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Abstract: With the increasing interest in online shopping, the Last Mile delivery is regarded as one of
the most expensive and pollutive—and yet the least efficient—stages of the e-commerce supply chain.
To address this challenge, a novel location-routing problem with simultaneous home delivery and
customer’s pickup is proposed. This problem aims to build a more effective Last Mile distribution
system by providing two kinds of service options when delivering packages to customers. To solve
this specific problem, a hybrid evolution search algorithm by combining genetic algorithm (GA) and
local search (LS) is presented. In this approach, a diverse population generation algorithm along with
a two-phase solution initialization heuristic is first proposed to give high quality initial population.
Then, advantaged solution representation, individual evaluation, crossover and mutation operations
are designed to enhance the evolution and search efficiency. Computational experiments based
on a large family of instances are conducted, and the results obtained indicate the validity of the
proposed model and method.

Keywords: location-routing problem; simultaneous home delivery and customer’s pickup;
genetic algorithm

1. Introduction

The rapid development of e-commerce has generated growing interest in online shopping.
Taking China as an example, according to China’s E-commerce Report 2015 [1], in 2015, the e-commerce
transactions totaled 2.5 trillion US dollars and online shopping transactions accounted for 80% of
the total e-commerce transactions with an increasing rate of 27.2% compared to 2014. The sharply
increased online shopping market leads to an explosive growth of city distribution demand. The annual
package delivery quantity reached 20 billion in 2015, leading China to rank first in the world. The Last
Mile delivery works as the final stretch that delivers consignments to the recipients [2] and plays
an indispensable role in promoting e-commerce development. A survey showed that 85% of buyers
who received their orders on time would purchase online again compared with those 33% who received
delayed orders [3]. Different to traditional city distribution, the customers engaging in online shopping
are spatially distributed and have personalized delivery demands, rendering the Last Mile delivery
the most expensive and pollutive, as well as the least efficient, stages of the whole e-commerce supply
chain, accounting for 13% up to 75% of the total supply chain costs [4]. Thus the Last Mile delivery
problem has recently garnered a great deal of attention from the government and all the stakeholders
of e-commerce supply chain.
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In the Last Mile delivery, the most widespread delivery mode is home delivery (HD), by which
couriers send packages directly to a customer´s home or office. HD service provides a face-to-face
opportunity with customers, but its low operational efficiency is likely to make it undesirable to handle
mass orders, thereby increasing operation costs [5]. Subsequently, another kind of service named
customer’s pickup (CP) has been widely accepted by both couriers and customers. More precisely,
CP service allows customers to retrieve their packages at a facility close to their home or work
(we refer to it as pickup point). By providing such an option that allows packages to be delivered to
a facility with a large storage area, efficiency will be improved while maintaining personalized service.
Customers can pick up their packages at their convenience, thus improving their satisfaction. As the
key issue for the Last Mile delivery is to efficiently design the Last Mile delivery system [6]. To better
deal with the Last Mile delivery problem we are facing, in this paper, we proposed a novel multi-depot
location-routing problem with simultaneous home delivery and customer’s pickup (LRPSHC). In this
problem, each customer can be serviced either by HD or CP; the purpose is to decide on the location of
pickup points and customers’ service options, as well as schedule the vehicles in order to minimize
the total operation costs. For solving this problem, a hybrid evolution search algorithm by combining
genetic algorithm (GA) and local search (LS) is designed. This research allows us to operate the Last
Mile delivery in an economical and sustainable way.

The remainder of this paper is structured as follows. The next section provides a comprehensive
review of the recent research on Last Mile delivery and the variants of the location-routing problem,
as well as the solving methods. Section 3 details the description and formulation of the proposed
LRPSHC. In Section 4, the proposed hybrid evolution search algorithm is presented. Section 5 displays
the results of the computational experiments and the discussion. Conclusions are given in Section 6.
Finally, future research directions are given in Section 7.

2. Literature Review

Realizing that the Last Mile delivery is one of the most expensive stages of the entire e-logistics
chain, a cost simulation tool was developed by Gevaers et al. [7] to simulate Last Mile delivery costs.
According to their research, changes within Last Mile characteristics significantly influence cost. To
more clearly show how certain factors affect the Last Mile delivery cost, customer density and delivery
window size were considered by Boyer et al. [8]. Simulation results showed that greater customer
density and longer delivery windows benefit the delivery efficiency enormously. Based on three
delivery modes—HD, reception box and collection-and-delivery points—Wang et al. [5] undertook
a quantitative study of the competitiveness of the three modes through analyzing the delivery cost
structure and operation efficiency in different scenarios, which helps identify the most suitable mode
for different customer distribution densities. Hayel et al. [9] proposed a queuing model to describe the
Last Mile delivery system with HD and CP options. Considering the monetary and congestion effect
of the two options, a game-theoretical approach was designed for determining the optimum option
a consumer would make. Aized and Srai [4] provided a conceptual approach for modeling the Last
Mile delivery system based on hierarchy to support the routing planning.

Another key issue related to our research is the location-routing problem (LRP). Several recent
surveys are available which help provide a comprehensive overview of the studies about LRP, such as
the work of Lopes et al. [10], and most recently that of Prodhon and Prins [11] and Drexl and
Schneider [12]. Among these studies, LRP variants were demonstrated, including open LRP [13],
LRP with time windows [14,15], LRP with split demands [16], LRP with subcontracting options [17],
LRP with simultaneous delivery and pickup [18–22], LRP with depots connected by ring [23], and more
complex variants with multi-period planning [24,25] and inventory management [26–28]. Another key
variant of the LRP is two-echelon LRP [20,22,29–31].

