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Abstract: Agriculture is a sector easily affected by meteorological conditions. Crop yield reduction,
even regional conflicts, may occur during a drought. It is extremely important to improve the state of
our knowledge on agricultural drought risk. This study has proposed a new method (vulnerability
surfaces) for assessing vulnerability quantitatively and continuously by including the environmental
variable as an additional perspective on exposure and assessed global maize drought risk based on
these surfaces. In this research, based on the Environmental Policy Impact Climate (EPIC) model,
irrigation scenarios were adopted to fit “Loss rate-Drought index-Environmental indicator (L-D-E)”
vulnerability surfaces by constructing a database suitable for risk assessment on a large scale. Global
maize drought risk was quantitatively assessed based on its optimal vulnerability surface. The results
showed an R2 for the optimal vulnerability surface of 0.9934, with coarse fragment content as the
environmental indicator. The expected global average annual yield loss rate due to drought was
19.18%. The global average yield loss rate due to drought with different return periods (10a, 20a,
50a, and 100a) was 29.18%, 32.76%, 36.89%, and 38.26%, respectively. From a global perspective,
Central Asia, the Iberian Peninsula, Eastern Africa, the Midwestern United States, Chile, and Brazil
are the areas with the highest maize drought risk. The vulnerability surface is a further development
of the vulnerability curve as a continuous expression of vulnerability and considers differences in
environmental factors. It can reflect the spatial heterogeneity of crop vulnerability and can be applied
in large-scale risk assessment research.
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1. Introduction

The Intergovernmental Panel on Climate Change (IPCC) 5th Assessment Report confirmed that, in
general, global temperatures rose from 1880 to 2012, with a linear trend of 0.85 ◦C/100a. Temperature
increases are therefore expected to characterize global climate change in the 21st century. By the end
of the 21st century, the global average temperature will have increased by at least 1.5 ◦C compared
with the period from 1850 to 1900 [1]. The probability of severe and persistent droughts may increase
in the future under the influence of climate change and anthropogenic forcing [2,3]. Droughts may
bring about food security problems or even regional conflicts [4]. Agriculture is dependent on climate
conditions and is greatly influenced by climate change [5,6]. Reducing drought risk has therefore
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become an important topic in disaster risk research and is critical for promoting global food security
and sustainable agricultural development.

Risk assessment can generally be divided into hazard assessment and vulnerability assessment [7].
A number of drought indicators have been proposed for crop drought hazard assessment, such as the
Palmer Drought Severity Index (PDSI) [8], the Standardized Precipitation Index (SPI) [9], the Vegetation
Health Index (VHI) [10], and the Agricultural Reference Index for Drought(ARID) [11]. More recently,
with the development of fuzzy mathematics in risk assessment [12], the quantitative evaluation of
drought hazard has been generalized [13,14]. The most commonly and widely used methods of
vulnerability assessment can be classified into three types: (1) vulnerability assessment based on
historical disaster data, such as long-term data on precipitation, crop yield, and other factors [15–17];
(2) vulnerability assessment based on indicators [18–20]; and (3) vulnerability assessment based on
the hazard–loss curve (also called the vulnerability curve), which can reflect the response of crop
yield to drought from the aspects of crop physical properties [21–23]. Generally, case studies using
the first two approaches may be limited if no long-term observational data are available. In addition,
the first two methods provide only a qualitative or semi-quantitative vulnerability assessment. Risk
assessment models also suffer from this limitation, and, as a result, they cannot directly estimate the
probability of disaster losses [24]. A quantitative evaluation of crop vulnerability is clearly important
to the quantitative assessment of agricultural drought risk [25]. The vulnerability curve can establish
the quantitative functional relationship between hazard and loss. It provides a new method for
quantitative evaluation of agricultural drought risk.

Vulnerability curves first appeared in 1964 [26] and were used to provide a quantitative
measurement of the interaction between hazard intensity and corresponding loss (loss rate) [27].
A vulnerability curve can quantitatively evaluate crop vulnerability. Studies have used the water
requirement satisfaction index (WRSI) and loss rate to produce maize drought vulnerability curves for
three countries (Kenya, Malawi, and Mozambique) [28]. With the development and application of crop
models in disaster science, crop drought vulnerability assessments have adopted these models [22,29].
Yin [30] fitted maize drought vulnerability curves for 35 regions globally, using the water stress index
and a maize yield loss rate simulation with the EPIC model. Agricultural drought risk assessment
based on vulnerability curves calculates the losses (or loss rates) at different hazard intensities and is
hence more quantitative and accurate than risk level evaluations based on indicators.

