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Abstract: Price forecasting plays a vital role in the day-ahead markets. Once sellers and buyers access
an accurate price forecasting, managing the economic risk can be conducted appropriately through
offering or bidding suitable prices. In networks with high wind power penetration, the electricity
price is influenced by wind energy; therefore, price forecasting can be more complicated. This paper
proposes a novel hybrid approach for price forecasting of day-ahead markets, with high penetration of
wind generators based on Wavelet transform, bivariate Auto-Regressive Integrated Moving Average
(ARIMA) method and Radjial Basis Function Neural Network (RBFN). To this end, a weighted time
series for wind dominated power systems is calculated and added to a bivariate ARIMA model
along with the price time series. Moreover, RBFN is applied as a tool to correct the estimation error,
and particle swarm optimization (PSO) is used to optimize the structure and adapt the RBEN to the
particular training set. This method is evaluated on the Spanish electricity market, which shows the
efficiency of this approach. This method has less error compared with other methods especially when
it considers the effects of large-scale wind generators.

Keywords: bivariate ARIMA; hybrid method; price forecasting; wind generator; wavelet transform

1. Introduction

The restructuring of the electricity market all over the world has meant that the market price
has become competitive, based on the interaction among supply and demand functions. All market
players, including suppliers and buyers, are competing to take the most advantage, and bid and offer
the most suitable prices to the market operator [1].

Market prices follow a seasonal pattern. Once the electricity demand is low, producers use units
with the lowest operation cost. On the other hand, costly units have to be committed in winter or peak
hours. Therefore, the market price tends to be around a mean price which is determined by the main
market players. A number of approaches have been applied using time series in order to forecast and
model the short-term market price behavior.
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Some of the stochastic time series are autoregressive (AR), moving average (MA), auto-regressive
moving average (ARMA) [2], auto-regressive integrated moving average (ARIMA) [3], and generalized
autoregressive conditional heteroskedastic (GARCH) [4]. Moreover, the time series can be classified
into the stationary and non-stationary processes. AR, MA and ARMA are satisfied stationary conditions.
ARIMA and GARCH are satisfied non-stationary conditions. Since electricity prices have a seasonal
trend in the time series, such data are placed in non-stationary conditions; therefore, ARIMA and
GARCH methods are suitable for price forecasting.

Unlike the demand series, electricity prices series presents variable mean and variance [5].
To tackle this problem, discrete Wavelet transform (DWT) is applied to convert the electricity price series
into several subseries which include a more stable variance and mean, where DWT is a well-behaved
time series and leads to more accurate predictions [6,7]. Each subseries is separately predicted by the
ARIMA model. Such models present the electricity market price as a function of the historical amount
of electricity market prices and prior error items. Finally, using the inverse Wavelet transform (WT),
the final forecast returns to the original domain [8,9]. For example in [10], electricity prices series are
divided into three components and ARIMA predicts each subseries. Some articles have used GARCH
to predict the electricity prices. In [11], the authors have applied WT, ARIMA model, and GARCH to
forecast electricity market prices.

Since most of the time series are linear and the electricity prices are an inherently nonlinear
function [12], other approaches which are based on artificial intelligence, neural networks (NN) [13-20],
and agent-based simulations [21] are applied to capture completely the behavior of electricity market
price. Some other methods based on artificial NN consist of multilayer perception NN [22], decoupled
extended Kalman filter [18], cascaded NN [23,24]. Several approaches are usually compared with each
other to evaluate the merits of each forecasting method.

In this work, a novel method is proposed for the short-term electricity price forecasting by
considering the effect of wind power generators. This hybrid method includes WT, Bivariate ARIMA
(BARIMA) and RBEN. To this end, an hourly weighted wind speed time series is launched, and along
with electricity prices, time series is decomposed to some subseries via WT electricity market prices.
Each subseries is predicted through BARIMA in order to consider the effect of wind speed on the
hourly electricity price, which has never been studied in previous work. Outputs of the BARIMA
model are recomposed via inverse WT. Finally, the error of WT and BARIMA (W-BARIMA) is corrected
via RBEN to pick up the nonlinear patterns hidden in the residual terms.

