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Abstract: Due to the frequent urban air pollution episodes worldwide recently, decision-makers
and government agencies are struggling for sustainable strategies to optimize urban land use/cover
change (LUCC) and improve the air quality. This study, thus, aims to identify the underlying
relationships between PM10 concentration variations and LUCC based on the simulated PM10 surfaces
in 2006 and 2013 in the Changsha-Zhuzhou-Xiangtan agglomeration (CZT), using a regression
modeling approach. LUCC variables and associated landscape indexes are developed and correlated
with PM10 concentration variations at grid level. Results reveal that the overall mean PM10

concentrations in the CZT declined from 106.74 µg/m3 to 94.37 µg/m3 between 2006 and 2013.
Generally, variations of PM10 concentrations are positively correlated with the increasing built-up
area, and negatively correlated with the increase in forests. In newly-developed built-up areas, PM10

concentrations declined with the increment of the landscape shape index and the Shannon diversity
index and increased with the growing Aggregation index and Contagion index. In other areas,
however, the reverse happens. These results suggest that LUCC caused by urban sprawl might be
an important factor for the PM10 concentration variation in the CZT. The influence of the landscape
pattern on PM10 concentration may vary in different stages of urban development.
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1. Introduction

Urban sprawl, one of the most significant causes of the increasingly severe air pollution in the
world [1–3], has made recent headlines in peer-reviewed journals of economics, urban planning, and
public health [4–7]. As a direct result of urban sprawl, land use/cover changes (LUCC), as well as their
spatial distribution (i.e., landscape pattern) variations may affect pollutants emission indirectly through
industrial layout, travel behavior, and other human activities [3,8,9]. In view of the widespread health
impacts of air pollution [10,11], studies have increasingly focused on the association between LUCC
and air pollution variation caused by urban sprawl, including research on numerical simulations and
empirical statistical modeling.

Numerical simulations refer to coupled modelling systems dealing with emissions from plants
and traffic, and their dispersion-related meteorological and terrain factors. They are able to retrieve
detailed air pollution distribution characteristics and address the complex links between LUCC,
pollution discharge, weather patterns, and atmospheric chemistry. In this field, an early investigation
was carried out by Civerolo, et al. [12]. They evaluated the influence of the increased urban land cover
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and associated changes in ozone (O3) concentrations in a future scenario, and concluded that land
cover changes may lead to O3 variation. A study conducted by De Ridder, et al. disclosed that urban
sprawl in the German Ruhr area could generate higher O3 and PM10 concentrations [13]. More recently,
Kahyaoğlu-Koračin, et al. evaluated a set of alternative future patterns of land use and found out a
Regional Low-Density Future has the greatest impact on air quality [14]. Martins, using a sequential
modeling process, also concluded that urban sprawl increases PM10 annual average values [5]. However,
their reliance on abundant data (e.g., emission inventories, meteorological data, land-surface scheme)
for numerical diffusion makes interpretation difficult [15] and incurs high computational costs.

Empirical statistical models provide a relatively simple and direct method to demonstrate the
importance of land use to air quality at various scales. Weng and Yang investigated the relationship
of local air pollution patterns to urban land use through Geographic Information System (GIS) and
correlation analysis [16]. They found that the spatial patterns of air pollutants are positively correlated
with the built-up density. Bereitschaft and Debbage employed stepwise linear regression to quantify
the relationship between air pollution and urban form variables (e.g., land use diversity) in 86 U.S.
metropolitan areas, and their findings are consistent with that of prior modeling researches [17]. Another
example is given by Weber, et al. who concluded that landscape metrics are very useful in predicting
PM10 exposure [18]. Using urban landscape metrics framework, McCarty and Kaza found the mix of
different land cover types identifies important correlations between pollutant levels and air quality [19].
Unfortunately, their effectiveness is limited since the formation mechanisms of air pollution are generally
overlooked in these studies. Additionally, these studies usually take the group mean of concentrations
at monitoring sites across a city as statistical samples and this could lead to the interpretive problems
due to the ignorance of spatial heterogeneity between changes in air pollution and LUCC inside the city.