However, the vulnerability curve involves only two dimensions, hazard intensity and loss,
without considering environmental factors. Crop drought, however, is often influenced by more than
just hazard intensity, which may vary among different environments. It is also difficult for vulnerability
curves to express the continuous spatial variability of vulnerability. As a result, the spatial accuracy of
risk assessment is limited, but can be improved by constructing a three-dimensional risk assessment
method that includes loss rate, hazard intensity, and an environmental indicator. Surfaces have been
commonly used for vulnerability assessments in earthquake disaster studies, in which fragility surfaces
were fitted according to degree of damage and hazard intensity based on the structure of buildings
or bridges. Lee [31] combined snow and earthquake hazards, both of which influence buildings, to
fit fragility surfaces. Wang [32] considered the multiple hazards of earthquake and scour (flood and
debris flow) to fit the fragility surface for a bridge. To date, few researchers have applied vulnerability
surfaces to agricultural drought risk assessment. In fact, crop vulnerability varies among different
locations. The evaluation under one environmental condition may not necessarily be applicable to
other environments. The larger a study area, the greater is the variation in vulnerability, and the more
important it becomes to fit continuous surfaces to express crop vulnerability.

In this paper, a method of fitting three-dimensional vulnerability surfaces (“Loss rate-Drought
index-Environmental indicator (L-D-E)”) is proposed. This method may provide a new way to evaluate
crop vulnerability by considering exposure that vulnerability curves could not cover. This paper also
assesses global maize drought risk quantitatively based on vulnerability surfaces.
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2. Materials and Methods

2.1. Basic Idea and Research Framework

2.1.1. Assessment of Physical Vulnerability to Maize Drought

The vulnerability of a system to climate change may be characterized as a function of the exposure,
sensitivity, and adaptive capacity of the system [33]. Vulnerability is dynamic and complex and may
vary with changes in both the biophysical and socioeconomic characteristics of a particular region.
Biophysical vulnerability is an inherent attribute of the exposure or inventory, which can reflect the
response of the crop to the disaster [22].

Further work is needed to integrate information about exposure, sensitivity, and adaptability to
provide more detailed and quantitative information about the potential impacts of climate change and
the relative degree of vulnerability of different regions, nations, and socioeconomic groups [33].
(1) Sensitivity is the degree to which a system is affected, either adversely or beneficially, by
climate-related stimuli. The effects may be direct (e.g., a change in crop yield in response to a
change in the mean, range, or variability of temperature) or indirect (e.g., damage caused by increased
frequency of coastal flooding due to sea-level rise) and can be expressed by vulnerability curves;
(2) Adaptation is the process of adjustment to actual or expected climate and its effects. In some natural
systems, human intervention may facilitate adjustment to expected climate and its effects. In this study,
human intervention (i.e., adaption, e.g., the possibilities for improvement of maize species, cultivation
management, and other social factors) was not calculated as an influence index, but was considered
as constant for lack of quantitative data; (3) Exposure is the presence of people, livelihoods, species
or ecosystems, environmental functions, services, and resources, infrastructure, or economic, social,
or cultural assets in places and settings that could be adversely affected [34]. In this study, location
(planting area of maize) was assumed to be unchanged because it was difficult to simulate accurately.

Overall, only the biophysical aspect of vulnerability was considered, and the adaptability and
sensitivity of maize were assumed to be constant. Therefore, irrigation scenarios were set by changing
the amount of irrigation in the crop model. According to the output of the model (water stress and
yield) under different irrigation scenarios, 3D surfaces considering environmental factors (settings)
were fitted.

2.1.2. Assessment of Drought Intensity and Risk Based on Crop Model Simulation

With the development of crop models, many researchers have combined crop model simulation
output with historical data and established indices to forecast drought risk [21,35]. This research
suggests that a complex crop model can simulate the relationship between drought and crop
productivity. In this study, yield and water stress index were simulated by the EPIC model. EPIC is a
comprehensive model consisting mainly of hydrological, meteorological, erosion, nutrient cycling, soil
temperature, crop growth, tillage, and economic modules. It can continuously simulate the growth
processes of more than 100 kinds of crops using a daily time step and readily available inputs [36].
Productivity under climate change can be simulated effectively based on the model parameters and
meteorological data.

In this research, water stress indices (WS) were simulated to evaluate water insufficiency for the
drought intensity calculation. The meteorological data used in the EPIC model contain observational
data from 1971 to 2004 and forecast data calculated by the Global Climate Model (GCM) [37]. To reduce
the uncertainty of the model prediction, the section of observation data from 1975 to 2004 was chosen
for this study. The WS index over 30 years in each grid cell was simulated all over the world based on
the data. Information diffusion theory was used to calculate the probability distribution of drought
intensity from a few WS samples. The pattern of drought intensity in different regions can be expressed
based on the calibrated model. The calculated risk is the result of both drought intensity assessment
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and vulnerability assessment and is defined in this paper as the probability of a given loss rate of
maize yield.