When it comes to the solving approaches, both exact algorithms and heuristics were proposed to
solve LRP and its variants. Interested readers are encouraged to examine the research of Lopes et al. [10],
in which a review of the solving methods was provided. For the recent and relevant approaches,
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one can find ant colony optimization (ACO) [32], genetic algorithm(GA) [33,34], simulated annealing
(SA) [13,35], simulated annealing with variable neighborhood search (SA-VNS) [18], local search
(LS) [20], greedy randomized adaptive search with evolutionary local search (GRASP+ELS) [36],
granular tabu search (GTS) [37], granular tabu search with variable neighborhood search (GVTNS) [38],
multi-start iterated local search with tabu list and path relinking (MS-ILS) [31] and multi-start simulated
annealing heuristic (MSA) [21]. The most related methods are the metaheuristics hybrid with GA and
LS. Prins et al. [39] presented a memetic algorithm with population management (MAPM). The main
idea behind MAPM is that LS is used to improve the solution generated by GA. A similar method was
described by Derbel et al. [40]; iterative local search [41] is adopted to improve the solution generated
by the GA. Marinakis and Marinaki [42] formulated a bi-level programming for LRP, and a bi-level
GA was designed to solve the problem accordingly. In this method, GA is used to locate the facilities
in the first level and the VRP in the second level is solved by expanding neighborhood search (ENS).
Most recently, Lopes et al. [43] proposed a simple and effective hybrid GA with LS procedure that
works as a mutation operator.

By reviewing previous studies, we find that scant research has been conducted on the LRP with
simultaneous HD and CP, and thus comes the main contribution of this study: we propose a novel
location-routing problem with simultaneous home delivery and customer’s pickup for the Last Mile
delivery. Since customers have two available services to choose from—HD to be served by vehicles
directly or CP to pick up their packages from the closest pickup points—delivery efficiency will be
improved and customers’ personalized demands addressed.

3. Problem Formulation

3.1. Problem Description

The proposed LRPSHC can be formally stated as follows. Letting G = (N, A, C) represents
a weighted and undirected network containing a set of vertices N, a set of edge A and a set of connection C.
Where, N = ND ∪ NP ∪ NC, ND = {1, · · · , nd} stands for nd depots, NP =

{
nd + 1, · · · , nd + np

}
stands for np potential pickup points and NC =

{
nd + np + 1, · · · , nd + np + nc

}
stands for nc

customers should be served. Each customer i ∈ NC has a delivery demand qi and a service
time ti, ti = qiuH , where uH represents the unit demand service time. Once selected, a pickup
point p ∈ NP is opened with an opening cost Up containsedcapacity Bp and fixed service time uP.
Set A = {(i, j) : i, j ∈ N} is a set of edges connecting each pair of nodes in N, with each edge (i, j) ∈ A
associated with a routing cost cijand a travelling time tij which are dependent on the distance dij
between nodes i and j, i, j ∈ N. Set C = {(p, c) : p ∈ NP, c ∈ NC} contains the connections between
pickup points and customers, a connection (p, c) occurs only when the distance dpc between the
selected pickup point p ∈ NP and customer c ∈ NC is less than the acceptable distance Dpc. For a given
d ∈ ND, a capacity Sd is associated with it. A fleet of identical vehicles nv with capacity Qv and
maximum working time Tv are available and denoted as VD. Once used, a fixed cost Fv incurs.

In this research, to ensure acceptability and reliability, the following two real-world situations
are considered:

(1) The preference for a customer to choose CP service is based on the acceptable distance to the
closest selected pickup point, and the customer will choose CP service only when within the acceptable
distance Dcp as mentioned before; otherwise, HD service should be provided.

(2) Due to uncertain factors that customers face in real life, HD service may fail for the first
delivery with probability pH with unit second delivery cost µsd.

An example of the Last Mile distribution system with three depots, six candidate pickup points
and 17 customers are given in Figure 1.
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Figure 1. The Last Mile distribution system with simultaneous HD and CP services.

The aim is then to determine the following:

(1) A set of pickup point locations;
(2) Service options for customers;
(3) Assignments between customers and selected pickup points;
(4) Assignments between the selected pickup points and depots;
(5) Vehicles´ scheduling and routing.

Without losing generality, the following assumptions are made:

(1) As online shoppers may be clustered in the same or nearby buildings, all the customers are divided
into small groups according to their locations. We then take each small group as a customer with
fixed demand;

(2) Each customer can be served by either HD or CP service;
(3) We do not consider the operation of the second delivery caused by uncertain factors in the current

scheduling, and take the second delivery cost instead.

3.2. Notions and the Proposed Model

The notions used in the formulation are summarized in Table 1.

Table 1. Notions used in the formulation.

Sets Description

G Network, G = (N, A, C)
N Node set, N = ND ∪ NP ∪ NC
ND Depot set, ND = {1, · · · , nd}
NP Pickup point set, NP =

{
nd + 1, · · · , nd + np

}
NC Customer set, NC =

{
nd + np + 1, · · · , nd + np + nc

}
A Arc set, A = {(i, j) : i, j ∈ N}
C Connection set, C = {(p, c) : p ∈ NP, c ∈ NC}
VD Available vehicle set

Parameters
nd Number of depots
np Number of pickup points
nc Number of customers
dij Distance of arc (i, j) ∈ A
tij Travel time of arc (i, j) ∈ A
cij Routing cost of arc (i, j) ∈ A
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Table 1. Notions used in the formulation.

