficiency, relative
to the global technology. Following [22,24], we refer to this component as the potential energy
intensity change. The fourth component DSTR is the industrial structure effect, accounting for the
impact from the output composition change. The fifth component DBPC is the weighting sum of the
reciprocal of BPCn

i,(t,τ). Thus, it describes the impact from technological change on energy use. The last
component DEC is the weighting sum of the reciprocal of ECn

i,(t,τ), thereby indicating the effect of
energy efficiency change.

Analogs to the foregoing derivations, illustrating the change in the overall CO2 intensity of the
whole economy, can be decomposed as:

CIτ/CIt = DEMF × DEMX × DPEI × DSTR × DROS × DBPC × DEC (12)

where DEMF = exp

{
∑nij

L(CIn
ijτ , CIn

ijt)

L(CIτ , CIt)
ln

CIn
ijτ/En

ijτ

CIn
ijt/En

ijt

}
;

DEMX = exp

{
∑
nij

L(CIn
ijτ , CIn

ijt)

L(CIτ , CIt)
ln

En
ijτ/En

iτ

En
ijt/En

it

}
;

DPEI = exp

{
∑
nij

L(CIn
ijτ , CIn

ijt)

L(CIτ , CIt)
ln

[En
iτ/Dc

iτ(En
iτ , Yn

iτ , Cn
iτ)]/Yn

iτ
[En

it/Dc
it(En

it, Yn
it , Cn

it)]/Yn
it

}
;

DSTR = exp

{
∑
nij

L(CIn
ijτ , CIn

ijt)

L(CIn
τ , CIn

t )
ln

Yn
iτ/Yn

τ

Yn
it /Yn

t

}
;

DROS = exp

{
∑
nij

L(CIn
ijτ , CIn

ijt)

L(CIn
τ , CIn

t )
ln

Yn
τ /Yτ

Yn
t /Yt

}
;
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DBPC = exp

{
∑nij

L(CIn
ijτ , CIn

ijt)

L(CIn
τ , CIn

t )
ln
[

BPGn
iτ

BPGn
it

]−1
}

= exp

{
∑nij

L(CIn
ijτ , CIn

ijt)

L(CIn
τ , CIn

t )
ln
[

BPCn
i(t,τ)

]−1
} ;

DEC = exp

{
∑nij

L(CIn
ijτ , CIn

ijt)

L(CIn
τ , CIn

t )
ln

Dc
iτ(En

iτ , Yn
iτ , Cn

iτ)

Dc
it(En

it, Yn
it , Cn

it)

}

= exp

{
∑nij

L(CIn
ijτ , CIn

ijt)

L(CIn
τ , CIn

t )
ln [ECn

i(t,τ)]
−1

} .

CIn
ij,t = Cn

ij,t/Yt; Yt = ∑
n

Yn
t .

In summary, the change in CO2 intensity at the national level can be attributed to seven indexes:
emission factor change, energy mix change, potential energy intensity change, industrial structure
change, regional output structure change, the effect of energy technological change, and the effect
of energy efficiency change. Each index will contribute to the increase (decline) in CO2 intensity,
if its value is greater (less) than unity. The effects driving the carbon intensity change at the national
level (excluding the regional output structure change) are the aggregation of effects obtained at the
provincial level. Table 1 summarizes the definitions of the decomposed components.

Table 1. The definitions of the decomposed components.

Symbol Description

DEMF the CO2 emission factor effect
DEMX the effect of energy mix change
DPEI the effect of potential energy intensity change
DSTR industrial structure effect, accounting for the impact from output composition change
DBPC the impact from technological change in energy use
DEC the effect of energy efficiency change