Land use regression (LUR) models can effectively estimate the spatially-resolved air pollution
under conditions of sparse measurements [15,20–23]. In this process, the LUR uses monitored pollutant
concentrations as the dependent variable, and takes surrounding land use, transportation and other
variables obtained through GIS as predictors [24,25]. It offers a rough, yet helpful, perspective on the
analysis of the relationship between the urban LUCC and air pollution variation and attaches certain
positive significance to the rational evaluation of city planning and land use strategies. However, as the
land-use are generally not time varying and their temporal resolution tends to be limited, few studies
have paid attention to the transferability of the LUR model across time [26,27]. Meanwhile, although
the LUR has been promoted in many developed countries, relatively few studies have been conducted
in China. More importantly, as one of the heaviest air pollution countries in the world [28–30], China’s
urbanization rate increased from 17.92% in 1978 to 53.73% in 2013. This process results in a large loss
of natural land and a rather chaotic landscape pattern [7]. Therefore, characterizing the spatial patterns
of air pollutants in China can bring us more complete understanding of the comprehensive effect of
LUCC on air quality worldwide.

Especially, a policy to develop a resource-conserving and environmentally-friendly society (i.e.,
the “Two Oriented Society” policy) had been started in China since 2006. As one of the first two areas
in China that performed the policy, the Changsha-Zhuzhou-Xiangtan agglomeration (CZT) attempted
to direct viable use of resources, conservative consumption of energy, ecological protection, as well
as pollution prevention and treatment. Hence, taking the CZT as a case to evaluate the air quality
variations before and after the “Two Oriented Society” strategy implementation can be a touchstone of
the policy and could provide an unprecedented chance to deeply understand whether urban planning
and land use policies may improve air quality.

This study employed remote sensing technologies and the LUR model to acquire the LUCC and
simulated PM10 concentration surfaces in the CZT for years 2006 and 2013. Based on the hypothesis
that the LUR model possesses transferability over time in the CZT area, we attempted to address the
following questions: (1) Is the government strategy for sustainable construction and development an
effective policy to improve air quality in urban areas? (2) Does the LUCC in the study area correlate
with the estimated variation in air pollution, and (3) if so, what is the current trend?
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2. Materials and Methods

2.1. Study Domain

The Changsha-Zhuzhou-Xiangtan agglomeration (CZT) is located in the northeast of Hunan
province in China, comprising the cities of Changsha, Zhuzhou and Xiangtan (Figure 1). The CZT
covers an area of 28,087 km2, and has a population of 13.78 million. In terms of transportation, the
CZT is a national traffic hub, linked together by a comprehensive railway system, as well as major
arterial road networks. The Xiangjiang River flows through this area in a way that promotes efficient
goods movement. The CZT is the most important industrial base and the economic growth hub of
Hunan Province with an urbanization rate of 61.0% in 2013, 17.7% higher than the rest of Hunan and
7.3% greater than the national average. However, with these achievements, these three cities are the
major pollution emission sources in Hunan province.

Sustainability 2016, 8, 677  3 of 15 

2. Materials and Methods 

2.1. Study Domain 

The Changsha-Zhuzhou-Xiangtan agglomeration (CZT) is located in the northeast of Hunan 
province in China, comprising the cities of Changsha, Zhuzhou and Xiangtan (Figure 1). The CZT 
covers an area of 28,087 km2, and has a population of 13.78 million. In terms of transportation, the 
CZT is a national traffic hub, linked together by a comprehensive railway system, as well as major 
arterial road networks. The Xiangjiang River flows through this area in a way that promotes efficient 
goods movement. The CZT is the most important industrial base and the economic growth hub of 
Hunan Province with an urbanization rate of 61.0% in 2013, 17.7% higher than the rest of Hunan and 
7.3% greater than the national average. However, with these achievements, these three cities are the 
major pollution emission sources in Hunan province. 

 
Figure 1. Study domain, the Chang-Zhu-Tan agglomeration. 

2.2. LUCC Monitoring 

2.2.1. Land Use/Cover Classification 

Materials used for monitoring land use include cloud-free Landsat TM (for 2006) and Landsat 
OLI images (for 2013) in the same time phase. Data were downloaded from the United States 
Geological Survey (USGS) database [31]. Taking the land cover features of the CZT into account, a 
modified version of the land use classification was developed [3,16]. The categories include: (1) 
water, (2) bare soil, (3) built-up, (4) agricultural land, (5) forest, and (6) green land. Green land refers 
to the open forest land, grass land, and urban green land (i.e., parks, lawns, and other urban open 
green spaces). They tend to have a disconnected and scattered distribution and share similar spectra 
characteristics in the study area, which means it is difficult to separate them from each other. And 
the land use classification was implemented by the maximum likelihood algorithm in ENVI 5.2 [32]. 
The results are raster maps with a resolution of 30 m. These grid maps of area proportion of each 

Figure 1. Study domain, the Chang-Zhu-Tan agglomeration.