2.1.3. Research Framework

The study was conducted in three steps. In Step 1, an EPIC model was calibrated by adjusting
several important parameters. In Step 2, based on the calibrated EPIC model, other variables were
controlled, and different irrigation scenarios were defined to obtain yields and water stress indices
(WS), which were normalized as yield loss rate (LR) and drought index (DI) respectively. LR, DI,
and environmental indicators (E) (such as elevation, slope, and soil parameters) were combined to
obtain vulnerability surfaces. In Step 3, historical data and the information diffusion theory were used
to obtain the probability distribution of DI, which was combined with the vulnerability surface to
calculate risk (considered to be the probability of LR) (Figure 1).
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Figure 1. Overall study procedure.

2.2. Data

The data were divided into three categories: geographical environment data, field management
data, and calibration data (Table 1).

Table 1. Study data.

Data Category Name Source Spatial Resolution Temporal
Resolution

Geographical
environmental

data

DEM United States Geological Survey
(USGS) [38] 0.0833◦ × 0.0833◦ 1996

Slope
International Institute for Applied
Systems Analysis-Global
Agro-Ecological Zones (GAEZ) [39]

0.0833◦ × 0.0833◦ 2002

Soil International Soil Reference and
Information Centre (ISRIC) [40] 0.0833◦ × 0.0833◦ 2012

Meteorological
German Federal Ministry of
Education and Research (BMBF):The
ISIMIP Fast Track project [41]

0.5◦ × 0.5◦ 1971–2099

Extent of maize
University of Wisconsin-Madison:
Sustainability and the Global
Environment (SAGE) [42]

0.0833◦ × 0.0833◦ 2000

Field
management

data

Growth period
of maize

University of Wisconsin-Madison
Sustainability and the Global
Environment (SAGE) [43]

0.5◦ × 0.5◦ 2010

Irrigation The University of Tokyo (OKI
Laboratory) [44] 0.5◦ × 0.5◦ 2010

Fertilizer Land Use and the Global
Environment (LUGE) [45] 0.5◦ × 0.5◦ 2011

Calibration
data

Actual yield of
global maize

Food and Agriculture Organization
(FAO) [46]

National
(regional) unit 2000–2004
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The geo-environmental data included global DEM, global slope [47], global soil parameters [48],
and global meteorological [37] data as well as global data on the planting extent of maize [49].
The meteorological data contained daily data from 1971 to 2099 and consisted of actual meteorological
observations from 1971 to 2004 and forecast data based on global climate model from 2005 to 2099.
Daily values of maximum temperature, minimum temperature, precipitation, solar radiation, wind
speed, and relative humidity were used in the EPIC model to assess the probability distribution of DI.
Field management data included the growth period of global maize [50], global agricultural irrigation
patterns [51], and global fertilizer application [52]. The irrigation and fertilizer data were defined as
“maximum annual irrigation volume allowed” and “maximum annual nitrogen fertilizer application”
for a crop respectively when running the EPIC model. The automatic options for fertilization and
irrigation were applied in the EPIC model because it was impossible to obtain real fertilizer and
irrigation schedules for each grid cell.

The EPIC model requires all input data to have the same spatial resolution. Hence, the spatial
resolutions of all data were converted into the same resolution as the meteorological data.

The calibration data were the statistical yield of maize reported by FAO for each country (region)
from 2000 to 2004, of which the data for 2000 were used to calibrate the model and the 2001–2004 data
were used to validate it.

2.3. Methodology

2.3.1. Calibration of EPIC

Model calibration is the basis for accurate simulation. For this study, risk was calculated by
simulating the LR of maize yield under drought conditions produced by the EPIC model. Hence,
it was important to simulate yield accurately. Moreover, the EPIC model parameters needed to be
adjusted to suit different regions. The basic unit selected was the 0.5◦ × 0.5◦ grid, which is ideal for
calibrating the model in each grid cell. However, when the model is calibrated in each grid cell, the cost
of the calculation should be considered. Therefore, the country (region) was selected in this research as
the basic unit to calibrate the EPIC model.

Based on earlier studies [53–56], four parameters (WA (biomass-energy ratio), HI (harvest index),
DLMA (maximum potential leaf area index), and DLAI (fraction of the growing season when leaf
area declines)) were considered as key parameters of the EPIC model. In the calibration process, the
parameters were adjusted for each country (region) that was considered as a homogeneous unit to
create a suitable EPIC model. The parameters of each grid cell in each unit were adjusted at the same
time (hence, each grid cell in a unit has the same parameters). Simulated yields of 2000 in each grid cell
were obtained with the EPIC model and averaged in each unit to be compared with the statistical yield
of each country (region). When the simulated yields of 2000 were close to the statistical yields, the
calibration was completed. The results of model calibration for each unit were evaluated by comparing
simulated maize yields with statistical yields for 2001–2004.