Therefore, the contributions of the paper are, briefly, as follows:

e  Electricity price forecasting in a system with high penetration of wind power generators;
e Considering the effect of wind speed on hourly electricity price;
e  Proposing a hybrid forecasting method including WT, Bivariate ARIMA and RBEN.

The remainder of this work is classified as follows: presenting the proposed electricity market
prices forecasting method is in the second section. The evaluation the prediction accuracy is expressed
in the third section. In the fourth section, the numerical study is introduced and some conclusions are
outlined in the fifth section.

2. Proposed Electricity Market Prices Forecasting Method

2.1. Wavelet Transform

A WT is a mathematical tool for signal analysis. The key concept in Wavelet analysis is to
select a proper wavelet called mother wavelet, such as Herr Wavelet, Meyer wavelet, Coiflet wavelet,
Morlet wavelet. Then an analysis is performed using its translated and detailed version.
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There are several WT such as continuous Wavelet Transform (CWT) which is also known as
integral wavelet transform (IWT), DWT, and fast discrete wavelet transform (FWT) which is also
known as multi-resolution analysis (MRA). CWT is defined as follows for a signal called f(¢) [10,25]:

t—>b
a

+oo
(Wab) =a~d [ fp(—at M

where §(t) is the mother Wavelet. The value of the WT (W¢)(a, b) is known as Wavelet coefficient which
stands for the similar degree between the signal and the Wavelet at the translation b, which means the
time shift, and the dilation a4, which means the time scale. In fact, it indicates how many components
of wavelet at dilation a are included in the original signal at translation b.

For computer performance, DWT is the most applied. Similar to fast Fourier transform (FFT),
there is a fast algorithm for DWT called fast DWT.

In this method, an original discrete signal is decomposed into two components c¢; and d; through a
low-pass filter and a high-pass filter, respectively. The aforementioned transformation is an orthogonal
decomposition of signal and c¢; is approximation of signal which includes low frequency components
and d; is the details of the signal related to high frequency components. Afterwards, c; is again
decomposed into new approximation c; and new detail d, through a bigger scale. This procedure and
decomposition can be done repeatedly, according to the application. The original signal can be also
reconstructed through all approximations and details [7].

However, while FFT and WT are both domain transform functions, FFT has some disadvantages.
The first is that frequency information is only able to be extracted for the complete duration of the
signal. Another disadvantage is that the phase shift; both of these disadvantages can be overcome
through WT. One of the other advantages of WT is adjusting of the window widths automatically.
It means that in WT at low frequency, the window widths are longer and at high frequency the
window widths are shorter, whereas both are fixed in the FFT. Therefore, WT can provide better
time resolution for high frequency components and better frequency resolution for low-frequency
components. Moreover, due to the shorter time-window, the phase shift is hardly observed [11].

In this work, two time series, including the time series for market price data and weighted time
series for wind speed, are decomposed to some subseries through described DWT. After forecasting
the procedure, all the forecasted volumes obtained from time series are converted to day-ahead market
price through inverse DWT.

2.2. Radial Basis Function Neural Network (RBFN)

RBEN has three levels including input layer, hidden layer and output layer. Some of the
advantages of RBEN in comparison with other neural network are the rapid training phase, the simple
architecture and also maintaining complicating mapping abilities [7,25-27].

The input layer involves signal source nodes. The output layer has a linear feature; however,
the hidden layer is nonlinear and its varying function is a radial basis function. The Gaussian function
is mostly used as a basic function. Usually, the output node combines the outputs of the hidden nodes.

The learning procedure of RBEN includes two stages. In the first stage, unsupervised methods
are used in the training of hidden layer to specify the centric value vectors of Gaussian basis function
and weights from the input layer to the output layer. In the second stage, the output layer is trained
via a supervised method to determine the weights from the hidden layer to the output layer [28].

2.3. Bivariate ARIMA-Wavelet and RBFN

There are two ARIMA models for price forecasting including univariate and multivariate
models [29]. In the univariate model, using the historical electricity price variation, price forecasting is
implemented [30]. However, in the multivariate model, in addition to price data, other variables are
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taken into account [31]. Interaction among electricity market prices and other variables of the power
system, which are mostly economic indices such as fuel cost, is another application of this method.