DROS the effect of regional output structure change

3. Empirical Study

3.1. Data

A panel data set including China’s 30 provinces during the period of 2006–2012, is collected for
the empirical study (Due to data unavailability, Tibet is not included in this study). The economy of
each province is divided into six subsectors: “agriculture”, “industry”, “construction”, “transport,
storage, and post”, “wholesale, retail, hotels, and catering services”, and “financial intermediation,
real estate, and other tertiary industries” (Generally speaking, for the decomposition model, a high
level of sector disaggregation is preferred. Due to data availability, we can divide the entire economy
into six subsectors at the most. Because we need a balanced structure of data, multiple dimensions
are involved, including time periods, provinces, subsectors, and energy types.). The output variable
is represented by the value-added of the industrial subsector. Data on the value-added are collected
from the China Premium Database [29]. Data on the energy use by type are obtained from the energy
balance tables in the China Energy Statistical Yearbook [30–36]. Data on CO2 emissions are estimated
by the method described in [37]. In the energy balance table, the subsectors consume electricity and
heat which do not emit CO2 directly. However, the generation of electricity and heat mainly consume
fuels like coal and oil, thereby emitting CO2. Such indirect CO2 emissions, that come from electricity
and heat consumption, are also taken into account. We first calculate the electricity/heat emissions
factor, which refers to CO2 emissions for generating per unit of electricity/heat. Then, we calculate
the corresponding CO2 emissions for the electricity and heat consumed by the subsectors. Note, that
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unlike other emission factors which are constant, CO2 emission factors for electricity and heat change
over time.

3.2. Decomposition Results

Table 2 presents the decomposition results of CO2 intensity change in China as a whole,
during 2006–2012. As is shown in Table 2, China’s CO2 intensity declined during the research period,
with an annual growth rate of −4.4%, and a cumulative growth rate of −23.8%.

Table 2. The change of CO2 intensity and effects of contributing factors in China.

Year Dtot DEMF DEMX DSTR DROS DPEI DEC DBPC

2006–2007 0.950 0.984 1.015 1.005 1.000 0.956 1.017 0.974
2007–2008 0.958 0.999 0.999 1.006 1.001 0.957 0.964 1.032
2008–2009 0.935 0.980 0.993 0.979 1.001 0.963 0.999 1.019
2009–2010 0.960 0.991 0.991 1.014 1.001 0.954 0.984 1.026
2010–2011 0.997 1.007 1.043 1.002 1.004 0.995 0.978 0.970
2011–2012 0.936 0.986 0.997 0.988 1.003 0.958 1.009 0.993

Geometric mean 0.956 0.991 1.006 0.999 1.002 0.964 0.992 1.002
2006–2012 0.762 0.946 1.038 0.995 1.010 0.802 0.952 1.013

The decomposition results suggest that DPEI (potential energy intensity change) is the biggest
contributor to the decrease of CO2 intensity, which contributes to a total reduction of 19.8% and 3.6%
per year. This finding is in accordance with the results in most literature on the decomposition of CO2

intensity or CO2 emissions, illustrating that the decline of energy intensity is the major driving force
causing a decrease in CO2 intensity or CO2 emissions. Since CO2 emissions are caused by energy
consumption, and the abasement of CO2 intensity radically depends on the decline of energy intensity,
it is not hard to imagine the intimate relationship between CO2 intensity and energy intensity [8].
In contrast to [8], DPEI in this study is regarded as a hypothetical figure, which measures the impact of
energy intensity change on CO2 intensity, without considering the inefficiency of the energy-usage
technology, i.e., the value of potential energy intensity is calculated by excluding the effects from
production technology, such as efficiency change and technological change.

DEMF (CO2 emission factor change) also plays a significant role in declining CO2 intensity.
During 2006–2012, its accumulated effect is calculated as 0.946, which means that it reduced the
CO2 intensity by 5.4%. In this paper, only CO2 emission factors for electricity and heat change over
time. In this sense, the DEMF effect originates from the energy improvement in the sectors of electricity
generation and heat generation. DEC (energy efficiency change) is another important driver in the
abatement of CO2 intensity. It shows that China experienced an energy efficiency promotion during
2006–2012, which led to a 4.8% decrease in the CO2 intensity during the sample period. Conversely,
DBPC (energy-saving technology change) had a less significant contribution to the CO2 intensity
reduction. This result is in line with the finding of [24].

In most years, DEMX (energy mix change) marginally contributed to the decrease in CO2 intensity.
However, the opposite impact was seen for the periods of 2006–2007 and 2010–2011. Consequently,
in total, it improved the CO2 intensity by 3.8% during the sample period. This result is consistent with
our observation of China’s energy consumption. According to [38], the share of coal, the dominant
energy in China, has declined very slightly in recent years, but increased in 2007 and 2011. Although
the Chinese government has spared no effort to promote industrial upgrade in recent years, it is
revealed that the impact of DSTR (industrial structure change) on CO2 intensity is very small. A similar
result can be seen for DROS (regional output structure change). As there were only minimal changes in
China’s regional economic pattern in past years, China’s regional output share was almost unchanged.