2.2. LUCC Monitoring

2.2.1. Land Use/Cover Classification

Materials used for monitoring land use include cloud-free Landsat TM (for 2006) and Landsat OLI
images (for 2013) in the same time phase. Data were downloaded from the United States Geological
Survey (USGS) database [31]. Taking the land cover features of the CZT into account, a modified
version of the land use classification was developed [3,16]. The categories include: (1) water, (2) bare
soil, (3) built-up, (4) agricultural land, (5) forest, and (6) green land. Green land refers to the open forest
land, grass land, and urban green land (i.e., parks, lawns, and other urban open green spaces). They
tend to have a disconnected and scattered distribution and share similar spectra characteristics in the
study area, which means it is difficult to separate them from each other. And the land use classification
was implemented by the maximum likelihood algorithm in ENVI 5.2 [32]. The results are raster maps
with a resolution of 30 m. These grid maps of area proportion of each land use were then reclassified
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into 1 km ˆ 1 km resolution to compare with the spatial patterns of PM10 concentrations simulated by
the LUR model.

2.2.2. Landscape Pattern

Landscape metrics are algorithms that quantify a specific spatial configuration of various
land use/covers [33,34]. Considering the diversity and heterogeneity of landscape [35,36], five
representative landscape-level metrics characterizing the urban sprawl were calculated by Fragstats
4.0 based on the resampled land use maps with a resolution of 1 km ˆ 1 km [37]. The metrics include
Aggregation index (AI), Contagion index (CONTAG), Landscape shape index (LSI), Perimeter-area
fractal dimension (PAFRAC), and Shannon’s diversity index (SHDI). They can be expressed by
Equations (1) to (5):
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where gii and gik are the number of like adjacencies (joins) between pixels of patch type (class) i
obtained by the single-count and double-count method, respectively, and max-gii is the maximum gii.
Pi is the proportion of patch type (class) i. m and n are the number of patch types and classes present
in the landscape. E* refers to the total edge length (meter) of the landscape, while A is the total area
(m2). aij and pij are area (m2) and perimeter (meter) of patch ij. N is the total number of patches in
the landscape.

Among the above five landscape-level metrics, AI is an index measuring the amount of the
maximum possible number of like adjacencies given any landscape composition. Higher AI values
indicate more aggregative patches of the same type. A landscape with interspersed patch types will
have relatively low CONTAG values. While a single patch type occupies a very large percentage of the
landscape, the CONTAG is high. The greater the value of LSI, the more dispersed the patch types. If
patches have simple geometric shapes, the PAFRAC will be relatively low. The greater the value of
SHDI, the richer the land use types.

2.3. PM10 Concentration Estimation

2.3.1. Monitoring Data

Daily PM10 mass concentrations in 2013 were collected from the official website of the China
Environmental Monitoring Center [38]. Annual mean values of these observations were calculated
for model fitting afterward. There are 23 monitoring sites constantly operated by local government
agencies since 1 January 2013. Among them, 10 are in Changsha, seven in Zhuzhou, and six in Xiangtan.
In addition, we obtained the annual average PM10 concentrations at sven monitoring sites in Changsha
of 2006 to validate the transferability of the lateral LUR model of 2013 (referred to as LUR model 2013
hereafter) over time in this study.

2.3.2. Predictor Variables

Similar to previous reported LUR modeling researches [24], correlation analysis is needed to
identify possible predictors. The predictor variables identified in this study include area proportions of
each land use, road length, and the distance to a nearest major road, as well as the population density.
They are generated at buffers with different radius (50–5000 m) of each monitoring site, so the selection
of buffer size plays an important role in determining the performance of the LUR model [24]. Moreover,
the annual averages of Aerosol Optical Depth (AOD) measurements of the 23 monitoring sites were
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extracted from the MODIS Terra data (MOD04 Level 2 Collection 5, at a 10 ˆ 10 km spatial resolution)
obtained by the US-based National Aeronautics and Space Administration (NASA) [39]. Other
potential variables include elevation, urban fractal dimension, contagion, and surface meteorological
elements (i.e., relative humidity, temperature, precipitation, and wind speed). Population and elevation
statistical data were made available by the Statistical Bureau of Hunan Province and USGS [40],
respectively. Meteorological data were released by the Hunan Meteorology Bureau [41]. All variables
(Table 1) were extracted by ArcGIS10.0.

Table 1. Potential predictor variables.

