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Abstract: To evaluate the efficacy of passive restoration on soil seed bank and vegetation recovery,
we measured the species composition and density of the soil seed bank, as well as the species
composition, density, coverage, and height of the extant vegetation in sites passively restored for
0, 4, 7, and 12 years (S0, S4, S7, and S12) in a degraded grassland in desert land. Compared with
S0, three more species in the soil seed bank at depths of 0–30 cm and one more plant species in the
community was detected in S12. Seed density within the topsoil (0–5 cm) was five times higher in S12
than that in S0. Plant densities in S7 and S12 were triple and quadruple than that in S0. Plant coverage
was increased by 1.5 times (S4), double (S7), and triple (S12) compared with S0. Sørensen’s index of
similarity in species composition between the soil seed bank and the plant community were high
(0.43–0.63), but it was lower in short-term restoration sites (S4 and S7) than that in no and long-term
restoration sites (S0 and S12). The soil seed bank recovered more slowly than the plant community
under passive restoration. Passive restoration is a useful method to recover the soil seed bank and
vegetation in degraded grasslands.
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1. Introduction

Desertification of sandy areas in Northeast China, which is primarily triggered by
overgrazing [1,2], poses a serious threat to ecosystem structure and function, resulting in reduced
productivity [3]. Restoration methods such as passive restoration (i.e., removing domestic grazers)
and active restoration (i.e., replanting target plant) have been widely used in degraded sandy
grasslands [4–7]. Recently, some ecologists have documented that passive restoration of degraded
lands should be considered first because passive restoration relies on the natural succession of a
regressive ecosystem to drive recovery without anthropogenic help, which has also excluded the
disturbance of domestic animals (i.e., cattle, sheep) [8–10]; thus, the cost is much cheaper than the
active method. In addition, passive restoration methods are as effective as active restoration [11,12].
Thus, passive restoration has mostly been employed in degraded sandy grasslands of semi-arid
regions [1,2,13].

Previous studies of passive restoration in degraded ecosystems have found that passive restoration
had positive [14–17], neutral [18], or even negative effects [19] on the species composition and density
of the soil seed bank, as well as on the species composition, density, coverage, and mean height of
vegetation. The different results mainly depended on the variety in seed production and emergence
capacity, plant growth and dispersal, and the ratio of weeds to grass across the different grasslands [15].
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The similarity between the species composition of the soil seed bank and vegetation may increase [20],
decrease [21], or not change [15,22] after disturbance has been excluded from degraded grasslands.
The contradictory results were attributed to variations in (1) the plant dispersal capacity; (2) the
proportion of the extant plants derived from the soil seed bank (vs. dispersal into the site from outside);
(3) the production and species richness of mature vegetation; and (4) the relative proportions of
persistent soil seed bank. Previous studies have reported that high similarity occurred in communities
with weak plant dispersal capacity and high vegetation productivity and species richness, whereas
low similarity occurred under the opposite conditions [23–25]. However, understanding of the
development of these ecosystem characteristics over time is still limited for degraded, semi-arid sandy
grasslands managed using passive restoration.

A chronosequence of sites in Inner Mongolia under passive restoration method (0, 4, 7, and
12 years) were employed to quantify the recovery and similarity of the soil seed bank and vegetation.
The objective of this study was to quantify the effects of passive restoration on (1) the species
composition and density of the soil seed bank; (2) the species composition, density, coverage, and
mean height of extant vegetation; and (3) the Sørensen’s index of similarity (IS) between the soil seed
bank and vegetation community. The results can provide a basis for understanding about the passive
restoration effects on the soil seed bank and vegetation recovery, and will inform and promote policy
made for protection and restoration in degraded grasslands.