Table 3 presents the decomposition results for China’s 30 provinces. From Table 3, it can be
found that, except for Hainan and Xinjiang, the CO2 intensity in all of the provinces experienced
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a decline during the sample period. Beijing showed the largest reduction of CO2 intensity (45.5%),
which is in line with our expectations, considering Beijing is the capital of China and has the most
powerful incentive mechanism to realize its economic growth, based on less energy-intensive industries.
Also, a relatively large reduction in CO2 intensity is observed in the eastern, well-developed cities,
such as Shanghai, Tianjin, Guangdong, Zhejiang, and Jiangsu.

Table 3. The change of CO2 intensity and effects of contributing factors in China’s 30 provinces between
2006 and 2012.

Province Dtot DEMF DEMX DSTR DPEI DEC DBPC

Anhui 0.712 0.965 0.990 1.146 0.663 0.965 1.017
Beijing 0.545 0.817 1.108 0.931 0.926 0.727 0.960

Chongqing 0.769 0.921 0.967 1.016 0.799 1.028 1.033
Fujian 0.748 0.978 1.039 1.002 0.798 0.903 1.021
Gansu 0.861 1.022 0.950 0.964 0.906 0.988 1.027

Guangdong 0.740 0.943 1.043 0.978 0.865 0.966 0.921
Guangxi 0.776 0.912 1.075 1.129 0.717 0.955 1.024
Guizhou 0.622 0.911 1.009 0.959 0.660 1.019 1.050
Hainan 1.155 1.103 0.965 0.888 1.237 0.986 1.002
Hebei 0.783 0.947 0.963 0.984 0.816 1.062 1.006

Heilongjiang 0.778 0.973 0.990 0.933 0.865 0.961 1.042
Henan 0.680 0.931 1.056 1.028 0.702 0.935 1.026
Hubei 0.744 0.901 0.888 1.053 0.743 1.155 1.029
Hunan 0.646 0.938 1.094 1.081 0.637 0.875 1.045

I-Mongolia 0.893 1.054 1.126 1.091 0.829 0.801 1.039
Jiangsu 0.796 0.966 1.077 0.912 0.903 0.913 1.016
Jiangxi 0.757 0.905 1.137 1.081 0.754 0.889 1.014

Jilin 0.657 0.976 1.080 1.092 0.641 0.887 1.003
Liaoning 0.780 0.980 1.235 1.034 0.787 0.785 1.008
Ningxia 0.901 0.993 1.060 0.956 0.950 0.906 1.041
Qinghai 0.944 0.910 0.983 1.101 0.862 1.073 1.036
Shaanxi 0.768 0.919 0.965 0.993 0.807 1.037 1.042

Shandong 0.758 0.949 1.048 0.926 0.848 0.940 1.033
Shanghai 0.685 0.960 0.998 0.861 0.895 1.051 0.882

Shanxi 0.777 0.985 1.132 0.981 0.803 0.858 1.031
Sichuan 0.688 0.785 0.880 1.099 0.678 1.323 1.012
Tianjin 0.633 0.990 0.859 0.962 0.756 1.035 0.990

Xinjiang 1.216 1.012 1.195 0.954 1.250 0.809 1.042
Yunnan 0.820 0.973 1.034 0.928 0.896 0.949 1.032
Zhejiang 0.724 0.913 0.995 0.952 0.818 0.994 1.030

DPEI (potential energy intensity change) was the dominant driver of the decline of CO2 intensity
in all of the provinces, except Hainan and Xinjiang. The value of DPEI ranges from 0.637 to 1.25,
with an average value of 0.816. Hunan demonstrated the best performance in terms of DPEI, followed
by Jilin and Guizhou. Conversely, Hainan and Xinjiang suffered from an increase in DPEI, which was
the dominant factor for the increase of CO2 intensity.