Sets Description

qi Demand of customer i ∈ NC
uH Unit demand service time for HD service
uP Fixed service time at a pickup point
µsd Probability of the second delivery
Bp Capacity of pickup point p ∈ NP
Sd Capacity of depot d ∈ ND
Up Opening cost of pickup point p ∈ NP
Qv Vehicle capacity
Fv Fixed vehicle cost
nv Available vehicle number
Dpc Acceptable distance for CP service

Decision variables

xd
ijk

Equal to 1 if vehicle k ∈ VD departs from depot d ∈ ND that passes through arc
(i, j) ∈ A; 0, otherwise

yp Equal to 1 if pickup point p ∈ NP is selected to serve customers; 0, otherwise
zip Equal to 1 if customer i ∈ NC is served by pickup point p ∈ NP; 0, otherwise
wpd Equal to 1 if pickup point p ∈ NP is served by depot d ∈ ND; 0, otherwise

ϕd
ijk

Freight transported from depot d ∈ NDby vehicle k ∈ VD that passes through arc
(i, j) ∈ A

Based on the above statements, we now formulate the model for the LRPSHC as follows:

min ∑
p∈NP

Upyp + ∑
d∈ND

∑
k∈VD

Fvxd
djk + ∑

d∈ND

∑
k∈VD

∑
i∈N

∑
j∈N

cijxd
ijk+ ∑

d∈ND

∑
k∈VD

∑
i∈N

∑
j∈N

qi pHµsdxd
ijk. (1)

subject to

∑
j∈N

∑
k∈VD

xd
ijk + ∑

p∈NP

zip = 1, ∀i ∈ NC, d ∈ ND. (2)

∑
d∈ND

wpd ≤ ∑
i∈NC

zip, ∀p ∈ NP. (3)

∑
d∈ND

wpd = yp, ∀p ∈ NP. (4)

∑
j∈N

xd
ijk = ∑

j∈N
xd

jik, ∀i ∈ N, k ∈ VD, d ∈ ND. (5)

∑
j∈N

ϕd
ijk − ∑

j∈N
ϕd

jik = qi, ∀i ∈ NC, k ∈ VD, d ∈ ND. (6)

∑
j∈N

ϕd
ijk − ∑

j∈N
ϕd

jik = ∑
j∈NC

qizjp, ∀i ∈ NP, k ∈ VD, d ∈ ND. (7)

ϕd
dik = ∑

c∈NC

∑
j∈N

xd
cjkqc + ∑

p∈NP

∑
c∈NC

∑
j∈N

xd
pjkqczcp, ∀i ∈ NC ∪ NP, k ∈ VD, d ∈ ND. (8)

ϕd
idk = 0, ∀i ∈ NP ∪ NC, k ∈ VD, d ∈ ND. (9)

ϕd
ijk ≤ Qv, ∀i, j ∈ N, k ∈ VD, d ∈ ND. (10)

∑
i∈NC

qiuHxd
ijk + ∑

p∈NP

uPxd
pjk + ∑

i∈N
∑
j∈N

tijxd
ijk ≤ Tv, ∀k ∈ VD, d ∈ ND. (11)

∑
i∈NC

∑
j∈N

qixd
ijk + ∑

p∈NP

∑
i∈NC

qizipwpd ≤ Sd, ∀d ∈ ND. (12)
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∑
i∈NC

qizip ≤ Bp, ∀p ∈ NP. (13)

∑
d∈Nd

∑
j∈NP∪NC

∑
k∈VD

xd
djk ≤ nv, ∀d ∈ ND. (14)

ϕd
ijk ≥ 0, ∀i, j ∈ N, k ∈ VD, d ∈ ND. (15)

xd
ijk = {0, 1}, ∀i, j ∈ N, k ∈ VD, d ∈ ND. (16)

yp = {0, 1} , ∀p ∈ NP. (17)

zip = {0, 1} , ∀i ∈ NC, p ∈ NP. (18)

wpd = {0, 1} , ∀p ∈ NP, d ∈ ND. (19)

The objective function (1) minimizes the sum of the pickup point opening cost, fixed vehicle
cost, routing cost and the second delivery cost. Constraints (2) ensure that each customer is served
exactly once by either HD or CP service. Constraints (3) impose that once a customer is assigned to
a pickup point, this pickup point should be served by a depot. Constraints (4) make sure that once
a pickup facility is selected, it should be served by a depot. Constraints (5) are the route continuity
constraints that once a vehicle enters a node, it must also leave from it. Constraints (6) and (7) are the
flow constraints for demand of customer and pickup point nodes respectively. Constraints (8) calculate
the demand delivered by vehicles. Constraints (9) specify that the remaining demand of a vehicle is
zero after serving its last customer. Constraints (10) and (11) guarantee that the capacity and working
time of vehicles should be satisfied. Constraints (12) and (13) imply that vehicles should not violate the
capacity constraints of the depots and pickup points respectively. Constraints (14) require that selected
vehicles should not violate available vehicles. Constraints (15)–(19) define all variables.

4. Hybrid Approach

As LRP is an NP-hard optimization problem [40], the multi-pickup point and simultaneous HD
and CP services included in the considered problem have further increased the complexity of the
solution. In this section, a hybrid evolution search algorithm (HGALS) that combines GA and local LS
is presented, which is motivated by the excellent global search ability obtainable by using GA and the
ability in finding local optima by taking LS.

In this algorithm, GA-based operations are intended to guide the global evolution while LS is
taken to find better local solutions both for the initial population and the new generated individuals
during the evolution process. LS is also used to work as a post-optimization procedure in order to
improve the best solutions in each iteration. The solution improved by LS is accepted with probability
1 when the solution is feasible; otherwise, the solution with probability pac is accepted. Additionally,
a hybrid approach along with a two-phase solution generation heuristic is proposed to obtain high
quality initial population; specific crossover and mutation operators are also proposed followed by
a biased fitness function to evaluate the individuals. A high level overview of the presented HGALS is
depicted below.