2. Materials and Methods

2.1. Field Site

The study was conducted at the Wulanaodu Experimental Station of Desertification (43˝02’N,
119˝39’E, 480 m a. s. l.) in the western part of Horqin Sandy Land in Northeastern Inner
Mongolia, China. The climate is semi-arid continental, with a mean annual precipitation of
340.5 mm and more than 70% of this precipitation occurred during the growing season (from
May to September). Mean annual pan evaporation is 2000–2500 mm, six to seven times greater
than the annual rainfall amount. Average annual temperature is 6.3 ˝C, and the coldest and
warmest months are January and July, with mean temperatures of ´14.0 ˝C and 23.0 ˝C, respectively.
Mean annual wind velocity is 4.4 m¨ s´1, and wind direction is predominantly northwestern. Gale days
(>20 m¨ s´1) occur 21–80 times per year, with the windy season generally occurring from early
April to late May. The native dominant plant community types were the Caragana microphylla
community, the Cleistogenes squarrosa community, the Leymus chinensis–rank grass community, the
Arundinella hirta–Hemarthia altissima community, the Spodiopogon sibiricus–rank grass community,
the A. hirta–rank grass community, the Phragmites communis–rank grass community, the L. chinensis
community, and the H. altissima–P. communis community [26]. The original communities have changed
greatly following centuries of exploitation and over-grazing. The extant vegetation in degraded
grassland is dominated by the target plant (C. microphylla), pioneer plants (Artemisia halodendron,
A. frigida, Bassia dasyphylla, Corispermum thelelegium, and Agriophyllum squarrosum), and ruderal species
(Setaria viridis and Chloris virgate).

In the Horqin Sandy Land, grazing was the main disturbance that led to long-term serious land
degradation. Free grazing intensity was 4.5–5.0 sheep ha´1 since the mid-1950s, which seriously
exceeded a moderate grazing rate of 1.0–1.5 sheep ha´1 in this area, and induced the amounts of
sand dunes. Passive restoration areas of at least 50 m ˆ 50 m were established in 2000, 2005, and
from 2008 to 2012. The areas were fenced with 1.2-m-high cement blocks piled together with wire
netting (1 m high ˆ 3 m wide) to completely exclude livestock grazing since restoration established.
This produced a chronosequence of sites that were 4, 7, and 12 years old by 2012 (referred to as S4,
S7, and S12, respectively). Meanwhile, freely grazing sites were treated as the control treatment (S0).
The distance between two adjacent restored sites is at least 400 m.
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2.2. Sampling Design and Procedure

In April 2012, a control (S0) and three restoration (S4, S7, and S12) levels were selected as the
experimental treatments, and the objective reference community (merely mowing in the winter) were
dominated as the C. microphylla community, the L. chinensis community, the Cleistogenes squarrosa
community, and the A. hirta community. Three sand dunes within each treatment area (as three
replicates) were randomly selected as the research sites. The sand dunes had a similar soil texture and
topography. A plot (10 m ˆ 30 m) was set up in the middle of the windward slope of each sand dune.
Ten sampling quadrats (1 m ˆ 1 m) were randomly established in each plot, for a total of 120 quadrats
(four treatments ˆ three replicates ˆ ten quadrats). In late April 2012, after the windy season but
prior to the rainy season, soil samples were collected from each quadrat at four depths (0–5, 5–10,
10–20, and 20–30 cm) with a 7-cm diameter soil auger following with a previous study in this area [27].
A total of 480 soil samples (120 quadrats ˆ 4 depths) were collected and air-dried. The soils were
passed through a 0.5-mm sieve, and the seeds were picked out and identified to the species level by
comparing with seeds collected from living plants in 2011. Any seeds that could not be identified were
identified using a germination experiment in trays (16 cm in diameter ˆ 1 cm deep) in a greenhouse.
All seeds were made viable using the “terazolium dyeing method” before germination [28]. A plant
survey was conducted in late July 2012 at the peak of the growing season. A quadrat of 1 m ˆ 1 m
quadrat was established at a distance of 50 cm from each soil seed sampling quadrats, and plant species
were counted in each quadrat. We considered a plant shoot to be an individual plant for our species
density calculations. Plant coverage was measured using a metal frame of 1 m ˆ 1 m with 100 equally
distributed grids above the quadrat. The mean plant height was calculated from ten random height
measurements, with height measured from the base of the plant (ground level) to the tip of the plant.