As was identified at the national level, the effects of DSTR (industrial structure change) at the
provincial level are relatively small, ranging from 0.861 to 1.146, with an average value of 0.998.
It can also be seen that, for all of the provinces except Fujian in the eastern area, DSTR (industrial
structure change) contributed to the reduction of CO2 intensity. Among them, Shanghai showed the
largest impact from DSTR (industrial structure change), which reduced its CO2 intensity by 13.9%.
For Shanghai, during the sample period, the output share of energy intensive sectors decreased
from 47% to 39%, which consequently induced the decline of its carbon intensity. On the contrary,
DSTR (industrial structure change) increased the CO2 intensity in most provinces of the central and
western areas. Anhui, Guangxi, and Qinghai were ranked at the bottom of the table. This is because
the industrial sector in these provinces expanded rapidly during the time period used in this study.
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Among the 30 provinces, 26 registered a value of DEMF that was smaller than unity, indicating that
DEMF (CO2 emission factor change) was another important contributor to the reduction of CO2 intensity
in China’s provinces. Sichuan registered the lowest value (0.785), followed by Beijing (0.817) and
Hubei (0.901). Sichuan and Hubei are abundant in terms of hydropower resources. The development
of hydropower substituted coal consumption. In order to improve the air quality, Beijing carried out
a “changing coal into gas” project, which significantly reduced coal consumption. A similar case can
be found in DEC (energy efficiency change). Among the 30 provinces, 21 registered a value of DEC that
was smaller than unity. This means that most of the provinces experienced an improvement in the
energy use efficiency. Beijing demonstrated the best performance, with a DEC value of 0.727, indicating
that it brought about a 27.3% reduction of CO2 intensity during the sample period.

With regards to the impact of DBPC (energy-saving technology change), only four provinces,
Shanghai (0.882), Guangdong (0.921), Beijing (0.96), and Tianjin (0.99) had a positive contribution
of energy-saving technology on the reduction of CO2 intensity. No surprisingly, they are the most
developed provinces in China. Our result reveals that they had a relatively higher capability for
innovating advanced energy technology. For other provinces, the change of energy-saving technology
did not contribute to a reduction in the CO2 intensity during the sample period.

3.3. The Potential CO2 Intensity Reduction

The decomposition results help us understand the determination of CO2 intensity in China.
This subsection further measures the potential CO2 intensity reduction in China, using the PCII
(potential values for CO2 intensity improvement) index proposed by [24].

The PCII for region n at the time period t under the contemporaneous technology scenario can be
defined as:

PCIIn
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The PCII for region n at the time period t under the global technology scenario can be defined as:
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Similarly, the PCII for the whole country during the time period t, under the contemporaneous
technology and the global technology, can be defined as Equations (15) and (16), respectively.
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The potential CO2 intensity reduction for the whole of China during 2006–2012 is presented in
Figure 1. It shows a descending trend, suggesting that China was narrowing the room for CO2 intensity
reduction year by year. In 2006, China’s potential CO2 intensity reduction was 83.7 thousand tons per
billion RMB (2005 price) under the contemporaneous technology scenario, while in 2012, this number
decreases by nearly 30 percent, which is only 59.1 thousand tons per billion RMB (2005 price).
Mainly due to the decrease of the potential energy intensity, China’s potential CO2 intensity reduction
drops by an average of 4.5% a year during 2006–2012. Compared to the potential reduction under the
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contemporaneous technology scenario, the figures under the global technology scenario are 20%–30%
higher, suggesting that there is a considerable distance between contemporaneous technology and
global technology. As a result, technological improvement is an ideal way to further narrow the room
for CO2 intensity reduction.
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To conserve space, we only report the potential CO2 intensity reduction for China’s 30 provinces
in 2012, shown in Figure 2. The potential CO2 intensity reduction is much higher in poorer western
provinces, when compared to other provinces in China. Under the contemporaneous technology
scenario, the potential CO2 intensity reduction in the western provinces, such as Guizhou, Qinghai,
Shanxi, Xinjiang, and Ningxia, is 201.9, 164.5, 158.2, 154.6 and 150.8 thousand tons per billion RMB
(2005 price), respectively, while the potential CO2 intensity reduction in the eastern provinces, such as
Shanghai, Zhejiang, Jiangsu, Guangdong, and Beijing, is merely 21.3, 17.2, 17.0, 14.1 and 9.3 thousand
tons per billion RMB (2005 price), respectively. This implies that there is a large potential for CO2

