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Abstract: Currently, the manufacturing industry is experiencing a data-driven revolution. There are
multiple processes in the manufacturing industry and will eventually generate a large amount
of data. Collecting, analyzing and storing a large amount of data are one of key elements of the
smart manufacturing industry. To ensure that all processes within the manufacturing industry are
functioning smoothly, the big data processing is needed. Thus, in this study an open source-based
real-time data processing (OSRDP) architecture framework was proposed. OSRDP architecture
framework consists of several open sources technologies, including Apache Kafka, Apache Storm
and NoSQL MongoDB that are effective and cost efficient for real-time data processing. Several
experiments and impact analysis for manufacturing sustainability are provided. The results showed
that the proposed system is capable of processing a massive sensor data efficiently when the number of
sensors data and devices increases. In addition, the data mining based on Random Forest is presented
to predict the quality of products given the sensor data as the input. The Random Forest successfully
classifies the defect and non-defect products, and generates high accuracy compared to other data
mining algorithms. This study is expected to support the management in their decision-making for
product quality inspection and support manufacturing sustainability.
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1. Introduction

In the modern industrialized society, manufacturing is the key backbone and has become
a major source of the global economy [1]. For any advanced country, having such a strong base
of manufacturing becomes significant issue because it will stimulate other sectors of economy in their
country [2]. Nowadays, people are more conscious about sustainability issues and the condition
of today’s global environment. Global warming, pollution, shortage of oil, extinction of species,
have frequently been covered in the news and have been major subjects of political discussion.
Goodland defined that sustainability has three fundamental aspects: environmental (natural resources),
social (health, poverty) and economic (productivity, competitiveness) [3]. Rosen and Kishawy (2012)
explained in their study, the importance of integrating sustainability with manufacturing as it can
improve the environmental performance [4]. The current study predicted that decision makers who
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adopt a sustainability culture within companies are more likely to be successful in enhancing design
and manufacturing. In addition, Garetti and Taisch (2012) revealed that the manufacturing technology
together with culture and economy can be considered as the tools and options for building new
solutions towards a sustainable manufacturing concept [5]. Gunasekaran and Spalanzani (2012)
suggested that balancing the economic, environmental and social challenges needs further attention
from researchers and practitioners and a framework is needed for the sustainable development in
manufacturing [6].

Modern manufacturing facilities are data-rich environments that support transmission, sharing
and analysis of information across pervasive networks to produce smart manufacturing [7,8]. Potential
benefits of smart manufacturing include improvements in operational efficiency, process innovation,
and environmental impact [9,10]. However, like other industries and domains, current information
systems that support business and smart manufacturing are being tasked with the responsibility of
storing increasingly large data sets (i.e., big data), as well as supporting real-time processing using
advanced analytics [10–14]. Presently, the Internet of Things (IoT) device is used as technology to
transmit this raw sensor data to be used in real-time big data analytics. The focus on big data
technologies in manufacturing is a relatively new interdisciplinary research area incorporating
automation, engineering, information technology and data analytics. At this point, it is important
to identify appropriate technologies that can address big data issues in manufacturing that are
effective, cost efficient and maintain environment. Furthermore, managing quality is crucial for the
manufacturing enterprises to survive the competition in the global market and to improve customer
satisfaction. The traditional visual inspection is not efficient enough to ensure the quality of the product
in manufacturing, as it can increase the cost and the resources during the process [15]. As solution,
the data mining can be utilized to help in identifying not only the defective products but can also
simultaneously determine the significant factors that influence the success or failure of the process [16].

Therefore, this study proposes an open source-based real-time data processing (OSRDP)
architecture framework for manufacturing sustainability. OSRDP architecture framework consists of
several open sources technologies, including Apache Kafka, Apache Storm and NoSQL MongoDB
that are effective and cost efficient. Multiple streams of sensor data generated from the machines
are received by Apache Kafka, next are processed at Apache Storm, and then stored in a distributed
storage NoSQL MongoDB. For improving the quality prediction, the data mining technique is used to
predict the quality of products based on historical sensor data that previously stored in the NoSQL
MongoDB. The proposed OSRDP architecture framework utilized open-source based technologies and
big data analytics which supports on manufacturing sustainability, especially in terms of reducing
investment cost [17,18] and reducing the social risk [19]. In addition, the data mining based quality
prediction is utilized in our OSRDP framework, thus it is expected to support the management in their
decision-making for product quality inspection and reduce the inspection cost [15]. This framework
can be applied for many real-time big data analytics in manufacturing and expected to support the
management and manufacturing sustainability.