Step 1: Parameter setting: population size M0, maximum population M, crossover probability,
mutation probability pm, infeasible solution accept probability pac, solution improve probability pls,
terminate condition

Step 2: Taking solution generation and population initialization methods to obtain initial
population P0

Step 3: Improve the population by LS
Step 4: Select individual X1 and X2 from the population following probability pc, conduct crossover

operation to generate offspring Y1 and Y2, apply LS to improve Y1 and Y2 with probability pls, Y1 and
Y2 are improved to be Y1

′ and Y2
′, accept Y1

′ and Y2
′ by probability 1 or pac
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Step 5: Select individual X3 following probability pm to make new solution Y3 by mutation
operation, apply LS to improve Y3 with probability pls, Y3 is improved to be Y3

′, accept Y3
′ by

probability 1 or pac

Step 6: Improve the current best solution Y4 to be Y4
′ by LS, accept Y4

′ by probability 1 or pac

Step 7: If the population reaches M, evaluation individuals and select M0 solutions to make
population P0, turn to step 3; otherwise, turn to step 8

Step 8: If the terminate condition is satisfied, turn to step 9; if not, turn to step 4
Step 9: Output the best solution.
The general structure of the presented HGALS is given in Figure 2.Sustainability 2016, 8, 828  8 of 21 
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4.1. Solution Representation

For a GA-based heuristic, chromosome encoding strategy affects the performance of genetic
operations [40]. Thus, the first and most crucial step in designing GA is to define an appropriate
encoding scheme. According to the characteristics of the considered problem, a mixed encoding
scheme is designed to represent a solution in which each chromosome includes two sections.

The first section is composed of three tiers of gene string with a fixed length of nc. The third tier
is customer tier, which stores the customers. The second tier is used to index the service options
information: if the value of a gene belongs to {nd + 1, . . . , nd + np}, it means that the corresponding
customer in the third tier is served by CP and served by the pickup point. Otherwise, if the value of
the gene is 0, it means that the customer is served by HD. The first tier is for depots and indicates
the assignments between the depots and pickup points as well as depots and the customers with
HD service.

The second section is to deal with the vehicle routing with a permutation of nd depots, np
′ pickup

points selected from NP, nc
′ customers with HD service and a set of dummy zeros. Routes are started
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and ended at the same depots to serve the selected pickup points and customers with HD service one
by one, zeros are used to terminate a route and start a new one in depots.

Figure 3 provides a solution representation of the sample given in Figure 1.
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4.2. Solution and Population Initialization

As the quality of the initial solutions affects the final solution to a large extent, to obtain high
quality initial solutions, we designed a two-phase heuristic named “Routing planning after the pickup
points selection and services determination”. The procedure of the two-phase heuristic is depicted
as follows:

Phase 1: Pickup points selection and service determination.
Step 1: Randomly select a pickup point combination set Nsp ∈ NSP.
Step 2: Sort all the customers according to distance to the pickup points in Nsp, let nc

p be the
number of the customers whose closest pickup point is p, and the corresponding customer set be NC

p .
Step 3: Select the pickup point p with the largest nc

p.
Step 4: If within the pickup point’s capacity, let the service option of its closest customer in NC

p be
CP. Delete the customer in NC and NC

p . If p is in Nsp, delete it from Nsp and put it into NC.
Step 5: If NC

p = ∅, turn to step 2; otherwise, turn to step 3.
Step 6: If Nsp 6= ∅, turn to step 2; otherwise, turn to step 7.
Phase 2: Route planning
Step 7: Let Nc

d be the node set that store the customers with HD service and selected pickup points
in NC and whose closest depot is depot d. Rank all the nodes in NC with the increasing distance to the
depots and put them into the corresponding sets.

Step 8: For each depot d ∈ ND and the nodes in Nc
d, the Traveling Salesman Problem (TSP) can be

applied; the efficient algorithm proposed by Lin and Kernighan [44] can be used for generating the
TSP tour.

Step 9: Split the TSP tour by the method proposed by Prins [45] without violating the vehicle
capacity and working time constraints.

Step 10: Output the solution.
Based on the solution generation heuristic, the diverse population generation procedure is

designed as follows:
Step 1: Randomly generate a non-redundant pickup point combination set NSP with nsp

combinations, letting P0 = ∅.
Step 2: Conduct the solution generation algorithm to generate solution S.
Step 3: If the selected pickup point in solution S already exists in P0, turn to step 1; otherwise,

put S into P0.
Step 4: If the initial population size M0 is reached, turn to step 5; otherwise, turn to step 1.
Step 5: Terminate and output the initial population.
As can be seen by taking the solution and population initialization methods, solutions are

different for selected pickup points and service options, each of which stands for a unique solution
space, which will cover the whole solution space to the largest extent.
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4.3. Fitness Function

To compare two individual factors, the evaluation function F is defined as the sum of
two components which are the objective function value and penalty cost, the evaluation function is
formulated as follows:

F = F0 + α1 · ∆SD + α2 · ∆Bp + α3 · ∆nv + α4 · ∆Qv + α5 · ∆Tv (20)

where, F0 is the objective value of a solution; ∆SD, ∆BP, ∆nv, ∆Qv and ∆Tv stand for the amount that are
beyond the constraints of the depot capacity, pickup point capacity, available vehicles, vehicle capacity
and working time respectively; α1, α2, α3, α4 and α5 are the corresponding constant parameters that
reflect the degree of the penalty.

4.4. Individual Evolution and Selection

In population-based heuristics, one of the greatest advantages is search parallel in wide solution
space, rendering population diversity an important factor that affects the performance. Current
widely used objective function-based individual evolution may shrink the search space and lead to
premature convergence. In this study, we revise the biased fitness function proposed by Vidal et al. [46].
In this method, the objective value of a solution and its contribution to population diversity are
jointly considered.

For an individual I, letting its nclose closest neighbors be stored in set Nclose, the diversity
contribution of individual I to the population in Nclose is defined as the average distance to the
individuals in Nclose computed by Formula (21). A normalized Hamming distance based on pickup
points’ status, customers’ service options and the assignments of two individuals is adopted to show
the difference between solutions. The distance is computed according to Formula (22).