GIS Dataset Predictor Variables Unit Buffer Size (Radius in Meters)

Land use
variables

Water %

100, 200, 300, 400, 500, 600, 700, 800,
900, 1000, 2000, 3000, 4000, 5000

Bare soil %
Built-up area %

Agricultural land %
Forest %

Green land %

Traffic variables
Major road length Kilometer 50, 100, 200, 300, 400, 500, 600, 700,

800, 900, 1000, 2000, 3000, 4000, 5000

Distance to a nearest
major road Kilometer NA

Population Population density Thousand persons per
square kilometer NA

Meteorological
parameters

Relative humidity % NA
Temperature Celsius degree NA
Precipitation Millimeter NA
Wind speed Meter/s NA

Other urban
characteristics

Elevation Meter NA
Fractal dimension NA NA

Contagion NA NA

MODIS Aerosol Optical Depth NA NA

2.3.3. Land Use Regression Modeling and Validation

A general LUR model can be defined as follows:

PM10,s “ a0 ` a1 X1,s ` a2 X2,s ` . . . ` an Xn,s ` µ (6)

where PM10,s is the estimation of the annual average PM10 concentration, and is regarded as the
dependent variables of site s, Xi,s (i = 1, 2, . . . n) are independent variables, ak (k = 0, 1, 2, 3) are the
regression coefficients estimated, and µ is the random error under the condition that the value of
Σs

i“1pPM10,1– ˆPM10, iq is minimized over the observations.
In this study, LUR models were conducted using a supervised stepwise regression. In this process,

we first separately entered each potential predictor derived from 2013 to identify which one could
explain the largest variance. Second, we evaluated whether other added variables will lead to an
increase larger than 1% in the adjusted R2. This procedure was repeated until no more variables entered
the model. We also calculated the collinearity statistics, such as the tolerance and variance inflation
factor (VIF). It should be noted that variables can only be entered in the model when the coefficients are
statistically significant and there is no multicollinearity between these variables. Additionally, statistics
including the model fitting R2, root mean square error (RMSE), standard deviation (SD), mean relative
tolerance (MRT), as well as the CV R2 were employed to evaluate the prediction ability and reliability
of the LUR model of year 2013 based on the Leave-One-Out-Cross-Validation (LOOCV) method.

For visualization purposes, we created nearly 27,900 lattice points with a resolution of
1 km ˆ 1 km, where PM10 concentrations were then predicted using the LUR model of year 2013
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based on PM10 concentrations at those lattice points. Finally, a smooth surface was interpolated
through the inverse distance weighting (IDW) method. It has to be noted that the PM10 concentrations
of year 2006 was also estimated by the LUR model of year 2013 in order to test the transferability of
LUR models over time in this study.

2.4. LUCC and PM10 Variations

To test the assumed link between LUCC and PM10 variation during the urban sprawl process, we
first obtained the area proportion of each LUCC and associated landscape metrics at a resolution of
1 kmˆ1 km for years 2006 and 2013. Second, raster calculators were used to extract variations of PM10

concentrations and area proportion of each LUCC, as well as that of landscape metrics, which were
then employed for quantitative comparison and correlation analyses. Pearson’s correlations with P
values were calculated using SPSS software (version 19.0) [42].

3. Results

3.1. Land Use/Cover and Landscape Pattern in 2006 and 2013

Results of the land use/cover classification are presented in Figure 2a. The overall classification
accuracy is 83.57% for the 2013 map and 80.04% for the 2006 map. As we can see, built-up areas are
distributed mainly along the Xiangjiang River. From 2006–2013, their proportion increased by 4.79%,
from 2984 km2 to 3134 km2. These increased built-up lands are mostly converted from agricultural
land and forest, whose area decreased 15 km2 and 98 km2, respectively. The bare soil increased from
4.16% to 6.49% and green land decreased from 9.27% to 6.85%. The change of water area (from 556 km2

to 543 km2) is small.
Figure 2b–f illustrate that the spatial distribution of landscape metrics in the CZT of years 2006

and 2013 are similar. The southern and eastern CZT have high AI (>63) and CONTAG (>52), but low
LSI (<2.1), PAFRAC (<1.40), and SHDI (<0.91). AI closely resembles CONTAG in spatial patterns,
which is contradictory to that of LSI and SHDI. Inner urban areas of the CZT (i.e., Kaifu, Yuelu, Furong,
Yuhua, Tianxin, Yuhu, Yuetang, Hetang, Shifeng and Lusong districts) have rather high AI, CONTAG,
and low LSI, PAFRAC, SHDI in 2013, greater than those in 2006.
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3.2. LUR Model Development and Validation