The remainder of this study is described as follows. In Section 2, the literature review is described.
In Section 3, the OSRDP architecture framework and OSRDP scenario in manufacturing are presented.
In Section 4, the experimental environment, data collection, performance evaluation and performance
result are provided. The discussion about cost analysis to select a cost-effective integration and the
impact analysis of OSRDP on the manufacturing sustainability are presented in Section 5. Finally,
in Section 6 concluding remarks and future work of this study are presented.

2. Literature Review

2.1. Real-time Big Data Processing in Manufacturing

As increasing the Internet of Things (IoT) and sensor devices, it is expected that the data generated
from manufacturing process will grow exponentially, generating so called ‘big data’. One of the
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focuses of smart manufacturing is to create real-time monitoring system to support accurate and
timely decision-making. Therefore, big data analytics is expected to contribute significantly to the
advancement of smart manufacturing. Mani et al. (2017) explored the application of big data analytics
in mitigating supply chain social risk and to demonstrate how such mitigation can help in achieving
sustainability [19]. The results show that companies can predict various social problems including
workforce safety, fuel consumptions monitoring, workforce health, security, physical condition of
vehicles, unethical behavior, theft, speeding and traffic violations through big data analytics, thereby
demonstrating how information management actions can mitigate social risks. Malek et al. (2017)
combined IoT with Big data technologies into single platform for continuous and real-time data
monitoring and processing [20]. The experiments utilized open hardware sensors, such as pulse and
oximetry, carbon dioxide in air, humidity and temperature sensors. The purpose of study is to analyses
how the lack of proper building’s ventilation can impair occupants’ performance and affect their health.
The proposed system is able to monitor the sensor data in real-time, and found direct relationship
between CO2 and O2 concentration inside building.

The development of information technology and sensor technology has enabled large-scale data
collection when monitoring the manufacturing processes. Those data could be potentially useful
when learning patterns and knowledge for the purpose of quality improvement in manufacturing
processes. Therefore, the integration of big data and data mining technology in smart manufacturing is
expected to help the management in decision making. He and Wang (2017) utilized statistical process
monitoring for big data analytics tool in smart manufacturing [21]. Proposed system is able to handle
large volume of streaming data for real-time, statistical analysis and online monitoring. Siddique et al.
(2017) proposed an efficient intrusion detection system which continuously monitors network traffic
aiming to identify malicious actions [22]. The proposed system is capable of handling large volume
of network traffic in real-time environments. Based on contemporary dataset, the proposed model
showed high performance and efficiency.

2.2. Open Source Technologies for Big Data Processing

Open Source Initiative defines Open Source Software (OSS) as; “software that can be freely used,
changed, and shared (in modified or unmodified form) by anyone” [23]. In contrast to traditional
software development model, the OSS development model heavily relies on contributions of volunteers,
rather than traditional employees. Many projects, such as the Linux operating systems, the Mozilla
browser, Apache Kafka, Apache Strom, MongoDB, and the Apache web server have been successfully
developed in OSS communities [24]. In the manufacturing area, many researchers had used open
source-based application to achieve the concept of integrated enterprise [25]. In this study, three open
source big data processing are used, they are Apache Kafka, Apache Storm and NoSQL MongoDB.
The Apache Kafka is used for handling the incoming fast large volume of streaming data while Apache
Storm is utilized for real-time distributed processing. In addition, MongoDB is used to store the large
amount of unstructured sensor data.

Apache Kafka is a scalable publish-subscribe messaging system and used for building real-time
data pipelines [26]. It is built to be fault-tolerant, high-throughput, horizontally scalable, and allows
geographically distributing data streams and processing. Apache Kafka consists of several components,
they are topics (the name of category or feed to which messages/logs are published), producers
(the processes that publish messages/logs into Apache Kafka), consumers (the process that subscribes
to topics and process the feed of published messages) and broker (the name of the server which
Apache Kafka process is operating on that server). Apache Kafka is well suited for situations
wherein users must process real-time data, and analyze them. At LinkedIn, Apache Kafka supports
dozens of subscribing systems, and delivers more than 55 billion messages to consumers daily [27].
Kreps et al. (2011) introduced Kafka, a distributed messaging system that used for high volumes of
log data. It also provides integrated distributed support and can scale out. The result showed that
Kafka achieves much higher throughput than conventional messaging systems (such as ActiveMQ and



Sustainability 2017, 9, 2139 4 of 18

RabbitMQ) [28]. Fernandez-Rodriguez et al. (2017) proposed real-time vehicle data streaming models
for a smart city [29]. The proposed system gathers information from drivers in a big city, analyzing
that information and sending real-time recommendations to improve driving efficiency and safety
on roads. A simulation is used to evaluate the system performance and Apache Kafka is utilized
for stream processing. The result showed that Apache Kafka achieve a higher scalability and faster
responses as well as cost reduction compared to traditional system.