intensity reduction in China’s western provinces.
It can also be observed that the potential abasement of CO2 intensity under the global technology

scenario is larger than that under the contemporaneous technology scenario. Moreover, the gap of
potential reduction in CO2 intensity between the two different scenarios is larger in China’s poorer
western provinces. In those western provinces such as Guizhou, Qinghai, Xingjiang, and Ningxia,
the amount of potential CO2 intensity reduction under the global technology scenario is 164.1, 124.3,
119.6 and 82.2 thousand tons per billion RMB (2005 price), respectively; being 37.8, 40.3, 35.0, 68.6
and 41.0 thousand tons per billion RMB (2005 price) higher than those under the contemporaneous
technology scenario. In contrast, in the eastern provinces such as Beijing, Guangdong, Jiangsu,
Zhejiang, and Shanghai, the potential CO2 intensity reduction under the global technology scenario is
7.1, 9.4, 8.9, 8.2 and 17.7 thousand tons per billion RMB (2005 price), respectively; being merely 2.2, 4.7,
8.0, 9.1, 3.5 thousand tons per billion RMB (2005 price) higher than those under the contemporaneous
technology scenario. That is because the eastern provinces are better off, and are more likely to absorb
external technologies or invent advanced energy-saving technologies.
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4. Conclusions

The Chinese government considers CO2 intensity to be one of the most important references for
designing its energy and environmental policies. Understanding and analyzing the driving factors
of CO2 intensity in China and its regions, are therefore of vital importance. An increasing number
of research papers place an emphasis on analyzing the factors influencing China’s CO2 intensity.
However, very few of them have paid attention to the variation in China’s regions. To the best of our
knowledge, this paper is the first attempt to explore the change of CO2 intensity in China, as well
as in its provinces. To serve this purpose, we propose a modification of the decomposition model of
Kim and Kim [24], which integrates the strengths of IDA and PDA. Moreover, we also calculate the
potential reduction of CO2 intensity for China as a whole and its provinces. Using a panel data set
including China’s 30 provinces during the period of 2006–2012, empirical analysis is conducted and
meaningful results are obtained accordingly.

With regards to China as a whole, DPEI (potential energy intensity change) was the dominant
driving factor of the decrease in CO2 intensity, which contributed to a total reduction of 19.8% and 3.6%
per year. DEMF (CO2 emission factor change), DEC (energy efficiency change), and DSTR (industrial
structure change) were also contributing factors to the abatement of CO2 intensity. By contrast,
DBPC (energy-saving technology change) and DEMX (energy mix change) did not lead to a decrease in
CO2 intensity.

When it comes to the provincial level, some mixed pictures emerge. CO2 intensity in all of the
provinces, excluding Xinjiang and Hainan, exhibited a decrease in CO2 intensity during the period of
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2006–2012. For these provinces, the CO2 intensity reduction was mainly driven by DPEI (potential energy
intensity change). DEC (energy efficiency change) and DEMF (CO2 emission factor change) also played
positive roles in the CO2 intensity reduction for most provinces. The best performers in DPEI, DEC,
and DEMF, were Hunan (0.637), Beijing (0.727), and Sichuan (0.785), respectively. Only four provinces,
Shanghai (0.882), Guangdong (0.921), Beijing (0.96), and Tianjin (0.99), had positive contributions
of energy-saving technology for the reduction of CO2 intensity, which suggests that the Chinese
government should promote technology diffusion among the regions, helping those which are less
developed to also introduce advanced technology.

In terms of the CO2 intensity reduction potential, China showed a narrowing possibility year by
year. In 2012, the potential reduction under the global technology and the contemporaneous technology
scenarios are calculated as 59.1 and 46.0 thousand tons per billion RMB (2005 price), decreasing from
83.7 and 69.3 thousand tons per billion RMB (2005 price), respectively. The provincial variations are
also presented. Provinces in the western area generally showed a relatively large potential reduction
for CO2 intensity, while those in the eastern area evidenced a small amount.

Finally, it should be pointed out that this paper focuses on exploring change in China’s carbon
intensity using a decomposition method. We attribute the change of carbon intensity to several
predefined effects. However, we have not answered the question of what drives the change of the
decomposed components. This question requires great efforts in developing a unified model with
economic foundations and collecting more related data. It should be further analyzed in future studies.
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