As is shown in Table 2, the proportions of built up area, bare soil, road length, and relative
humidity are highly significant predictors (p < 0.05) of PM10 concentrations in the CZT. While the built
up area proportion in the monitoring site buffer zone (with a width of 900 m) shows positive estimated
power (58.37 ˘ 12.55), it does for the bare soil area proportion within the 300 m buffer (11.64 ˘ 3.05).
Relative to the negatively-estimated power of the major road length within the 300 m buffer around
monitoring sites (´9.76 ˘ 3.19), the increased relative humidity (4.25 ˘ 1.86) would correspond to
higher PM10 concentrations. Additionally, the VIF (<2) shows no multiple correlations among the
independent variables.

Table 2. Estimated regression coefficients of the final model.

Model Variable
Unstandardized Coefficients

t Sig.
Collinearity Statistics

B Std. Error Tolerance VIF

(Constant) 125.80 3.24 38.84 <0.0001 0.937 1.068
Built up_900m 58.37 12.55 4.65 <0.0001 0.581 1.722
Bare soil_300m 11.64 3.05 3.81 0.001 0.573 1.746

Road length_300m ´9.76 3.19 ´3.06 0.007 0.896 1.116
Relative humidity 4.25 1.86 2.29 0.035 0.937 1.068

Table 3 summarizes model fitting and validation results for the LUR model of year 2013 and
its transferability application evaluation in year 2006. It can be seen that the linearity between PM10

concentrations and its explanatory variables are significant (Sig. F < 0.0001). The final model has a
RMSE of 9.36 µg/m3. Meanwhile, the adjusted overall mean R2 is 0.62, meaning the model can explain
62% of the PM10 concentration variations. Comparatively, the mean R2 of LOOCV is 0.69, and it ranges
from 0.63 to 0.75 for each site, while the CV R2 is also acceptable with a value of 0.56. Model-based SD
and CV RMSE are 11.09 µg/m3 and 10.86 µg/m3, respectively. The MRT for validation is 8.10% with
the relative error of predictions varying from 0.04% to 22.81%. In addition, validation results based on
seven monitoring sites in 2006 in Table 3 also confirm the transferability of the LUR model 2013 with
the MRT at 7.24% and RMSE at 7.24 µg/m3.
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Table 3. Model performance and validation of LUR model developed in this study.

Model Performance Leave-One-out Cross Validation Validation of 2006

R2 0.69 R2 0.69
Adjusted R2 0.62 CV R2 0.56

RMSE 9.36 MRT 8.10 MRT 7.24
Sig. F <0.0001 CV RMSE 10.86 RMSE 9.87

SD 11.09

3.3. Spatial Distribution Mapping of PM10 Concentrations in 2006 and 2013

Figure 3 shows the distribution of the estimated PM10 concentrations of years 2006 and 2013 over
the entire CZT. Generally, spatial variability can be found with average PM10 concentrations from 54
to 148 µg/m3. As expected, dense urban areas in the CZT have higher PM10 concentrations, while
suburban and rural areas usually relate to low PM10 concentrations. The three most polluted districts
in 2006 are Furong, Yuhu, and Yuhua, with mean PM10 concentrations 122.80 µg/m3, 123.93 µg/m3,
and 125.27 µg/m3, respectively. In 2013, the most polluted districts are Yuhua district (116.80 µg/m3),
Yuetang district (119.64 µg/m3), and Yuhu district (132.23 µg/m3). From 2006–2013, the overall
mean PM10 concentrations decreased from 106.74 µg/m3 to 94.37µg/m3, even though some areas of
north Yuelu district (from 109.02 µg/m3 to 114.15 µg/m3), east Zhuzhou city (from 108.33 µg/m3 to
115.95 µg/m3), and Lusong district (from 100.04 µg/m3 to 114.81 µg/m3) show signs of deterioration
in air quality. In this process, nine of the twelve districts in the central CZT show slight increment
(around 5 µg/m3) in mean PM10 concentrations (i.e., Kaifu, Yuelu, Yuhu, Lusong, Shifeng, Hetang
districts), while, the most southern and western Xiangtan County have witnessed an outstanding
decline (from 114.42 µg/m3 to 101.97 µg/m3) of PM10 concentrations during this period.
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3.4. Impacts of LUCC on PM10 Concentration Variation