Apache Storm is an open-source distributed real-time computation system for processing large
volumes of high-velocity data [30]. Apache Storm includes multiple features such as horizontal
scalability, fault tolerance, guaranteed data processing and the support of different programming
languages. Scalability feature of Apache Storm includes possibility of rebalancing a cluster when new
working nodes have been added. Guaranteed data processing ensures that if a worker node fails,
Storm will automatically reassign tasks and replay all tuples to guarantee its processing. Apache Storm
runs in-memory, therefore it is able to process large volumes of data at in-memory speed. Previous
studies have utilized Apache Storm for real-time big data processing. Nivash et al. (2014) compared
the performance of data processing models like Hadoop, Apache YARN, Mapreduce, Storm and
Akka in the Big Data domain [31]. The current study proposed two algorithms namely JATS and
SD, which enhance the efficiency of the Storm data processing architecture. The proposed system is
capable of handling huge amount of data in real-time. De Maio et al. (2017) proposed the temporal
fuzzy concept analysis on a distributed real-time computation system based on Apache Storm [32].
The proposed system is implemented by utilizing big data stream analysis in the smart city context
and expected to support smart city decision-making processes. In addition, Yang et al. (2013) studied
several technologies associated with real-time big data processing. The proposed system is built based
on Storm, and the result showed that the big data real-time processing based on Storm can be widely
used in various computing environment [33].

The NoSQL MongoDB is used to store the large amount of unstructured sensor data. The term
‘NoSQL’ collectively refers to database technologies that do not abide by the strict data model of
relational databases. MongoDB is a document-oriented NoSQL database that offers high performance
and scalability. By sacrificing some properties of relational database model, NoSQL databases can
achieve higher availability and scalability, essential requirements for big data processing. Unlike
other NoSQL databases, its data structure is designed independently as a document unit so that
schema definition is not needed. MongoDB uses a scale-out scheme, which is flexible against hardware
expansion, and supports auto-sharding. Thus, the automatic distribution of data over several servers
can be conveniently carried out [34–37]. There have been various researches on the performance of
MongoDB. Nyati et al. (2013) compared the insertion/searching performance of MongoDB to MySQL
in a single machine, showing that MongoDB outperformed MySQL [38]. Kanade et al. (2014) conducted
an experimental comparative study between embedding and referencing design patterns, showing that
the embedding pattern performs better in terms of query response time [39]. Liu et al. (2012) proposed
an algorithm to solve irregular distribution of data among distributed storages, and demonstrated
that the proposed approach can improve the throughput and read/write response time of the existing
automatic data distribution [40].

In our proposed OSRDP architecture framework, we created a topology that receives sensors
data from Apache Kafka, executes, processes, analyzes, monitors and stores sensor data in real-time.
Apache Storm is used to process streaming data continuously, while NoSQL MongoDB is used for
saving data. For improving the quality prediction, the data mining technique is used as the last part to
analyze the historical sensor data that previously stored in the NoSQL MongoDB.

2.3. Quality Improvement Based on Data Mining

Managing quality is crucial for the manufacturing enterprises to survive the competition in
the global market. Industries today need to stay ahead in competition by servicing and satisfying
customer’s needs. At the moment, the process to ensure the quality of the product in manufacturing is



Sustainability 2017, 9, 2139 5 of 18

based on the visual inspection, and these operations increase the cost and the resources during the
process [15]. The application of data mining can help in identifying not only the defective products
but can also simultaneously determine the significant factors that influence the success or failure of the
process. Data mining is now used in many different areas in in manufacturing, especially in the areas
of production processes, control, maintenance, customer relationship management (CRM), decision
support systems (DSS), quality improvement, fault detection, and engineering design [16]. Data can
be analyzed to identify hidden patterns in the parameters that control manufacturing processes or to
determine and improve the quality of products.