∆(I) =
1

nclose
∑

I1∈Nclose

DH(I, I1) (21)

DH(I, I1) = γ1
1
nc

∑
i≤nc

(1(sci(I) 6= sci(I1))) + γ2
1

np
∑

i≤ns

(1(spi(I) 6= spi(I1)))

+γ3
1
nc

∑
i≤nc

(1(pci(I) 6= pci(I1)))
(22)

where, sci(I) stands for the assignment of customers with HD service, spi(I) stands for the assignment
of pickup facilities and pci(I) stands for the assignment of customers with CP service. γ1, γ2 and γ3 are
the coefficients of the three factors, γ1 + γ2 + γ3 = 1.

Let r(I) be the rank of individual I in a subpopulation with respect to F and the biased fitness
function is given by Formula (23).

FE = r(I)− ∆(I) (23)

It can be seen that, for each subpopulation with nclose customers, when solutions are selected by
elitist strategy, excellent solutions can be protected as well as the diversity achieved.

4.5. Crossover Operation

Crossover operation aims to generate offspring by mimicking mating between parents and
exchanging gene information in the hope that children will obtain the best parts of their parents,
as well as diversify the search. Due to the fact that the genes and length of chromosomes vary in
solutions, a modified two-point crossover is introduced, which is depicted in Figure 4. This crossover
operation is conducted by exchanging the middle part of the second tier of the first section of the
selected two parents between the two selected crossover positions. The process is described as follows:

Step 1: Randomly select a pair of parents P1 and P2 by probability pc from the population.
Step 2: Uniformly select two positions from [1, nc], letting the smaller one be cp1 and the other cp2.
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Step 3: For each gene in position [cp1, cp2], exchange the middle part of the second tier of the
first part of the two chromosomes.

Step 4: Adjust the second sections of the two chromosomes according to the mapping relationship.
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By taking this crossover operation, new solutions are generated by exploring new statuses of
pickup points, customers’ service options as well as the routes.

4.6. Mutation Operation

Mutation operation takes place immediately after the crossover operation, which may help
GA jump out of the local optima by finding uncovered solution spaces [47]. In our research,
we take gene-based mutation, which is conducted on the second section of a chromosome, in the
following process:

Step 1: Select a solution P3 according to probability pm.

Step 2: Randomly select a mutation position cp3 from 1 to L(P3), where L(P3) is the length of the
second section of the chromosome.

Step 3: Identify the type of the selected gene; conduct the following two cases equally.
Case 1: If it is a pickup point, each of the three operators is selected randomly:
Operator 1: Close this pickup point.
Operator 2: Exchange the assigned customers with the closest pickup point if it is open.
Operator 3: Close it and open a randomly selected one which is not in the current solution.
Case 2: If the gene is a customer or zero, remove it and insert it into a randomly selected position

between 1 and L(P3).
It can be seen that, in this crossover, the operation can be performed on all search spaces by

changing the status of pickup points, customers’ service options as well as the routes.

4.7. Local Search

Local search aims to improve the new generated solutions during the evolution process within
a few modifications. As the neighborhood defines the way to produce a new solution, the most
important issue when designing a local search is to identify effective neighborhood structure [40].
For the customers’ service options and vehicle routing in our problem, we design two kinds of
neighborhood structures for service option and vehicle routing respectively.

For the service option neighborhood structure, two moves are included: they are HD to CP and
CP to HD move, namely N1 and N2. More precisely, for N1, we randomly select a customer served by
HD and identify its closest pickup point. If the pickup point is already selected, let the customer be
served by it; otherwise, open the pickup point and serve the customer. For N2, we randomly select
a pickup point and release one randomly selected customer and let him or her be served by HD.

When it comes to routing neighborhood structure, we take the nine route neighborhood moves
proposed by Prins [45] which can comprehensively search the routing space.
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Let T(u) stand for the trip visiting vertex u, x and y which are the successor of u and v in their
respective trips. Define the neighborhood of vertex u as the hnc closest vertices, where h ∈ [0, 1] is
a granular threshold restricting the search to nearby vertices [48]. The following moves are concluded:

N3: If u is a customer or pickup point, remove u then insert it after v;
N4: If u is a customer or pickup point and x is a customer or dummy zero, remove them then

insert (u, x) after v;
N5: If u is a customer or pickup point and x is a customer or dummy zero, remove them then

insert (x, u) after v;
N6: If u and v are customers or pickup points, swap u and v;
N7: If u and v are customers or pickup points, and x is a customer or dummy zero, swap (u, x)

and v;
N8: If u and v are customers, x and y are customers of dummy zeros, swap (u, x) and (v, y);
N9: If T(u) = T(v), replace (u, x) and (v, y) by (u, v) and (x, y);
N10: If T(u) = T(v), replace (u, x) and (v, y) by (u, v) and (x, y);
N11: If T(u) 6= T(v), replace (u, x) and (v, y) by (u, y) and (x, v).
N3 to N5 correspond to insertions, whereas N6 to N8 are swaps. The aforementioned six moves

can be worked on both the intra-route and inter-route. N9 is an intra-route 2-opt, while N10 and N11
are inter-route 2-opt. It can be seen that, compared to the initial moves in Prins [45], zeros are also used
to formulate new neighborhood solutions, which may help to explore the search space.

When applying LS procedure, the above neighborhood moves are selected randomly to generate
a new solution. The procedure terminates when either an improved solution is obtained or all
neighborhood moves are checked without finding a better solution. The structure of LS can be seen in
Figure 2.