Figure 4 shows the change in PM10 concentrations and area proportions of each land use from 2006
to 2013. In general, most PM10 concentration increase occurs around the inner CZT, where the forest
disappeared drastically and construction expanded rapidly (e.g., the southern Changsha County, and
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northern Yuelu and Wangcheng districts). PM10 concentration increased strikingly with the growing
area proportion of bare soil in the southern Changsha County and southwestern Shaoshan County. The
northeastern Chaling County experienced a complex change in land use. For most grids, more than
25% of land has changed its original use. These places show a clear increase in PM10 concentrations.
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Moreover, results from correlation analysis (Table 4) further confirm effect of LUCC on air
pollution. PM10 concentration variation has a positive relation with the proportion changes of built-up
area, bare soil, and agricultural land, and is negatively correlated with that of forest and green land
(p < 0.0001). The sensitivity sequence of these five types of land use from high to low is built-up >
green land > bare soil > forest > agricultural land. Meanwhile, the proportion change of water area is
found to be the weakest predictor of PM10 concentration variation (r = ´0.023; p = 0.297).

Table 4. Pearson correlation coefficients between PM10 concentration variation and area proportion
change of each land use.

Land Use Types Water Bare Soil Built up Agricultural Land Forest Green Land

Correlation coefficient ´0.023 0.178 0.221 0.073 ´0.153 ´0.180
Sig. (2-tailed) 0.297 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001

3.5. Impacts of Landscape Change on PM10 Concentration Variation

Clearly, the increased LSI, PAFRAC, and SHDI and the decreased AI, and CONTAG relate to PM10

concentration increase in the east and south suburban and rural areas of the CZT (Figure 5). In the
newly-developed built-up area of the inner urban areas (i.e., the northern Yuelu district and the area
adjacent to Wangcheng district, Yuetang district, and Xiangtan County), PM10 concentration increases
with the growing AI and CONTAG and decreases with the increment of LSI and SHDI. Conversely,
PM10 concentration shows a decline in eastern Ningxiang County and mid-western Xiangtan County
where the AI and CONTAG increased greatly, but LSI and SHDI decreased.



Sustainability 2016, 8, 677 10 of 14

Sustainability 2016, 8, 677  9 of 14 

 

(e) (f) (g)  

Figure 4. (a) Variations of PM10 concentrations and variations of area proportions of (b) water; (c) 
bare soil; (d) built-up areas; (e) agricultural land; (f) forest; and (g) green land. 

Moreover, results from correlation analysis (Table 4) further confirm effect of LUCC on air 
pollution. PM10 concentration variation has a positive relation with the proportion changes of 
built-up area, bare soil, and agricultural land, and is negatively correlated with that of forest and 
green land (p < 0.0001). The sensitivity sequence of these five types of land use from high to low is 
built-up > green land > bare soil > forest > agricultural land. Meanwhile, the proportion change of 
water area is found to be the weakest predictor of PM10 concentration variation (r = −0.023; p = 0.297). 

Table 4. Pearson correlation coefficients between PM10 concentration variation and area proportion 
change of each land use. 

Land Use Types Water Bare Soil Built up Agricultural Land Forest Green Land
Correlation coefficient −0.023 0.178 0.221 0.073 −0.153 −0.180 

Sig. (2-tailed) 0.297 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 

3.5. Impacts of Landscape Change on PM10 Concentration Variation 

Clearly, the increased LSI, PAFRAC, and SHDI and the decreased AI, and CONTAG relate to 
PM10 concentration increase in the east and south suburban and rural areas of the CZT (Figure 5). In 
the newly-developed built-up area of the inner urban areas (i.e., the northern Yuelu district and the 
area adjacent to Wangcheng district, Yuetang district, and Xiangtan County), PM10 concentration 
increases with the growing AI and CONTAG and decreases with the increment of LSI and SHDI. 
Conversely, PM10 concentration shows a decline in eastern Ningxiang County and mid-western 
Xiangtan County where the AI and CONTAG increased greatly, but LSI and SHDI decreased. 

 
(a) (b) (c) 

Sustainability 2016, 8, 677  10 of 14 

 
(d) (e) (f) 

Figure 5. (a) Variation of PM10 concentration and Variation of (b) AI; (c) CONTAG; (d) LSI; (e) 
PAFRAC; (f) SHDI. 