Quality of the products that satisfy customer demands is the key goal for a product manufacturing
company. A product produced with variation in characteristics, than the anticipated are called as
defect. Ferreiro et al. (2011) proposed the system to detect automatically the quality of material [15].
The material for the tests was aluminum Al 7075-T6, commonly used in aeronautical structures.
The current studied showed that probability technique Naive Bayes generated high accuracy around
95% to classify whether the burr from material is out of tolerance limits or not. Tseng et al. (2004)
used rough set theory to resolve quality control problems in PCB manufacturing by identifying the
features that produce solder ball defect and also determined the features that significantly affect the
quality of the product [41]. Chen et al. (2005) generated association rules for defect detection in
semiconductor manufacturing. They determined the association between different machines and their
combination with defects to determine the defective machine. In the mild steel coil manufacturing
plants, large amount of data is generated with the help of many sensors deployed to measure different
parameters which can be used for defect diagnosis of the coils produced [42]. Patel and Jokhakar (2016)
proposed defect cause analysis model to be applied in steel industry [43]. The result showed that
random forest can achieve accuracy of 95% compared to other algorithm. Tseng et al. (2005) used CNC
machines based on rough set theory. The information of defined process is created as a rule-based [44].
Syn et al. (2011) proposed model based on fuzzy theory that predict the surface quality of the products
produced by the machine [45]. Zeaiter et al. (2011) proposed real-time cavity pressure that estimate
weight and dimensions of the product using force sensor data by using regression analysis model [46].

For the case of injection molding process, the stability control of production is an important
aspect. Improving product quality stability is main challenge for injection molding because the
injection process is usually disturbed by several inevitable variations. Zhou et al. (2017) proposed
a quality prediction model based on polymer melt properties to monitor product weight variation [47].
The proposed control method results in a decrease in product weight variation from 0.16% to 0.02% in
the case of varying mold temperature. In addition, the number of cycles to return stability decreases
from 11 to 5 in with respect to variations in the melt temperature.

3. OSRDP Architecture Framework

3.1. OSRDP Architecture Framework

Proposed OSRDP architecture framework is developed based on Apache Kafka, Apache Storm,
and MongoDB. As can be seen in Figure 1, the proposed OSRDP architecture framework provides the
ability to combine the batch and real-time processing. The IoT sensor devices send the sensor data
from the machines and the sensor data are handled by Kafka Cluster in order to avoid data loss. Inside
Storm topology, the spout is defined as adapter to read the sensor data from Kafka while the bolt is
utilized as processing unit.

Kafka Spout delivers sensor data into the Data Preprocessing Bolt. Data Preprocessing Bolt performs
a series of preprocessing operations on sensors data, including data transformation and filtering.
Once the preprocessing process is finish, the sensor data is then ready to be sent for quality prediction.
The Data Mining Bolt conducted quality prediction process based on historical sensor data. The classifier
which is generated based on training data will be used for quality prediction. The Data Mining Bolt was
implemented by utilizing the library from Weka data mining tool [48]. The result of quality prediction
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is presented by Real-time Monitoring Bolt by utilizing Socket.IO library [49]. Socket.IO is a JavaScript
framework that enables real-time web applications for every browser even supporting older browsers
at the same time [50]. Finally, the MongoDB Bolt stores the sensor data and quality prediction’s result
into MongoDB for further use.
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Figure 1. Open source-based real-time data processing (OSRDP) architecture framework.

Figure 2a shows the screenshot of real-time quality monitoring for specific machine number.
The real-time quality monitoring page enables the manager to check the quality prediction process
output of defect/non-defect product in real-time. The implementation of Storm topology can be
seen in Figure 2b. Furthermore, Figure 2c illustrates the screenshot of server status monitoring
page. The manager or admin can easily check status of the server, that contains detailed information
about healthiness of the server, current running tasks, Storm cluster information, MongoDB cluster
information and average overall prediction summary. It also provides insight for managers about
historical quality data, percentage of overall defect, and non-defect products.
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3.2. OSRDP Scenario in the Manufacturing

In this study, several steps of OSRDP implementation scenario in the manufacturing are presented.
Figure 3 illustrates the flow of sensor data for the OSRDP scenario in the manufacturing.

(0) Pre-Step: Before using the data mining algorithm, we need to engage in offline learning first for
quality prediction based on historical quality data. After learning is finished, it will produce the
classifier model and will be used for real-time quality prediction in the Bolt of Storm topology.