Most of the multivariate models have been applied for long-term and mid-term forecasting;
although this method has been utilized for short-term forecasting in this work. A bivariate model
based on price series, as well as wind speed series for price forecasting, has been applied in this paper
for price forecasting.

For stationary time series, ARMA is used, however in the case of any seasonal trend in the time
series, the ARIMA model, which is the combination of MA and AR is applied. The general model
of ARIMA is the ARIMA(; 4,5, where p is the number of autoregressive terms, d is the degree of
differencing to make the model stationary, and g is the number of moving average or lagged forecast
error in the model.

ARIMA has three stages. First of all, the suitable model should be identified. In other words,
the proper quantity of p, g and d should be determined in order to obtain a model that is worth further
investigation. Second, parameters should be initially estimated and finally, the model should be
checked to see it if it fits the data.

ARIMA models allow for each variable to be explained by historical data and error items. In this
model, the deferential function is applied 4 times on time series to turn it into the stationary time series
and then the ARMA model is applied. The univariable model of ARIMA is as follows [3,32]:

Yy =00+ Q1yi—1 + @ays—2+ ...+ PpYt—p + € — 01641 —brep_p— ... — Gqst—q 2)

where ¢ and 6 are constant coefficients of variable and error, respectively. Moreover, y and ¢ are the
variable and error variable. With this univariable ARIMA model, only the effect of past electricity
price variables on electricity price, can be considered. In a wind generator dominated power system,
the electricity market price depends remarkably on wind power production; therefore, in addition to
past electricity market prices, the effect of prior wind speed volumes should be taken into account.
In other words, (2) is not suitable for our purpose because we want to have two variables including
electricity price and wind speed in the prediction processor; however, (3) can be applied to forecast
our proposed model. Accordingly, the BARIMA model has been considered as follows [32]:
ye=b0+ 91y + 0y b o), ey ey,
+ep — 01641 — bres_n— ... — Qth,q

where the superscripts indicate the first variable (electricity market price) and second variable
(wind speed). Since both of these time series are somewhat chaotic, and in this sense, it is required
to decompose the time series into several more homogeneous subseries. The time series can be
decomposed to three subseries [10], five [33], and up to seven subseries [34] depending on type and
frequency of the variation. In this work, time series is decomposed into four subseries.

Hourly wind speed is not constant all over parts of the network. Moreover, the impact of wind
speed on market price in the region with more wind power generators is remarkably higher. Since in
this model, previous wind speeds should be considered as time series, it is proposed that prior wind
speed data from different areas are weighted based on wind production capacity. It means the impact
of wind power capacity in different parts of network on electricity price is taken into account via the
weighting factor definition for wind power capacity in different regions. Wind speed weighting is
presented in the following equations.

Equation (4) is the calculation of the capacity factor Kw; in ith region of the power system with
a specific capacity of wind power generators. According to (4), the capacity of power generator
WindiC”p in ith region divided to total wind power capacity, which is the summation of all wind power

generators capacity, ):}/ii{’dN"Windfap, which leads to obtaining the wind weighting Kw; for each
region i.
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This coefficient is used in Equation (5) to multiply the wind speed data in a region at the specific
time, Wind; ;. The summation of this parameter for all regions leads to achieving actual wind speed
time series for a time, Wind‘f”, which is used as an input for DWT, based on

o Wind:" A
wi = WindNo Ca ( )
Y. Wind "
i=1
WindNo
Wit =Y Kw;-Wind;, (5)

i=1

Accordingly, for each part of the power system with a wind generator, the time series related to
wind speed is extracted. Afterwards, through Equations (4) and (5), a weighted time series for wind
speed for the whole network has been calculated. Two time series including time series for market
price data and weighted time series for wind speed are decomposed to some subseries through WT.

The all future volumes of electricity price in the subseries are predicted through the BARIMA
method according to Equation (3). Finally, all these forecasted volumes obtained from time series are
converted to the day-ahead market price through inverse DWT.