4.8. Computational Complexity Analysis

Letting the scale of the considered problem be nd · np · nc, Imax is the maximum iteration.
In the presented algorithm, the computational complexity for population initialization is
O(nsp(np

2 + npnc + ndnc + nc
2)). In each iteration, the computational complexity for decoding,

crossover operation, mutation, evaluation and local search are O(2ns + nc), O(2np(2ns + nc)),
O(2ns + nc), O(M(nsnc + nsnp + npnc)) and O(np · (2ns + nc)

2), respectively. The computational
complexity of the whole algorithm can be calculated as:

O(nsp, M, nd, np, nc, Imax) = O(nsp(np
2 + npnc + ndnc + nc

2)) + O(Imax((M + 4)(2ns + nc)

+2np(2ns + nc) + M(nsnc + nsnp + npnc) + 4np · (2ns + nc)
2)

≈ O(4Imaxnp(2ns + nc)
2)

(24)

As can be seen from Formula (24), the presented method belongs to polynomial algorithm and
can be solved in polynomial time. More specifically, the computational complexity of the algorithm
increases with the iterations and is proportional to np and (2ns+nc)2.

5. Computational Experiments

In this section, we perform numerical experiments to evaluate the overall performance of the
proposed model and method. We first provide the implementation details of HGALS for the parameters
setting. As the proposed problem belongs to a variant of LRP, the performance of the HGALS in
solving LRP is then evaluated based on benchmark instances. Subsequently, a real-world instance is
taken to analyze the effects of simultaneous HD and CP on the Last Mile distribution system. Finally,
the validity of the presented method in solving the proposed problem is verified based on generated
instances. All algorithms are coded in C language and compiled on Visual Studio 2013, implemented
on a PC with an Intel Core Duo CPU at 1.74 GHz and 4GB memory under Window XP system.
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5.1. Parameters Setting

To find suitable parameters, extensive experiments are conducted based on the generated instances
depicted in Section 5.4. For GA-based heuristics, the most important parameter is the population
size; with bigger M0, excellent solutions will be improved with much smaller probability, and it will
take longer to find better solutions. Conversely, the population cannot sample the solution space
which may lead to premature convergence. During the tests, since we found that the suitable initial
population is closely related to np and variable population strategy helps a lot, it was finally decided as
M0 = 4np and M = 2M0. According to the decided M0 and M, pc, pm, pls and pac are selected to be 0.45,
0.25, 1.0 and 0.25 respectively. Other parameters: h = 0.2, α1 = 1000, α2 = 200, α3 = 100, α4 = α5 = 10,
γ1 = γ3 = 0.3, γ2 = 0.4.

5.2. Tests Based on Benchmark Instance

To show that the presented method is suitable to solve LRP, the benchmark instances proposed
by Prins et al. [49] are used, which can be found at http://prodhonc.free.fr/Instances/instances_us.
htm. The designed operators for pickup points are performed on the depots both for the solution
initialization and mutation. For the terminate condition, we take the maximum iterations without
improving the best solution. The specific value depends on instance size: it is 200 for small-sized
instances (n≤ 50), 400 for mid-sized instances (50 < n≤ 100) and 600 for large-sized instances (n > 100).
During the tests, each instance was independently run 10 times; the results obtained by the presented
heuristic are provided in Table 2. For the notions used in the table, LB stands for the best known lower
bound, BKR stands for the best known result, CPU stands for the average running time in seconds and
Gap/BKR stands for the gap to BKR.

From Table 2, we can see that all the instances are solved with an overall average runtime of
277.2 s. Average gap to the best-known solution is 0.47%. For all instances containing 50 or less
customers, the presented method is successful at finding almost all the optimal solutions. Moreover,
for the instances with 100 and 200 customers, the average gap to the best-known solution is not
changed dramatically.

Table 2. Results for the benchmark instances.

Instance LB BKR CPU
Average Best

Result Gap/BKR Result Gap/BKR

1 20-5-1 54,793 54,793 1.8 54,836 0.08 54,793 0
2 20-5-1b 39,104 39,104 2.2 39,104 0 39,104 0
3 20-5-2a 48,908 48,908 1.5 48,908 0 48,908 0
4 20-5-2b 37,542 37,542 2.6 37,542 0 37,542 0
5 50-5-1 90,111 90,111 12.9 90,130 0.03 90,111 0
6 50-5-1b 67,340 63,242 17.8 63,242 0 63,242 0
7 50-5-2 88,298 88,298 24.3 88,643 0.40 88,643 0.39
8 50-5-2 67,340 67,340 21.4 67,340 0 67,340 0
9 50-5-2bis 84,055 84,055 20.8 84,139 0.10 84,055 0

10 50-5-2bbis 51,822 51,822 16.2 51,958 0.26 51,822 0
11 50-5-3 86,203 86,203 19.3 86,456 0.29 86,456 0.29
12 50-5-3b 61,830 61,830 18.1 61,830 0 61,830 0

Avg 13.2 0.10 0.06
13 100-5-1 275,993 274,814 92.1 277,135 0.84 277,035 0.81
14 100-5-1b 214,392 213,615 122.4 2,145,034 0.42 214,313 0.33
15 100-5-2 194,598 193,671 91.8 194,366 0.36 194,124 0.23
16 100-5-2b 157,173 157,095 132.5 157,560 0.3 157,095 0
17 100-5-3 200,246 200,079 124.2 201,844 0.88 201,628 0.77
18 100-5-3b 152,586 152,441 107.7 154,484 1.34 152,992 0.36

Avg 111.8 0.69 0.42
19 100-10-1 290,429 287,695 113.3 291,339 1.27 290,243 0.89

http://prodhonc.free.fr/Instances/instances_us.htm
http://prodhonc.free.fr/Instances/instances_us.htm
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Table 2. Cont.