(1) The injection molding machine will send the sensor data into OSRDP server.
(2) In the OSRDP server, the sensor data will be managed by Kafka and published to Storm.
(3) In the Storm, there are several processes such as preprocessing task, and prediction task.



Sustainability 2017, 9, 2139 8 of 18

(4) After the prediction task in the Storm is finished, the sensor data and its prediction result will be
stored into MongoDB.

(5) Storm will also send the result of prediction task into real-time quality monitoring web-page.
So, then the manager can see the quality prediction result in real-time.

(6) The admin/manager can also check status of the server by login into server status
monitoring web-page.
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4. Case Analysis with Experiment

4.1. Experimental Environment

To generate simulation data, we set up three clusters. Each cluster consists of three commodity
servers with the same specifications, as shown in Table 1. All the servers are running the same operating
system which is Ubuntu 10.04.4 long term support (LTS). The first cluster is the Apache Kafka cluster of
which each of the Apache Kafka servers is running Apache Kafka version 0.8.2.0. And then the second
cluster is Apache Storm cluster which each of the Apache Storm servers is running Apache Storm
version 0.9.3 and zookeeper version 3.4.6. In the Apache Storm cluster, two servers are configured
as supervisor (slave), and one server is used as nimbus (master). All the three servers are running
zookeeper as a cluster. Finally, the third cluster is MongoDB cluster which each of the MongoDB server
is running MongoDB version 3.2.1. In the MongoDB cluster, two servers are configured as shards for
storing data, and one server is used as a mongos and config server for coordinating and distributing
the data across MongoDB cluster. The connection speed between each server is 100 megabytes per
second. The details configuration for simulation test is shown in Figure 4.

Table 1. Specification of servers.

CPU RAM HDD OS

2.9 GHz × 4 8 GB 500 GB Ubuntu 10.04 LTS

CPU: Central Processing Unit, RAM: Random Access Memory, HDD: Hard Disk Drive, OS: Operating System,
LTS: Long Term Support.



Sustainability 2017, 9, 2139 9 of 18

Sustainability 2017, 9, 2139  9 of 18 

Figure 4. Configuration for simulation test. 

4.2. Data Collection 

Experimental data was collected from injection molding process. For the case of injection 
molding process, the stability control of production is an important aspect. Improving product 
quality stability is main challenge for injection molding because the injection process is usually 
disturbed by various inevitable variations such as polymer melt properties, machine operations, and 
mold temperature [47]. Thus, the data mining based prediction model is needed to predict quality of 
product from injection molding. In injection molding process, one of dominant factor affects to the 
quality of product is the injection pressure [51]. We collected the injection pressure data and extract 
the features variable based on site field interview. The extracted features are described in Table 2 
and illustrated in Figure 5. 

 
Figure 5. One set of features variable from injection pressure data. 

  

Figure 4. Configuration for simulation test.

4.2. Data Collection

Experimental data was collected from injection molding process. For the case of injection molding
process, the stability control of production is an important aspect. Improving product quality stability
is main challenge for injection molding because the injection process is usually disturbed by various
inevitable variations such as polymer melt properties, machine operations, and mold temperature [47].
Thus, the data mining based prediction model is needed to predict quality of product from injection
molding. In injection molding process, one of dominant factor affects to the quality of product is the
injection pressure [51]. We collected the injection pressure data and extract the features variable based
on site field interview. The extracted features are described in Table 2 and illustrated in Figure 5.
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Table 2. Eight features variable extracted from injection pressure data.

Feature Explanation

minPressureValue Minimum pressure value
maxPressureValue Maximum pressure value

integralPressureToMax The pressure integral value from start of cycle to maximum pressure value
integralPressureToMin The pressure integral value from maximum pressure value to end of cycle
totalIntegralPressure Total pressure integral value
timeToMaxPressure Time from start of cycle to maximum pressure value
timeToMinPressure Time from the maximum pressure value to the end of the cycle

cycleTime Cycle time

4.3. Performance Evaluation of the OSRDP Architecture Framework

The proposed OSRDP architecture framework should be scalable to accommodate the growing
volume of data without suffering noticeable performance loss. In this study, performance of system
is presented in terms of processing time based on three scenarios as shown in Table 3. Each scenario
has different number of parallelism. The Apache Storm provides the ability to set the number of
parallelism (process). Single process in apache storm is defined as single number of spout and bolt.
As increasing number of process, the storm will simultaneously distribute the incoming sensor data
into different process to be executed, thus it is expected to reduce the processing time.