2.3. Data Analysis

The similarity of the species composition between the soil seed bank and vegetation community
was calculated using the binary Sørensen index of similarity (IS) [29] with the flowing equation.
Because the soil seed bank can only sample as volume, and the vegetation is calculated as area,
which is a different sample method, it is difficult to compare the data, as they do not have the same
technical sampling.

IS “
ˆ

2C
A` B

˙

ˆ 100%

where C is the number of species that the soil seed bank and plant community had in common, and A
and B are the total number of species in the soil seed bank and plant community, respectively.

One-way ANOVA was used to compare the density of the soil seed bank, the density, coverage,
and mean height of the plant, as well as the IS among the four treatments. Differences between each
pair of treatments were tested with a post hoc Tukey HSD at a p < 0.05 level. Normal distribution and
homogeneity of variances were examined by the Shapiro–Wilk test and Levene’s test before the above
analysis was conducted. Statistical analyses were performed with the SPSS 16.0 software package
(SPSS Inc., Chicago, IL, USA).

3. Results

3.1. Soil Seed Bank Recovery

The soil seed bank contained eight species from five families. All species were annual plants
except for C. microphylla (a shrub) found in S12, which is the typical species of the target community.
Species number was increased from three in S0 to five, four, and six in S4, S7, and S12, respectively
(Table 1). The seed density from 0 to 30 cm was five times higher in S12 than that in S0, primarily
because of the elevated seed number in the topsoil (0–5 cm), which explained 96% of the variation on
soil seed density (Figure 1).
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(p < 0.05).

Table 1. List of species recorded in the soil seed bank and vegetation community under the four
treatments. +: present in the research sites; ´: absent in the research sites.

Species Family Soil Seed Bank Vegetation

S0 S4 S7 S12 S0 S4 S7 S12

Aristida adscensionis Poaceae ´ + + + + + + +
Artemisia arenaria Compositae ´ ´ ´ ´ + + ´ ´

Atraphaxis bracteata Polygonaceae ´ + ´ ´ ´ ´ ´ ´

Agriophyllum squarrosum Amaranthaceae + + + + + + ´ ´

Bassia dasyphylla Amaranthaceae ´ ´ ´ + + ´ + +
Chenopodium acuminatum Amaranthaceae ´ ´ ´ ´ ´ ´ + +
Corispermum candelabrum Amaranthaceae + ´ + + + + + +
Cuscuta chinensis Convolvulaceae ´ ´ ´ ´ ´ + + +
Caragana microphylla Leguminosae ´ ´ ´ + + + ´ +
Carduus nutans Compositae ´ ´ ´ ´ + + ´ +
Cleistogenes squarrosa Poaceae ´ ´ ´ ´ ´ ´ + ´

Cynanchum thesioides Apocynaceae ´ ´ ´ ´ + + + +
Chloris virgata Poaceae ´ ´ ´ ´ ´ ´ + ´

Diarthron linifolium Thymelaeaceae ´ + ´ ´ + + + ´

Digitaria sanguinalis Poaceae ´ ´ ´ ´ + + + +
Echinops gmelinii Compositae ´ ´ ´ ´ ´ + ´ ´

Euphorbia humifusa Euphorbiaceae ´ ´ ´ ´ + + + +
Eragrostis minor Poaceae ´ ´ ´ ´ ´ ´ + +
Hedysarum fruticosum Leguminosae ´ ´ ´ ´ ´ + ´ ´

Lespedeza davurica Leguminosae ´ ´ ´ ´ + + ´ +
Lactuca indica Compositae ´ ´ ´ ´ ´ ´ ´ +
Rochelia leiosperma Boraginaceae ´ ´ ´ ´ ´ ´ + ´

Salsola ruthenica Amaranthaceae ´ ´ ´ ´ ´ ´ + +
Setaria viridis Poaceae + + + + + + + +
Tribulus terrestris Zygophyllaceae ´ ´ ´ ´ + + ´ ´
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3.2. Plant Recovery