Instance LB BKR CPU
Average Best

Result Gap/BKR Result Gap/BKR

20 100-10-1b 234,641 230,989 127.5 235,057 1.76 233,512 1.09
21 100-10-2 244,265 243,590 95.6 249,180 2.29 245,123 0.63
22 100-10-2b 203,988 203,988 130.9 205,511 0.74 204,667 0.33
23 100-10-3 253,344 250,882 133.5 257,059 2.46 253,865 1.19
24 100-10-3b 204,597 204,317 122.7 205,449 0.55 205,232 0.48

Avg 120.6 1.51 0.76
25 200-10-1 479,425 475,294 877.1 484,748 1.99 479,926 0.97
26 200-10-1b 378,773 377,043 922.3 382,595 1.47 380,613 0.94
27 200-10-2 450,468 449,006 823.6 451,835 0.63 450,312 0.29
28 200-10-2b 374,435 374,280 789.4 380,667 1.70 375,674 0.37
29 200-10-3 472,898 469,433 865.7 476,230 1.45 473,875 0.94
30 200-10-3b 364,178 362,653 900.5 364,762 0.58 364,201 0.43

Avg 863.1 1.30 0.66
Global Avg 277.2 0.77 0.47

Note: The best known solution values attained are marked in bold.

Moreover, considering the most recent and effective methods in the literature, the performance
comparison is provided in Table 3 based on the CPU and Best Gap/BKR. The compared algorithms
are GRASP in Prins et al. [49], MAPM in Prins et al. [39], LRGTS in Prins et al. [50], GRASP+ELS in
Duhamel et al. [36], SALRP in Vincent et al. [35], ALNS in reference [51], MACO in [32], GRASP+ILP
in Contardo et al. [52], GVTNS in Escobar et al. [38] and Hybrid GA in Lopes et al. [43].

Table 3. Comparison results of the methods.

Algorithm
Performance

Algorithm
Performance

CPU Best Gap/BKR CPU Best Gap/BKR

GRASP 96.5 3.57 MACO 176.4 0.40
MAPM 76.7 1.35 GRASP+ILP 1163.0 0.12
LRGTS 17.5 0.70 GVTNS 91.2 0.37

GRASP+ELS 258.2 1.11 Hybrid GA 199.1 0.32
SALRP 422.4 0.46 HGALS 277.2 0.47
ALNS 4221.0 0.27

Among those compared algorithms, GRASP+ILP is on average the most effective on this set
of benchmark instances followed by ALNS, GVTNS, MACO and SALRP. Our algorithm obtains
similar results with SALRP and performs much better than GRASP, MAPM, LRGTS and GRASP+ELS.
As CPU times depend on many factors (such as computers and programming languages used) [43],
the proposed method seems faster than SALRP, ALNS and GRASP+ILP.

The computational results show that our algorithm can effectively solve the instances and is
applicable to LRP.

5.3. Real-World Instance

This section presents the test based on a real-world Last Mile distribution system of Shapingba
District in Chongqing city. The network consists of three depots (numbered from 1 to 3), 47 candidate
pickup points (with number from 4 to 50) and 136 customers (with numbers from 51 to 186).
The locations of these nodes are shown in Figure 5. Other main parameters are given as
follows: Dpc = 600 m, uH = 1.5 min, uP = 10 min, pH = 10%, µsd = 1.5. For the algorithm
terminate conditions, to get a better solution, we take the maximum iterations Imax and Tmax into
consideration simultaneously; three terminate conditions are considered according to the instance
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scales: (Imax, Tmax) = (1 × 104, 600 s), (2 × 104, 900 s), (3 × 104, 1200 s). After running the algorithm,
the obtained pickup point locations and customer assignments are reported in Table 4, and the vehicle
routing information is given in Table 5.
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Table 5. Results of the instance—vehicle routing.

No. Routing No. Routing

1 1-11-12-10-67-68-1 7 2-156-26-25-143-140-136-22-23-2
2 1-5-51-53-6-1 8 2-31-29-163-164-166-169-34-171-2
3 1-8-57-66-87-84-82-1 9 2-47-176-186-185-184-49-48-2
4 1-70-135-139-24-150-28-133-134-81-1 10 3-40-113-116-121-124-45-117-41-3
5 1-15-88-89-90-96-38-37-99-79-1 11 3-118-44-99-125-109-39-94-17-3
6 1-80-35-127-126-130-156-131-46-100-78-1

To show the advantages of the proposed model, we now report the comparison of the proposed
model with the scenario of only HD service, which can be seen in Table 6.

Table 6. Comparison of the two scenarios.

Item Simultaneous HD and CP Only HD Difference

Vehicle number 11 26 −15
Pickup point number 30 - +30

Fixed vehicle cost 2200 5200 −3000
Routing cost 156 233 −77

Pickup point opening cost 2370 - +2370
Second delivery cost 186 529 −343

Total cost 4912 5962 −1050

From the comparison, it can be clearly seen that although added pickup points cost by providing
CP service, the total cost is reduced by 1050 and accounts for 17.6%. When analyzing the reason, we find
that the vehicles are largely reduced by providing HD and CP services simultaneously, which saved
the fixed vehicle cost and routing cost accordingly. Besides, the increased customers served by CP
reduced the second delivery cost. These two factors work together, reducing the cost to a large extent.

In this research, we take the routing cost cij by dij multiplying the unit routing cost. From the
comparison of the total routing cost of the two scenarios, we can deduce that the travelling distance
is reduced by 33%. As the carbon emission is closely related to the travelling distance, the proposed
model can help to reduce the carbon emission effectively.

As CP service provides an important role in reducing the operation cost, to have more insights,
we conduct a sensitive analysis to show how the acceptable distance Dpc influences the cost. When Dpc

ranges from 100 to 800 with step 100, the results are reported in Table 7 and Figure 6. It is worth
mentioning that the scenario when Dpc = 0 is with only HD service.

Table 7. Results of sensitive analysis of Dpc on cost.