Table 3. Three scenarios for evaluating the performance of OSRDP architecture framework.

Scenario Parameter Measurement

Scenario 1 # of parallelism = 1 Calculate the processing time by increasing the
average number of the sensor data sent to the

server per second
Scenario 2 # of parallelism = 5
Scenario 3 # of parallelism = 10

We run the simulator program and record the processing time of each scenario. In Figure 6,
the horizontal axis shows the average number of sensors data sent to the server per second and the
vertical axis represents the processing time in milliseconds for each scenario. Figure 6a showed for
all three scenarios as the average number of sensors data increased, the processing time of the server
increased. Figure 6b showed that parallelism increased the system’s performance. As the number of
parallelism increased, less time was necessary to process the sensors data, especially when the number
of sensors data was high. It reveals that by increasing the number of parallelism, the proposed OSRDP
architecture framework is able to process high sensors data per second. It could be concluded that the
proposed OSRDP architecture framework has high scalability.
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4.4. Performance Comparison of Data Mining Models

In this section, evaluation results of quality prediction based on data mining techniques are
presented. For this purpose, we investigated and evaluated four data mining algorithms such as;
Naive Bayesian (NB), Multi-Layer Perceptron (MLP), Logistic Regression (LR), and Random Forest
(RF). These are the most common widely used as supervised learning techniques while simultaneously
achieving high-accuracy performance [52]. Random Forest of tree classifiers are a popular ensemble
method for classification problems [53]. RF has a random subset feature selection which each tree is
independently constructed using a bootstrap sample of the dataset. In RF, each node is split using the
best among a subset of predictors randomly chosen at that node. Eventually, a majority vote is taken
for final prediction output. It is well-known that by combining (majority vote), the prediction output of
several classifiers results is a much better performance than using single classifier [54]. RF are usually
preferred with respect to other classification techniques because of their high numerical robustness,
native capacity of dealing with numerical and categorical features, and effectiveness in many real-world
classification problems [55,56]. Recently, Oneto et al. (2017) proposed a data-driven system based on
Random Forest for predicting the crash stopping maneuvering performance. The results showed that
the proposed method not only can be used to accurately predict the results of the safety test but also
can be used to better forecast the safety properties of a ship before its production [57].

In this study, all classifiers were generated based on Weka data mining tool with default parameter
settings. For the RF, the parameter settings for the maximum depth of the tree is unlimited, the number
of randomly chosen attributes is set to 0, and the number of iteration is set to 100. The number of
attributes (input variables) are eight as already described in Table 2 and the number of output variable
is two class which is defect (D) and non-defect (ND) product. In addition, the number of instances
in our dataset is 120 data and the value of our dataset are in numerical value. After a classifier is
constructed, it needs to be evaluated for accuracy. Effective evaluation is crucial because without
knowing the approximate accuracy of a classifier, it cannot be used in real-world tasks. A confusion
matrix [58] of a classifier might be seen in Table 4 and can be used to cover all the situation of the
classification results such as to calculate the accuracy, precision, recall, and f-measure.

Table 4. Confusion matrix of a classifier.

Classified True Classified False

Actual positive True Positive (TP) False Negative (FN)
(Type II Error/β-error)

Actual negative False Positive (FP)
(Type I Error/α-error) True Negative (TN)

As could be seen in Table 4, TP and TN indicate the numbers of non-defect product and defect
product that are correctly classified, respectively; FN (beta-error) and FP (alpha-error) indicate the
numbers of non-defect product and defect product that are incorrectly classified, respectively. With the
confusion matrix at hand, it is much easier to calculate the value of accuracy (acc), which is defined as

acc =
TP + FN

TP + FN + FP + TN
, (1)

precision (p), which is defined as

p =
TP

TP + FP
, (2)

recall (r), which is defined as

r =
TP

TP + FN
, (3)
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as well as the value of F-measure (F), which is defined as

F =
2pr

p + r
(4)

In this study, the training set is used to generate the classifier and the test set is used for evaluating
the classifier. The training set should not be used in the evaluation as the classifier is biased toward
the training set and may generate the overfitting problem. Cross-validation method is commonly
used to prevent the overfitting problem [59]. Thus, in our study 10-fold cross-validation was used.
By using 10-fold cross-validation method, our dataset is partitioned into 10 equal-size disjoint subsets.
One subset is then used as the test set and the remaining 9 subsets are combined as the training set to
learn a classifier. This procedure (with different possible combination of training and test set) is then
run until 10 times, which gives 10 accuracies. The final estimated accuracy of learning from this data
set is the average of the 10 accuracies.