We counted 24 species of plants from nine families, with 14 species in S0, 16 in S4, 15 in S7, and
15 in S12 (Table 1). The dominant families were Poaceae (six species), Amaranthaceae (five species),
and Asteraceae (four species). Only C. microphylla and Cleistogenes squarrosa were typical species of
the target community. The rest were pioneer species (e.g., B. dasyphylla, Corispermum thelelegium) and
ruderals (S. viridis and C. virgate) (Table 1). Annuals species (i.e., Corispermum candelabrum, S. viridis)
accounted for 57% plant density in S0, 50% in S4, 80% in S7, and 67% in S12. Compared with S0, plant
density was doubled in S7 and tripled in S12. Plant coverage was increased by 1.18 and 1.99 times in
S7 and S12, respectively, and plant height was increased by 0.72 and 1.22 times in S4 and S7 compared
with S0 (Figure 2).
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Figure 2. Density (individual m´2), coverage (%), and mean height (cm) of vegetation at the sites
(S0, S4, S7, and S12). Different letters indicate a significant difference (p < 0.05).

3.3. Restoration Effects on IS Values

The IS values were generally high (from 0.43 to 0.63); however, IS decreased in non-chronological
order with S0 > S12 ě S4 ě S7 (where > indicates a significant difference, and ě indicates a slight but
not significant difference at p = 0.05) (Figure 3).
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4. Discussion

4.1. Soil Seed Bank Recovery

Successful ecosystem restoration primarily depends on the suitability and adaptability of the
vegetation [30]. Plants regrow from seeds in the soil seed bank and extant plant reproduction,
or are introduced by dispersal [31,32]; thus, the characteristics of the soil seed bank are important in
determining the regeneration potential and resilience of the target community [17,33,34]. Our findings
suggest that passive restoration can increase the number of species and their seed density in the soil
seed bank, increasing ecosystem resilience [34–36]. However, Sun et al. (2005) and Li et al. (2012)
observed an opposite effect of passive restoration on seed density [17,37]. These conflicting results may
be attributed to the differences in seed sources and persistent seed bank reserves at different research
sites [29,38]. Our findings show that the soil seed bank had partially recovered, but that restoration is
a relatively slow, long-term process.

4.2. Plant Recovery

Plant community composition, density, and coverage are indicators for the restored lands extant
vegetation evaluation [7,39]. We found that passive restoration significantly increased plant density,
coverage, and slightly increase the plant height; these increased plant community characters can also
change the species composition of the soil seed bank by increasing seed production [40]. The results are
consistent with Fernández-Lugo (2009), Jeddi & Chaieb (2010), and Li et al. (2012), who also investigated
sandy grasslands [16,17,41]. Fernández-Lugo (2009) and Gomaa (2012) argued that grazing cessation
and microhabitat improvements (mainly increased soil nutrient and water availability) altered the
proportions of the dominant species and thus increased plant density, coverage, and height [41,42].
At our sites, the target species (C. microphylla and C. Squarrosa) are still present, essentially priming
the sites for restoration. However, the recovery of the soil seed bank is slower than that of the plant
community in our study, because plants regrew from both the soil seed bank and seeds dispersed from
the surroundings, as observed in other restored sandy grasslands [26].

4.3. Similarity in Species Composition between the Soil Seed Bank and Vegetation

The IS values in all of our sites are higher than those in previous grassland studies [28,29],
possibly because of differences in the ratio of perennials to annual species (IS typically decreases with
an increasing ratio of perennial to annual species) [1,42]. Lower IS values in S4 and S7 comparing
with S0, partially because the dormancy seed would not regenerate easily without dormancy breaking,
indicating that during initial recovery, new species which are not present in the soil seed bank can be
added through dispersal from the surrounding area. These results suggest that the species composition
of the soil seed bank can be predicted with extant vegetation to some degree, and the recovery of soil
seed bank and vegetation needs a relatively long period.

5. Conclusions

Our findings suggest that (1) long-term (12 years) passive restoration management can increase
the species number and density of soil seeds, but short-term management (4 and 7 years) had minimal
effects on these characteristics; (2) passive restoration can increase the species number, density, and
coverage of the target vegetation community; and (3) the recovery of the soil seed bank was slower
than that of the plant community. Our study has proved that passive restoration is a beneficial method
for sandy grasslands management. Nonetheless, restoration interventions such as direct seeding and
planting improve both the regeneration of plant species and land cover.
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