Direction and step length are key factors in parameter adjustment. This study used the automatic
adjustment method. The adjustment of each parameter in one unit can be described as three main steps.

Step 1: define the default value of each parameter as the initial value in each unit. Simulate the
yield of each grid cell using the initial value, and calculate the average yield of each unit. Calculate
the RMSE between the simulated and statistical yields. Consider the initial parameter value as the
optimum value if the RMSE is less than the threshold.

Step 2: if the RMSE value is not less than the threshold, the parameter adjustment phase will
work. First, consider the default value as the optimal parameter value and adjust it using Rule 1 if the
number of cycles is less than 1.

Step 3: carry out a new judgment if the condition in Step 2 is not satisfied. Assuming that the
N-th cycle is the current cycle, adjust the parameter using rule 1 if the simulated yield in the (N-1)-st
cycle is closer than that in the (N-2)-nd cycle to the actual yield, or adjust it using Rule 2 if not.
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Cycle through the adjustment process in the manner described above until the simulation results
reach the output condition or the maximum number of cycles is reached; the optimal output parameters
are assumed to be obtained (Figure 2).Sustainability 2016, 8, 813 6 of 22 
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Figure 2. Parameter adjustment (assuming the N-th cycle is the current one): Rule 1: the step length of
the N-th adjustment = initial parameters × 0.2, and the direction is the same as the (N-1)-st adjustment
(the default is positive if this is the first time). Rule 2: the step length of the N-th adjustment =
[(parameter value of (N-1)-st adjustment) − (parameter value of (N-2)-nd adjustment)] × 0.5, and the
direction is opposite to that of the (N-1)-st adjustment.

2.3.2. Fitting of the Vulnerability Surface

Based on the “Loss rate-Drought index-Environmental indicator (L-D-E)” samples generated by
the calibrated EPIC model, the drought vulnerability surface of maize had three dimensions.

Water stress (WS) is an EPIC output factor that represents water shortage for plants. The value of
WS ranges from 0 to 1; the higher the value, the more yield is affected by drought. Twenty irrigation
scenarios were defined to obtain “L-D-E” samples. First, the optimal level of irrigation (there are no
significant changes in yield when the irrigation level is continuously increased) was determined by
pre-testing. Second, the single-variable method was used to keep the growth period, fertilizer addition
rate, and meteorological data constant while varying the amount of irrigation to obtain WS and yield
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under different irrigation scenarios. Twenty irrigation scenarios were defined to control the amount
of irrigation, which uniformly increased from 0 to the optimal value in each grid cell. Third, WS
and yield were simulated by EPIC under each scenario and then normalized to DI and LR. In this
way, 20 samples of DI and LR were calculated in different grid cells that had different environmental
conditions. DI and LR were then combined with the environmental indicators for each grid cell to
generate the “L-D-E” samples (Figure 3).Sustainability 2016, 8, 813 7 of 22 
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WS can be normalized by Equations (1) and (2):

DIk =
HI

max(HI)
(1)

HI =
n

∑
i = 1

(WSi), (2)

where WSi indicates the WS of maize on day i, n is the number of days that maize was influenced by
WS in a growth period, HI is the accumulated value of WS in one maize growth period, max(HI) is the
maximum value of HI under all irrigation scenarios, DIk is the hazard index in grid cell k, and k is the
grid cell identification number.

Yield can be normalized using Equation (3):

LR =
max(y)− y

max(y)
, (3)

where y is the yield under one scenario, LR is the yield loss rate caused by drought, and max(y) is the
maximum yield.

Two topographic indicators (elevation and slope) and seven soil indicators (coarse fragment
content (CFRAG), bulk density (BULK), water content at field capacity (TAWC), sand content (SDTO),
silt content (CLPC), organic carbon concentration (TOTC), and soil pH (PH)) were selected as
environmental indicators for the study.

Twenty “L-D-E” samples for each grid cell were generated to fit a maize drought vulnerability
surface with DI as the x-axis, an environmental indicator as the y-axis, and LR as the z-axis.
The vulnerability surface was fitted by trend surface analysis (Equation (4)):

LR =
(a/ (1 + b× exp (c× DI))− a/ (1 + b))

(a/ (1 + b× exp (c))− a/ (1 + b))
×
(

d× (E− e)2 + f
)

, (4)

where LR is the maize yield loss rate, DI is the hazard index, E is an environmental factor, and a, b, c, d,
e, f are parameters.
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2.3.3. Drought Risk Assessment Based on the Vulnerability Surface

Risk assessment can generally be divided into hazard assessment and vulnerability assessment [7]:

Risk = Hazard×Vulnerability, (5)

where Risk is the maize drought risk, Hazard is the function of maize drought hazard, and Vulnerability
is the function of maize drought vulnerability. Section 2.3.2 introduced the method of vulnerability
assessment. Hazard was assessed using a three-step process: (1) historical data (30 years (1975–2004))
were used to establish WS for different grid cells using the EPIC simulation; (2) WS was normalized to
DI (using a method similar to Equation (2)) to generate 30 years of DI samples for each grid cell; (3) the
probability distribution of DI for different grid cells was obtained to complete the hazard assessment
using information diffusion theory [57,58] (Figure 4).
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In this research, DI samples over 30 years were found to be insufficient to estimate the probability
distribution in each grid cell. Information diffusion theory provides a method to change observations
into normal fuzzy sets so that the probability distribution of DI can be calculated. The basic principle
of information diffusion theory was explained by Huang [12,57].

Let U = {u1, u2, u3, . . . , un} be a discrete universe of DI that contains its possible values. According
to the definition of DI, the maximum value of U is 1, and the minimum is 0. In this study, the resolution
of the discrete universe is 0.0001. Therefore, U = {0, 0.0001, 0.0002, . . . , 1}. The information carried
by DI was therefore diffused to ui in each grid cell using the information diffusion function shown in
Equation (6):

fk(ui) =
1

h
√

2π
exp

[
− (DIk − ui)

2

2h2

]
, (6)

where k is the grid cell identification number and h is called the normal diffusion coefficient and is
calculated by Equation (7):

h =



0.8146(b− a),
0.5960(b− a),
0.4560(b− a),
0.3860(b− a),
0.3362(b− a),
0.2986(b− a),

2.8651 b−a
n−1 ,

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

m = 5
m = 6
m = 7
m = 8
m = 9
m = 10
m ≥ 11

, (7)

where b is the maximum value of DI, a is the minimum, and m is the number of samples. In this paper,
m is 30 in each grid cell.
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Information accumulation can be calculated using Equations (8) and (9):

Ck =
n

∑
i = 1

fk(ui) (8)

F(DIk, uj) =
fk(uj)

Ck
, (9)

where Ck is the information accumulation of the k-th sample and F(DIk,uj) is the normalized information
distribution of sample DI. For each point uj, summing all normalized information, the information
gain at uj, which came from the given sample DI, was obtained. The information gain is shown
in Equation (10):

q(uj) =
m

∑
j = 1

F(DIi, uj). (10)

The diffusion information of the sample was obtained by summing q(uj) (Equation (11)):

Q =
n

∑
j = 1

q(uj). (11)

Next, the occurrence probability of a drought disaster of magnitude uj was estimated so that the
probability distribution of DI could be assessed:

p(uj) =
q(uj)

Q
(12)

Based on the probability distribution of DI and the vulnerability surface, the global maize drought
risk was assessed (Figure 5).
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Figure 5. Flowchart of maize drought risk assessment.

The optimal surface with the highest R2 was chosen to assess the global drought risk for maize.
For each grid cell, a pair of coordinates (x,y) was determined by a spatial query based on the overall
planting extent of maize. According to the coordinates, the DI probability distribution curve of the
grid cell was also identified. The function relating DI and LR was obtained by the intersection of E
(an environmental indicator) and the optimal vulnerability surface. The function was then combined
with the probability distribution of DI to calculate the probability distribution of LR for the grid cell.
According to the probability distribution of LR, which represents the probability of different levels of
LR, the expected risk was calculated. The LR risk at different return periods could also be obtained,
where the probability of a 10a, 20a, 50a, and 100a return period corresponds to 0.1, 0.05, 0.02, and
0.01, respectively.
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3. Results

3.1. Calibration Results

By comparing the simulated and actual yields (from FAO statistics) for the national (regional)
units from 2001 to 2004, scatter plots were drawn, and a correlation analysis was completed (Figure 6).
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Figure 6. Scatter plots of simulated and actual yield of global maize over four years: (a) 2001; (b) 2002;
(c) 2003; (d) 2004.

Both actual and simulated global maize yields are concentrated in the vicinity of the 1:1 line.
All R2 values are greater than 0.7. The Pearson correlation coefficients between simulated and actual
yields from 2001 to 2004 were 0.898, 0.867, 0.857, and 0.860, respectively, and were significant at the
0.01 level. It can be seen that simulated yields are significantly correlated with actual yields, meaning
that the model calibration result is positive.

3.2. “L-D-E” Vulnerability Surface of Maize

Elevation, slope, and seven soil properties (CFRAG, BULK, TAWC, SDTO, CLPC, TOTC, and PH)
were selected as environmental indicators to fit the drought vulnerability surface of maize (Table 2).
Table 2 shows that the surface-fitting accuracy is generally good. The vulnerability surface with
CFRAG as the environmental indicator has the best fitting accuracy, with an R2 of 0.99342 and an
RMSE of 2.89062.
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Table 2. Parameters of the drought vulnerability surface of maize.