Table 5 further demonstrates the correlations between the variations of landscape metrics and 
PM10 concentration changes. On one hand, changes of AI (r = −0.097) and CONTAG (r = −0.114) 
negatively correlate with the changes of PM10 concentrations (p < 0.0001). On the other hand, positive 
correlations between the changes of landscape metrics and PM10 concentrations follows a typical 
declined sequence of SHDI (r = 0.060, p = 0.004) and LSI (r = 0.046, p = 0.024). However, no 
statistically significant correlation between changes of PAFRAC and PM10 concentration (p = 0.866) 
was found.  

Table 5. Pearson correlation coefficients between changes of PM10 concentrations and landscape 
metrics. 

Land Use Types AI CONTAG LSI PAFRAC SHDI 
Correlation coefficient −0.097 −0.114 0.046 0.004 0.060 

Sig. (2-tailed) <0.0001 <0.0001 0.024 0.866 0.004 

4. Discussion 

Fine-resolution monitoring data for air pollutants are rarely available for most countries in the 
world [22]. Prefecture-level cities in China, for example, had no continuous automatic air pollution 
monitoring system until 2013. In order to estimate air pollution in suburban and rural areas distant 
from monitoring sites in the CZT urban agglomeration, a LUR model, called LUR model of year 
2013, was developed and its transferability across time was also validated in this study. The LOOCV 
R2 (0.63–0.75) and absolute bias (MRT 0.04%–22.81%) of this developed LUR model demonstrate 
comparable reliability to previously-reported LUR models with R2 ranging from 0.22 to 0.72 and 
absolute bias ranging from 17% to 22% [21,23]. 

Based on the data of consumption proportions of raw coal, petroleum, natural gas, clean energy 
(i.e., hydropower, nuclear power, wind power, etc.) and other sources in 2006 (68.51%, 12.87%, 
0.66%, 14.87%, 3.09%, respectively) and 2013 (62.23%, 11.66%, 1.55%, 14.04%, 10.52%, respectively) 
of the CZT are [43] and given the efficient and conservative use of energy has been promoted by the 
‘Two Oriented Society’ policy, we assume the change of energy production and consumption 
structure in the study region has been stable. This could be the reason why the estimated PM10 
concentrations in 2006 can be accurately predicted by the LUR model 2013 in this study, and also 
indicates the potential transferability of the LUR model 2013 across time in the CZT area. 

Temporal variation in PM10 concentrations suggests that the “Two Oriented Society” policy has 
positive effect on reducing PM10 concentration. The overall mean PM10 concentration in the CZT has 
decreased since it became a national comprehensive supporting trial area in the implementation of 
this policies. In this process, the local governments encourage building greening systems along the 
urban streets, afforesting waste hills or unclaimed lands, and converting low farmlands into lakes. 
Moreover, high-tech industrial and science parks are gradually replacing original disordered 

Figure 5. (a) Variation of PM10 concentration and Variation of (b) AI; (c) CONTAG; (d) LSI; (e) PAFRAC;
(f) SHDI.

Table 5 further demonstrates the correlations between the variations of landscape metrics and
PM10 concentration changes. On one hand, changes of AI (r = ´0.097) and CONTAG (r = ´0.114)
negatively correlate with the changes of PM10 concentrations (p < 0.0001). On the other hand, positive
correlations between the changes of landscape metrics and PM10 concentrations follows a typical
declined sequence of SHDI (r = 0.060, p = 0.004) and LSI (r = 0.046, p = 0.024). However, no statistically
significant correlation between changes of PAFRAC and PM10 concentration (p = 0.866) was found.

Table 5. Pearson correlation coefficients between changes of PM10 concentrations and landscape metrics.

Land Use Types AI CONTAG LSI PAFRAC SHDI

Correlation coefficient ´0.097 ´0.114 0.046 0.004 0.060
Sig. (2-tailed) <0.0001 <0.0001 0.024 0.866 0.004

4. Discussion

Fine-resolution monitoring data for air pollutants are rarely available for most countries in the
world [22]. Prefecture-level cities in China, for example, had no continuous automatic air pollution
monitoring system until 2013. In order to estimate air pollution in suburban and rural areas distant
from monitoring sites in the CZT urban agglomeration, a LUR model, called LUR model of year
2013, was developed and its transferability across time was also validated in this study. The LOOCV
R2 (0.63–0.75) and absolute bias (MRT 0.04%–22.81%) of this developed LUR model demonstrate
comparable reliability to previously-reported LUR models with R2 ranging from 0.22 to 0.72 and
absolute bias ranging from 17% to 22% [21,23].
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Based on the data of consumption proportions of raw coal, petroleum, natural gas, clean energy
(i.e., hydropower, nuclear power, wind power, etc.) and other sources in 2006 (68.51%, 12.87%, 0.66%,
14.87%, 3.09%, respectively) and 2013 (62.23%, 11.66%, 1.55%, 14.04%, 10.52%, respectively) of the
CZT are [43] and given the efficient and conservative use of energy has been promoted by the ‘Two
Oriented Society’ policy, we assume the change of energy production and consumption structure in
the study region has been stable. This could be the reason why the estimated PM10 concentrations in
2006 can be accurately predicted by the LUR model 2013 in this study, and also indicates the potential
transferability of the LUR model 2013 across time in the CZT area.