In this work, hourly wind speed and electricity market price data from four days (96 h) to fifty
days (1200 h) before the current day (forecast time ) are applied as an input time series for WT, which
decomposes the time series into three levels. Outputs of WT, which are four time series, go to ARIMA
model for forecasting. ARIMA outputs are turned into forecasted prices and wind speed data through
inverse WT for one day (24 h) to five days (96 h) before forecasting time ¢. Since this forecasting is for
five days before current forecasting time, this information can be used for calculation of forecast error.

Therefore, the forecasted amount of W-BARIMA is compared with an actual one to estimate the
forecast error and train the RBFN using PSO method. Afterwards, the forecast electricity price and
wind speed at the forecast time ¢ can be predicted using W-BARIMA-RBFN method and data from
fifty days (1200 h) to 24 h before the forecast time t¢.

Moreover, according to Figure 1, the proposed methodology consists of two main parts. The first
part (upper part in Figure 1) is for the calculation of forecast error. In this part, time series of price and
wind speed from data ranging from fifty days to five days prior are decomposed to four subseries
through BARIMA, and after forecasting procedure, the wind speed price time series from five day to
1 day before prediction time are obtained, separately.

These predicted data are compared with the actual data to achieve the forecast error of the method
and train the RBFN. The output of this part is the error of the forecasting method, which is used in the
second part (lower part in Figure 1). Indeed, in the second part, the forecasting for the prediction time
is conducted through time series of electricity price and wind speed from the data ranging from fifty
days to one day prior prediction time. After the forecasting procedure, the output is corrected by the
forecast error obtained in the first part. Figure 1.
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Figure 1. Proposed method for electricity price forecasting.

3. Prediction Accuracy

To evaluate the accuracy of this W-BARIMA, three indices for error prediction, including hourly
error, 168 h weekly error and weekly error variance are computed. Per unit, weekly error can be

calculated as follows [8]:
1 168 |P;tlrue _ Pﬁst|

- 6
Cweek 168h:1 ﬁi;g:k ( )
where:
—true 1 L true
Prpeer = @ZP}[ ()
h=1

Weekly variance error can be calculated as follows:

2
1 168 {ptrue _ Pest’
2 h h
Ueweek = 168h:1 P?gée - (eweek) (8)

4. Numerical Study

The proposed method, W-BARIMA-RBEN is implemented on the mainland electricity Spain
market for four weeks in order to assess the capability and accuracy of the model. This method, without
considering RBEN, is performed as well to show the impact of RBEN. Moreover, the comparison among
the proposed method and other forecasting models, including ARIMA, W-ARIMA, W-ARIMA-RBFN
and W-BARIMA, is conducted. Each week is related to a season.

The first week is associated with Winter 22 to 28 February, the second week is respect to Spring
25 to 31 May, the third week is regarding Summer 25 to 31 August and the fourth week is related to
Autumn 24 to 30 November.

For the electricity price forecasting in winter, the hourly electricity market and wind speed
for the past fifty days are required. For example, for electricity price forecasting on 22 February,
hourly electricity prices and wind speed from 3 January to 21 February are needed. Comparison with
actual data and predicted ones, the merit of the proposed forecasting method are assessed. Hourly
electricity price from [35] and wind speed data from [36] are extracted.

Spain’s power system consists of more than 20,000 MW wind power capacity, which is 20 percent
of Spain’s total power production capacity. In this work, to generate weighted wind series, only wind
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power producers with a capacity of more than 300 MW are considered and the impact of other smaller
wind power producers (wind power operators) on electricity price is neglected. The reason why only
more than 300 MW wind farms are selected, is that smaller-scale ones have lower impact on wind
speed wind weighting Kw; and the focus of this study is on the transmission level. Hence, eight wind
power producers in different Spain’s regions are considered Table 1.

Table 1. Spain’s wind power generators data.