Indicator a b c d e f R2 RMSE

Elevation 384.01 0.35 3.39 1.09 × 10−7 1167.23 99.12 0.99339 2.89636
Slope −90.22 0.35 3.39 3.91 × 10−5 −164.39 97.98 0.99338 2.89996

CFRAG −15.65 0.36 3.36 0.007 10.94 98.88 0.99342 2.89062
BULK 0.44 0.29 3.52 0.41 −13.75 2.62 0.95518 7.54344
TAWC 9.71 0.29 3.52 0.0008 −184.18 64.82 0.95620 7.45699
SDTO 100.32 0.35 3.40 −0.00018 26.51 99.34 0.99338 2.89889
CLPC −421.92 0.36 3.37 −0.0015 6.91 99.80 0.99334 2.90779
TOTC 103.86 0.35 3.38 −0.00019 171.47 103.81 0.99342 2.89104

PH 0.44 0.30 3.49 0.02 −54.39 21.87 0.95589 7.48403

According to the optimal vulnerability surface (Figure 7) for global maize, under the same CFRAG,
LR rises significantly with an increase in DI. When DI does not change, LR decreases at first, reaching
a minimum when CFRAG is approximately 10%, and then increases.
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in Appendix A.

3.3. Maize Drought Risk on a Global Scale

According to information diffusion theory, the probability of different drought intensities was
calculated in each grid cell based on 30-year historical data (Figure 8).
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Based on Figure 9 (Table 3), the risk for all grid cells in each country was averaged. The results 
suggest that the average yield loss rate may exceed 50% when Chile, Afghanistan, Iraq, Spain, and 
certain other countries suffer from a drought disaster. The average yield loss rate of maize in the 
United States and Australia is about 30%–40%, whereas that in China and Brazil is less than 20%. The 
highest values among the countries in Table 3 are about 80%–90%. The differences in maize drought 
risk among countries are obvious. Some of these countries are major grain-producing countries, and 

Figure 8. Global drought intensity for maize by different return periods: (a) 10-year return period;
(b) 20-year return period; (c) 50-year return period; (d) 100-year return period. The darker areas have a
higher probability of maize drought.

Global maize drought risk was calculated according to the optimal vulnerability surface (CFRAG),
as shown in Figure 9.
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Figure 9. Global expected annual maize drought risk. Red areas have a higher risk of maize drought,
indicating that droughts can lead to high yield loss rates of maize in these regions, whereas green areas
have a lower risk, meaning that maize in these areas is less affected by droughts. This figure shows
only the expected risk map; the return period maps are shown in Appendix B.

The expected global yield loss rate for maize is 19.18%. The rate rises with increasing return
period, reaching 29.18%, 32.76%, 36.89%, and 38.26% in a 10-year, 20-year, 50-year, and 100-year return
period, respectively (Appendix B). Globally, areas with high maize drought risk (red zone) are located
in mid-latitude regions (30◦–50◦), mainly including the Iberian Peninsula, the Midwestern United
States, northwestern China, Central Asia, eastern Brazil, Chile, Spain, and certain low-latitude regions
near the Equator, including East Africa and northeastern Brazil.

Based on Figure 9 (Table 3), the risk for all grid cells in each country was averaged. The results
suggest that the average yield loss rate may exceed 50% when Chile, Afghanistan, Iraq, Spain, and
certain other countries suffer from a drought disaster. The average yield loss rate of maize in the United
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States and Australia is about 30%–40%, whereas that in China and Brazil is less than 20%. The highest
values among the countries in Table 3 are about 80%–90%. The differences in maize drought risk
among countries are obvious. Some of these countries are major grain-producing countries, and food
shortages may occur once they have suffered a severe loss in yield. Therefore, countries with higher
maize drought risk should strengthen their predictive capabilities for drought disasters to minimize
the economic losses caused by droughts.

Table 3. Expected value of maize yield loss rate in high-risk countries.

Country Maximum Yield
Loss Rate (%)

Minimum Yield
Loss Rate (%)

Average Yield
Loss Rate (%)

Afghanistan 93.85 0 67.63
Australia 92.23 0.45 48.00

Brazil 83.32 0 11.59
Chile 100 0.06 64.64
China 99.97 0 19.75
Iraq 99.48 7.96 70.32