Figure 7a–d showed the confusion matrix of NB, LR, MLP, and RF classifier, respectively.
The confusion matrix of each classifier can be used to calculate the value of precision, recall, f-measure,
and accuracy. The comparison results of four data mining algorithms are shown in Table 5. Overall,
the classification accuracy for RF reveals highest accuracy (95.83%), while LR (91.67%), MLP (89.17%),
and NB (67.5%) is in the second, third, and fourth position, respectively. In addition, we utilized
Information Gain to evaluate the worth of attribute with respect to the output class. We found significant
features (input variables), they are MaxPressureValue, IntegralToMin, and TotalIntegral, respectively.
Furthermore, based on the experiments results we concluded that RF outperforms among three other
data mining algorithms (NB, LR, and MLP). It is expected that our proposed system can support the
management in their decision-making for product quality inspection.
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Table 5. The comparison results of four data mining algorithms.

Classifier Precision (%) Recall (%) F-Measure (%) Accuracy (%)

NB 72.8 67.5 65.5 67.5
LR 91.7 91.7 91.7 91.67

MLP 89.2 89.2 89.2 89.17
RF 95.9 95.8 95.8 95.83

5. Discussion

5.1. Cost Analysis to Select an Cost-Effective Integration Solution

As budgets for implementing new technology in the manufacturing industry are relatively
low and the existing Personal Computer (PC) in manufacturing has limitations as it is called
a “commodity hardware”, it is important to address the cost factor of the OSRDP architecture
framework implementation and adopt most cost-effective approach. In this study, we suggested
an open-source-based technology that is cost-effective for implementation and integration.
To understand the reason, a brief implementation cost analysis is presented below.

Main components to implement OSRDP architecture framework are sensor devices, and servers.

• Sensor devices: Cost of the sensor device ranges from USD $50 to USD $200 [60,61]. Price varies
from vendor to vendor and depends on different functionalities of each sensor device.

• Servers: Cost of the server ranges from USD $1000 to USD $2000 [62]. Price varies from vendor
to vendor and depends on specification, performance, and support. The alternative is to use the
commodity hardware that is most cost-effective and inexpensive than the higher-specification
server [63].

Singh and Reddy (2015) suggested two different type of scaling to minimize cost investment.
Scaling itself is the ability of the system to handle and adapt while the number of data that should be
processed are increased [64]. The two types of scaling itself are:

• Horizontal Scaling: Horizontal scaling involves distributing workload across many servers
in clusters. Those servers usually are commodity hardware that are not high-specification
servers. Horizontal scaling also known as “scale-out”, where multiple commodity servers are
added together into cluster to improve processing capability. This is usually cost-effective and
inexpensive while achieving high processing capability [65].

• Vertical Scaling: Vertical scaling involves adding more processors, more memory and higher
specification hardware within one server. It is also known as “scale-up” which by replacing
the processor and RAM with higher specification, or buying expensive and high-specification
server [64].

Advantages and disadvantages of using horizontal and vertical scaling are shown in Table 6.
While scaling-up vertically can make management and installation straight-forward, it limits scaling
ability of a platform since it requires a large amount of financial investment. To manage future
workloads, one always will have to add additional or replacement hardware that is more powerful
than previous requirements due to limited space and number of expansion slots available in a server.
This forces the manufacturing to invest more than what is required for current processing needs and
costs much more than horizontal scaling.

Conversely, scaling-out horizontally provides a manufacturing the ability to increase performance
in small commodity hardware that lowers financial investment. Also, there is no limit to the
number of commodity hardware that can be added into the cluster. Despite these advantages,
the main drawback is limited availability of software frameworks that can be effectively used by
horizontal scaling. The proposed OSRDP architecture framework consists of open source-based
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technologies that effectively and efficiently work well with horizontal scaling, thus it is cost-effective
for manufacturing industry.

Table 6. A comparison of advantages and disadvantages of horizontal and vertical scaling [63,64].