Average Wind Speed (Knot)

Region Capacity (MW) Kw;
February May August November

Galicia 3238 0.172 7 9 6 6
Navarra 976 0.052 3 5 5 5
Asturias 414 0.022 8 7 7 8
Aragon 1751 0.093 2 4 3 3
Castilla y Leon 4540 0.241 10 7 8 9
Castilla la Mancha 3761 0.199 5 7 6 6
C. Valenciana 1174 0.062 3 4 4 4
Andalucia 2993 0.159 5 6 5 5

Based on Table 1, the wind speed in Castilla y Leon has the most effect on the weighted
wind series. A comparison of forecasting results among the proposed method (W-BARIMA-RBFN)
and other methods including ARIMA [3], W-ARIMA [10], W-ARIMA-RBEN [8], W-BARIMA
and W-BARIMA-RBEN are shown in Figure 2. Moreover, another comparison for weekly error
and weekly error variance between the proposed method and other methods are demonstrated
in Figures 3 and 4, respectively.

According to the results, weekly error and weekly error variance for W-BARIMA is less than
ARIMA and W-ARIMA. However, the weekly error variance of W-BARIMA for all 4 months and
weekly error of W-BARIMA for February, May and August is more than W-ARIMA-RBFN BARIMA.

Moreover, all errors of the proposed method, W-BARIMA-RBEN, for all seasons are, overall, less
than other methods analyzed. Therefore, performing the W-BARIMA is not enough to have an accurate
price forecasting, and RBFN should be applied to reduce the forecasting errors.
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other methods.
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Figure 4. Comparison weekly error results among W-BARIMA-RBFN method and other methods.

In Figure 5, a comparison of various forecasting methods is conducted to show the difference
between the actual electricity price and the forecasted one. Accordingly, the proposed method has the

lowest difference among actual and forecasted price.
Furthermore, in Figure 6, the variance of different forecasting methods is demonstrated. As can

be seen, ARIMA has the worst, and the proposed method has the best situation, in these figures.
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Figure 5. Difference between the actual and forecasted amount of electricity price in various
methods. (a) Auto-Regressive Integrated Moving Average (ARIMA) method; (b) Wavelet Transform
Auto-Regressive Integrated Moving Average (W-ARIMA); (c) Wavelet Transform Auto-Regressive
Integrated Moving Average Radial Basis Function Neural Network (W-ARIMA-RBFN); (d) Wavelet
Transform Bivariate Auto-Regressive Integrated Moving Average (W-BARIMA); (e) W-BARIMA-RBFN.
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Figure 6. Variance for different forecasting method (a) ARIMA; (b) W-ARIMA; (c) W-ARIMA-RBFN;
(d) W-BARIMA; (e) W-BARIMA-RBFN.

5. Conclusions

In this paper, a hybrid method has been utilized to forecast day-ahead prices in a competitive
electricity market with high penetration of wind power generation. In the proposed methodology,
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a combination of Wavelet transform, bivariate ARIMA, and RBEN has been applied. In addition to
past electricity price data, prior wind speed data has been added as a second variable to the ARIMA
method as well. One of the merits of the proposed model is to consider the effects of large-scale
wind generators on electricity prices through the bivariate ARIMA,; therefore, it is useful indeed for
modern electricity markets that have many wind generators. Moreover, adding the RBFN method
to W-BARIMA has a remarkable impact on decreasing forecasting errors, achieving more accurate
results as compared with other methods. For future work, considering the uncertainty analysis and
small-scale wind farms would serve as significant contributions to the research field.
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Abbreviations

AR Autoregressive

ARIMA Auto-Regressive Integrated Moving Average

ARMA Autoregressive moving average

BARIMA Bivariate Auto-Regressive Integrated Moving Average
CWT Continuous Wavelet transform

DWT Discrete Wavelet transform

FWT Fast Wavelet transform

IWT Integrated Wavelet transform

GARCH Generalized autoregressive conditional heteroskedastic
NN Neural Network

MA Moving average

PSO Particle swarm optimization

RBEN Radial Basis function neural network

WT Wavelet transform

W-ARIMA Wavelet transform with ARIMA

W-ARIMA-RBFN Wavelet transform with ARIMA and RBFN
W-BARIMA Wavelet transform with BARIMA

W-BARIMA-RBFN  Wavelet transform with BARIMA and RBFN
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