Spain 98.91 0 51.46
United States 97.26 0.03 30.52

4. Discussion

4.1. Relationship between CFRAG and Crops

In this research, the “L-D-E” vulnerability surface was best fitted with coarse fragment content
(CFRAG) as the environmental indicator. With increasing CFRAG, LR of maize first decreased and then
increased under the same hazard condition. A higher CFRAG is helpful for soil permeability because it
makes it easier for water to reach plant roots and be absorbed. When CFRAG exceeds a threshold value,
however, the water-holding capacity of the soil decreases, soil moisture is more likely to evaporate,
and plants are more vulnerable to drought. Some CFRAG studies have proposed that CFRAG is
negatively correlated with maize yields [59]. According to Grewal’s experiment with different levels
of gravel content (18%, 28%, and 40%) as CFRAG, an increasing proportion of gravel led to decreasing
soil nutrient content and soil water-holding capacity and a yield that showed a downward trend [60].
Driessen described the quantitative effect of CFRAG on a productivity index (decreasing from 100% to
0% with gravel contents of 10% to 70%), but the effect was due to the reduction of available plant water
rather than rooting depth [61]. When CFRAG is higher than the threshold value, it will negatively
affect soil moisture and nutrition, resulting in yield reduction and higher crop vulnerability.

4.2. Significance of Vulnerability Surfaces

In a similar study, researchers calculated the global drought risk for maize by fitting vulnerability
curves for different areas [30]. However, two-dimensional vulnerability curves can only express
the relationship between hazard intensity and yield loss, without considering the environmental
dimension. Environmental differences can be embodied only by artificially dividing the study area
into different units. The vulnerability surface is different from the vulnerability curve. Its significant
advantage lies in its consideration of the differences in environmental elements. Therefore, different
environmental elements correspond to different relationships between hazard intensity and yield
loss rate, and errors in research results caused by artificial division into different environment zones
are thus avoided. Another advantage of the vulnerability surface is that it can be incorporated into
multi-scale studies. This means that the maize drought vulnerability surface calculated based on a
0.5◦ × 0.5◦ grid in this study can be converted into vulnerability assessment results at different scales
according to the research resolution requirement or the resolution of relevant environmental indicators,
which may even be higher than 0.5◦ × 0.5◦.
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For risk assessment studies based on the vulnerability curve, the vulnerability surface can
be divided into a number of vulnerability curves according to different environmental indicators.
The vulnerability surface can be considered as an infinite number of vulnerability curves. For risk
assessment studies based on the vulnerability index, the vulnerability assessment can be completed
using the integrals of the vulnerability curves. The larger the integral values, the more vulnerable
crops are. As shown in Figure 10, vulnerability under different soil types was calculated and classified
according to the maize “L-D-E” vulnerability surface (based on 0.5◦ × 0.5◦ data) and soil data
(0.0833◦ × 0.0833◦) curves, thus the vulnerability assessment resolution can be converted from lower
(0.5◦ × 0.5◦) to higher (0.0833◦ × 0.0833◦).
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Figure 10. Vulnerability of global maize to drought (0.0833◦ × 0.0833◦). The vulnerability assessment
results were divided into five levels based on the method of natural breaks (jenks) in ArcGIS. The redder
the area in the picture, the larger the integral of the corresponding vulnerability curve, and the higher
the vulnerability. If the value is smaller, the vulnerability is lower.

Therefore, the vulnerability surface further considers differences in environmental elements, and
can be converted to different scales due to its ability to express continuous changes in vulnerability.
It has certain advantages for large-scale (such as global) vulnerability or risk assessment.

4.3. Validity of Risk Assessment Results Based on the Vulnerability Surface

The planting range data for maize come from the Center for Sustainability and the Global
Environment (SAGE), University of Wisconsin-Madison [49]. These data were combined with national,
state, and county statistical data that described the harvested area of 175 crops (spatial resolution:
0.0833◦ × 0.0833◦). In this research, the spatial resolution was resampled to 0.5◦ × 0.5◦ to unify research
resolution. The risk was assessed as long as maize was planted in the grid cell. Note that the planted
proportion of each grid cell was not considered in the risk assessment. Indeed, gross production or
planted proportion has little effect on yield loss rate in each grid cell. Therefore, this study, which used
yield loss rate to represent risk, would be little influenced.

Cases of global maize drought risk assessment are rare. Some researchers have calculated
precipitation, soil moisture, and other indicators for different months under various scenarios according
to different climate models to assess future drought severity due to climate change [62,63]. The results
show that the United States, the Amazon Basin, and Europe are future arid regions in different climate
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models. Other researchers have considered the Palmer Drought Severity Index (PDSI) and other
drought-related indices on a global scale to evaluate the frequency [64], trend [65], and soil moisture
and temperature changes [66] associated with future drought. Overall, most research results show
that serious drought areas will be distributed mainly in central Asia, southwestern Europe, southern
Africa, western and central North America, and northeastern South America. To test the validity of
the results reported in this paper, those reported by Li [64] were chosen for comparison. A correlation
analysis (Table 4) was completed between the pattern of maize drought risk reported in this paper (the
sum of the expected loss rates for each continent) and Li’s results (DRI of baseline for each continent).
The correlation coefficient was 0.717, which shows a significant relationship at the 0.05 level.