Scaling Type Advantages Disadvantages

Horizontal

- Much lower cost than
vertical scaling

- Software has to handle all the data
distribution and parallel
processing complexities

- Easier to run fault-tolerance
- Limited number of software are

available that can take advantage
of horizontal scaling

- Ability to scale out as much
as possible

- Higher utility cost (Electricity
and cooling)

- High availability

Vertical

- Most of the software can easily
take advantage of vertical scaling

- Requires huge amount of
financial investment

- Less power consumption than
running multiple servers

- Greater risk of hardware failure
causing bigger outages

- Easy to manage and install
hardware within a single machine

- Generally vendor lock-in and
limited upgradeability in
the future

- Low availability

5.2. The Impact Analysis of the OSRDP Architecture Framework on the Manufacturing Sustainability

This section provides detailed analysis of the proposed OSRDP architecture framework’s effect
on manufacturing sustainability, especially in terms of reducing investment cost and labor cost.

Reducing the investment cost by choosing the open-source technology: According to results of the survey
that has been conducted by Walli et al., a majority of U.S. companies and government institutions
are turning to open source software instead of using commercial software packages [66]. Some 87%
of the 512 companies surveyed are using open source software. Larger companies are more likely
to be open source users: all 156 companies with at least USD $50 million in annual revenues were
using open source. Those companies and government institutions used open source for three primary
reasons: to reduce information technology (IT) implementation costs [17,18], deliver systems faster,
and make systems more secure. In addition, many organizations are saving millions of dollars on IT
implementation by using open source software. In 2004, open source software saved large companies
(with annual revenue of more than USD $1 billion) an average of USD $3.3 million. Medium-sized
companies (between USD $50 million and USD $1 billion in annual revenues) saved an average USD
$1.1 million. Firms with revenues less than USD $50 million saved an average USD $520,000. Some 70%
of large firms are seeing moderate or major benefits from open source. Of the companies under USD $1
billion in revenues, 59% are reaping major benefits. According to the report for the UK Cabinet Office
supported by Open Forum Europe, the first reason for adopting the OSS technology is to reduce the
vendor lock in and the second is value for money [67]. In addition, by adopting the OSS technology
not only can reduce the vendor lock in, but also can increase the innovation opportunities, support
a more agile development process, and provide a safeguard for sustainability of code. The proposed
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OSRDP architecture framework is based on open-source technologies, and thus the manufacturing
industry can adopt it with less investment. Therefore, the proposed OSRDP architecture framework
will support the manufacturing industry’s sustainability.

Reducing the labor cost: Data mining has been used in various process for optimization, monitoring
and control applications in manufacturing, and predictive maintenance in different industries [68–72].
In addition, data mining also has been used to reduce cycle time and scrap, and improve resource
utilization in certain NP-hard manufacturing problems. Data mining has powerful tools for continuous
quality improvement in a large and complex process such as semiconductor manufacturing [69,70,72].
Data mining techniques provide promising potential for improving quality control in manufacturing
systems [73], especially in complex manufacturing environments wherein detection of causes of
problems is difficult [16]. Currently, the process to ensure the quality of the product in manufacturing
is based on the visual inspection, and these operations increase the cost and the resources during
the process [15]. The proposed OSRDP architecture framework utilized data mining algorithm to
detect quality of the product in real-time. Thus, it is expected to support the management in their
decision-making for product quality inspection and reduce the labor cost. This benefit will facilitate
the manufacturing industry to achieve one of the aspects of sustainability, to reduce the cost during
quality product inspection.

6. Conclusions

In this study, an OSRDP architecture framework for manufacturing sustainability was proposed.
The OSRDP architecture framework can be used to solve the real-time data processing issues and
support manufacturing sustainability. The OSRDP used several open source-based big data processing
such as Apache Kafka for handling fast data, Apache Storm for real-time processing and quality
monitoring, and MongoDB for storing sensors data. The results showed that the proposed system is
capable of processing a massive sensor data efficiently when the number of sensors data and devices
increases. Data mining based on Random Forest is presented and successfully predict the quality
of products given the sensor data as the input. The OSRDP architecture framework utilizes open
source-based technologies thus it is expected to reduce the investment cost. In addition, the data mining
technique is applied to detect the product quality, thus it is expected to support the management in
their decision-making and reduce the labor cost.

We obtained promising preliminary results of OSRDP architecture framework. Therefore,
we must investigate the optimal design of OSRDP architecture framework that can be applied for
general manufacturing process in the future. It is necessary to make a further enhancement of
data mining algorithm by using historical sensors data and improving processing performance
by providing auto-load-balancing between the cluster. In addition, a comprehensive technical
guideline can be provided in the future to enable the industrial practitioners to implement it in
their manufacturing process.
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