Temporal variation in PM10 concentrations suggests that the “Two Oriented Society” policy has
positive effect on reducing PM10 concentration. The overall mean PM10 concentration in the CZT has
decreased since it became a national comprehensive supporting trial area in the implementation of this
policies. In this process, the local governments encourage building greening systems along the urban
streets, afforesting waste hills or unclaimed lands, and converting low farmlands into lakes. Moreover,
high-tech industrial and science parks are gradually replacing original disordered productive land use
(i.e., industrial, warehouse, mining). These actions not only cut down the emissions of possible LUCC
related pollution sources, but also blocked the pollutants dispersion. However, as a consequence of the
three cities (Changsha, Zhuzhou, and Xiangtan City) joining together and the accelerated industrial
development, air pollution in the central CZT is still very challenging. Efforts for emission reduction
and air pollution prevention and treatment should especially be put on the inner urban agglomeration,
and these actions could be implemented by the incorporations in land use, economic development,
industrial layout, and traffic pattern among three cities.

The association between LUCC and PM10 concentration variation clearly illustrates the potential
contribution of land planning in reducing air pollution. The change of forest area shows a negative
influence on PM10 concentration that is strongly positively correlated with the increasing built-up
area. This result confirms findings of Weng et al. and Stone [4,16], suggesting that land use strategies
including creating urban growth boundaries (i.e., restricting peripheral spread of urban zones and
the resulting vehicle increase) and protecting essential ecological sites would be effective in limiting
PM10 concentration growth [13]. Reduction of green space relates to PM10 increase, corroborating its
important role in mitigating air pollution. The positive relationship between PM10 variation and bare
soil proportion change may be induced by the ground dust. The tidal wave of migrant workers leaves
a broad agricultural land out of cultivation, which may increase the PM10 concentration. Additionally,
straw burning is one of the major sources of PM10 in the autumn.

For landscape, the changes of LSI, SHDI, and PAFRAC have positive correlation with the PM10

concentration variation in suburban and rural areas. The increase of these landscape metrics could be
significant signals of human disturbance to predominant, continuous patches of natural landscape [18].
Growing human activities are bound to increase energy and transport demands, which have positive
effect on PM10 concentration. On the other hand, the dominant landscapes in these areas covering
over two-thirds of the study area are forest and green land, with high AI and CONTAG, and little
pollutant source, hence the PM10 concentration is rather low. This reconfirmed the results of Liu and
Shen [44]. However, the newly developed built-up area is experiencing a decrease of LSI and SHDI
whilst an increase of AI, CONTAG, and PM10 concentration. A possible reason of this could be the
concentration of buildings in a small area with simple geometric shapes and high traffic emissions.
Moreover, the resultant air pollutant may be entrained in a re-circulatory system due to the “street
canyons effect” [45]. All of these indicate that the landscape impact on PM10 concentration in the study
area is closely related to the development stage it is in.

5. Conclusions

This study developed a LUR model that coupled land use and meteorology factors to evaluate the
effect of urban LUCC on air pollution variation during the urban sprawl of the CZT from 2006–2013.
While the proposed LUR model of year 2013 was validated in terms of transferability in the CZT
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with relatively stable energy production and consumption structure across time, this study disclosed
that the PM10 concentrations in the CZT have generally decreased after the implementation of the
“Two-Orientated society” policy since 2006. The urban LUCC, including land cover and landscape,
influences PM10 variations. Increases of built-up areas and decreases of forest areas during the period
from 2006–2013 have considerable adverse impacts on PM10 variation, while the effects of landscape
pattern variation are only moderate, and these effects vary in newly-developed built-up areas and
others. Compared to either the land use or landscape, the combination of them might be more useful
in indicating PM10 concentration levels. And these results imply that more serious consideration of
reasonable land use configurations could be a promising way to improve the air quality in urban
sprawl, and China’s “Two Oriented Society” policy is a sustainable urban development strategy for
developing countries to effectively control urban air quality.
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