Table 4. Comparison of results with those of Li’s research [64].

Continent Normalized Value of Risk in This Study Normalized Value of Risk in Li’s Study

North America 1 0.30
Europe 0.64 0.22
Africa 0.96 1

South America 0.64 0.37
Oceania 0.15 0

Southern Asia 0.07 0.25
South East Asia 0 0.22

Eastern Asia 0.56 0.29
Middle East 0.80 0.43

Therefore, the results of this study, which are based on the maize vulnerability surface, are close
to the pattern of existing results at continental scale. However, the evaluation results may be different
in regional areas as a result of different methods and data.

5. Conclusions

The influence of drought on agriculture is serious. Research on crop response to drought
can provide significant information to reduce agricultural losses caused by drought and promote
sustainable agricultural development. In this research, a 3D vulnerability surface was fitted, and
the global maize drought risk was evaluated. It was concluded that the vulnerability surface
incorporating variations in environmental factors can express the continuous functional relationship
between “Hazard”, “Loss (Loss rate)”, and “Environment”. In addition, the vulnerability assessment
results can be converted into different scales based on the vulnerability surface due to its ability to
express continuous changes in vulnerability. Last but not least, the vulnerability surfaces can be
used for quantitative drought risk assessment that directly denotes the probability of crop yield loss.
The research provides a new method for research into biophysical vulnerability assessment.

In our previous studies, EPIC was used to simulate “Drought hazard-Crop yield loss” vulnerability
curves to assess the drought risk of different crops (maize [67], wheat [68], and rice [69]). This study
has proposed a new method for assessing vulnerability quantitatively and continuously by including
the environment variable as an additional perspective on exposure. This method could be used for
different crops, climate scenarios, and periods. It might constitute a promising direction for further
research that could assess vulnerability comprehensively and quantitatively by studying the location
change or adaption of different crop species.

Acknowledgments: This study was supported by the National Basic Research Program of China (973 Project):
Relationship between Global Change and Environmental Risks and its Adaptation Paradigm (No. 2012CB955403)
and the National Key Research and Development Program (No. 2016YFA0602402). This paper was improved
by comments from Matthew Turner and A.-Xing Zhu from the University of Wisconsin-Madison. The valuable
comments and suggestions from the editor and anonymous reviewers are also greatly appreciated.

Author Contributions: Hao Guo conceived the entire paper, analyzed the data, and wrote the paper;
Xingming Zhang designed and performed the experiments and analyzed the data; Fang Lian and Yuan Gao
polished the text of the paper; Degen Lin provided technical support; Jing’ai Wang polished the text and provided
project support.



Sustainability 2016, 8, 813 16 of 22

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Similar to Figure 7, “L-D-E” vulnerability surfaces were fitted with other environmental indicators,
as shown in Figure A1.

Sustainability 2016, 8, 813 16 of 22 

Appendix A 

Similar to Figure 7, “L-D-E” vulnerability surfaces were fitted with other environmental 
indicators, as shown in Figure A1. 

(a) (b)

(c) (d)

(e) (f)

Figure A1. Cont.



Sustainability 2016, 8, 813 17 of 22Sustainability 2016, 8, 813 17 of 22 

(g) (h)

Figure A1. “L-D-E” vulnerability surfaces fitted with environmental indicators other than CFRAG: (a) 
elevation; (b) slope; (c) BULK; (d) TAWC; (e) SDTO; (f) CLPC; (g) TOTC; (h) PH. 

Appendix B 

Similar to Figure 9, global maize drought risk was mapped for different return periods, as shown 
in Figure B1. 

(a)

Figure A1. “L-D-E” vulnerability surfaces fitted with environmental indicators other than CFRAG: (a)
elevation; (b) slope; (c) BULK; (d) TAWC; (e) SDTO; (f) CLPC; (g) TOTC; (h) PH.

Appendix B

Similar to Figure 9, global maize drought risk was mapped for different return periods, as shown
in Figure B1.

Sustainability 2016, 8, 813 17 of 22 

(g) (h)

Figure A1. “L-D-E” vulnerability surfaces fitted with environmental indicators other than CFRAG: (a) 
elevation; (b) slope; (c) BULK; (d) TAWC; (e) SDTO; (f) CLPC; (g) TOTC; (h) PH. 

Appendix B 

Similar to Figure 9, global maize drought risk was mapped for different return periods, as shown 
in Figure B1. 

(a)

Figure B1. Cont.



Sustainability 2016, 8, 813 18 of 22
Sustainability 2016, 8, 813 18 of 22 

(b)

(c)

Figure B1. Cont.



Sustainability 2016, 8, 813 19 of 22

Sustainability 2016, 8, 813 19 of 22 

(d)
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