Item
Dpc

100 200 300 400 500 600 700 800

Vehicle number 26 21 13 11 11 11 11 11
Pickup point number - 16 36 33 30 30 30 30

Fixed vehicle cost 5200 4000 2600 2200 2200 2200 2200 2200
Routing cost 233 225 109 157 152 156 156 156

Pickup point opening cost - 1120 2640 2480 2400 2370 2370 2370
Second delivery cost 529 417 140 188 209 186 186 186

Total cost 5962 5762 5489 5025 4961 4912 4912 4912
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From the sensitive analysis, we can see that when Dpc ≤ 100 m, the results obtained are the same
with the only-HD scenario, which indicates that when Dpc ≤ 100 m, CP service shows no advantages
when compared to HD and there is no need to provide CP service. When 100 < Dpc ≤ 600 m,
there comes a continuous fall of the total cost, which means that with the distance increasing, better
solutions are obtained due to the provided CP service. After that, the results stay unchanged which
is constrained by the closest customers and the capacity of pickup points. From a cost optimization
perspective, Dpc = 600 m is the most acceptable distance when designing the Last Mile distribution
system in this instance.

Thus, we can draw the conclusion that, within appropriate acceptable distance Dpc, simultaneous
HD and CP are effective at reducing the cost within a wide range of Dpc, and a suitable distance exists
for each Last Mile distribution system.

5.4. Algorithm Components Performance Analysis

In this section, a computational study is carried out to compare our approach with standard
GA&LS (SGALS) to show the effectiveness of the designed algorithm components in solving this
problem. In the SGALS, random solution generation, objective function-based individual evaluation
and classical single point crossover and mutation on the second tier of the chromosome are considered.

We first generate a set of different scales of instances based on the real-world instance parameters.
For the instances, the number of depots, pickup points and customers range from 2 to 12, 10 to 30
and 50 to 200, respectively. The instances are presented as “I<depot number>-<pickup point
number>-<customer number>”. The instances are generated as follows: depots and pickup points
are randomly decided within the area with a radius of 15 km to reflect the relationship between
the customers and pickup points; customers are randomly assigned within a radius of 1 km
of selected pickup points; the capacity of depots as well as the vehicles are assigned with the
requirement that all customers could be served; the capacity of pickup points are random value
in [100, 120, 150, 180, 200] and the opening costs are [60, 80, 100, 120, 150] accordingly; customers’
demands are random value in [15, 20, 25, 30, 35]. Other parameters are the same to the real-world
instance in Section 5.3. The two algorithms are run ten times independently for each instance; the results
are reported in Table 8.
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Table 8. Comparison results of the two algorithms.

Instance

SGALS HGALS

CPU
Average Best

CPU
Average Best

Result Gap Result Gap Result Gap Result Gap

I2-10-50 272.9 1833.2 1.69 1806.2 0.19 143.2 1804.5 0.99 1802.7 0
I2-15-60 533.7 2473.2 4.56 2382.2 0.71 413.8 2388.6 0.98 2365.3 0
I2-18-80 600.1 3315.7 6.37 3117.1 0 435.6 3202.7 2.75 3117.1 0
I2-20-100 900 4404 14.46 4098.6 6.5 795.1 3958.6 2.88 3847.8 0
I2-22-120 862.3 4471.4 6.81 4220.7 0.82 852.4 4276.1 2.15 4186.3 0
I2-25-150 900 4967.8 6.13 4787.1 2.27 900 4769.3 1.89 4680.8 0
I2-28-180 1183 7166 9.21 7074.4 7.82 1200 6710.6 2.28 6561.3 0
I2-30-200 1200 6748.7 6.74 6543 3.49 1200 6426.9 1.65 6322.6 0

Agv 807 7.0 2.73 742 1.83 0

Note: The best known solution values attained are marked in bold.

From Table 8 we can observe that our approach can always obtain the best solutions and run faster
than SGALS. The results clearly indicate that the proposed components which constitute the algorithm
are necessary and useful to enhance the performance both in the search ability and the stability when
comparing the results obtained by SGALS. This can be seen by the improvement of 1.83% in Best Gap
and 4.27% (7%–2.73%) in Average Gap. We can also draw the conclusion that the LRPSHC is very
complex since the SGASA can obtain the same best solution as HGALS only for instance I2-18-80.

6. Conclusions

This paper proposed a novel location-routing problem for the Last Mile distribution for
online shopping, in which two kinds of service options, home delivery and customer’s pickup,
are simultaneously provided. For solving this specific problem, a hybrid heuristic combining GA and
LS is presented together with several modified algorithm components.

Computational tests and comparative analysis with other published approaches based on
benchmark instances are first conducted to evaluate the efficiency of the algorithm; results show
that the presented algorithm framework is suitable to solve the LRP. Then, a real-world instance is
adopted to verify the proposed model. By comparing the HD-only service scenario, the proposed
model shows its great advantages in reducing the operation cost and vehicles, which proved that the
model can help to design an economical and environmental Last Mile distribution system. A sensitive
analysis is also made to give more insights into the effects of the acceptable distance for a customer to
choose CP service based on the cost. Results show that the cost could be optimized by a wide scope
of customer’s acceptable distances and an optimal distance for a certain distribution system. Finally,
based on the generated instances, the designed algorithm components are proved to be effective in
improving the search ability and stability of the algorithm when comparing with standard GA&LS.

7. Future Research Directions

In addition to delivering packages from the depots to customers, collecting packages from
customers is another challenge for the Last Mile operation. Future research will focus on location-routing
problem with simultaneous home delivery and customer’s pickup, as well as simultaneous delivery
and collection, which may provide an even more efficient Last Mile solution. As LRPSHC is a new
variant of LRP, an exact algorithm would be needed to solve this problem. Furthermore, it is clear that
LRPSHC can be applied in many retail industry cases and it is also much more complex than classical
LRP. More advanced metaheuristics are urgently needed in order to solve large-scale real-world
instances effectively.
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