Supplementary Materials: Paradise Islands? Island States and Environmental Performance Sverker C. Jagers, Marina Povitkina, Martin Sjöstedt and Aksel Sundström **Table S1.** The list of environmental indicators used as dependent variables. | # | Name of the Variable | Source of
Data | Original Source | Reference
Year | Total Number of
Observations | Number of
Island States | Interpretation | Explanation | |---|--|--------------------|--|--------------------------|---------------------------------|----------------------------|----------------|--| | | Water and Sanitation | | | | | | | | | 1 | Access to drinking water (proximity to target) | EPI 2012 | WHO/UNICEF | 1990–2005,
2008 | 196 | 35 | direct | percentage of a country's population that
has access to an improved source of
drinking water | | 2 | Access to sanitation (proximity to target) | EPI 2012 | WHO/UNICEF | 1990–2005,
2008 | 192 | 33 | direct | percentage of people with access to
adequate sanitation facilities in relation to
the total population | | 3 | Change in water quantity (proximity to target) | EPI 2012 | P. Döll, K. Fiedler, and J.
Zhang. Global-scale
analysis of river flow
alterations due to water
withdrawals and
reservoirs, Hydrol. Earth
Syst. Sci., 13 | 2005 | 202 | 32 | direct | reduction of mean annual river flow from
"natural" state resulting from water
withdrawals and reservoirs | | 4 | Water consumption (proximity to target) | EPI2006 | University of New
Hampshire, Water
Systems Analysis Group | mean annual
1950–1995 | 171 | 16 | direct | percentage, human water demand | | 5 | Water withdrawal score | Wellbeing
index | FAO | 2001 | 165 | 20 | direct | annual withdrawals of ground and surface
water for domestic, agricultural, and
industrial uses, in cubic kilometers per year | | 6 | Nitrogen loading (proximity to target) | EPI2006 | University of New
Hampshire, Water
Systems Analysis Group | mean annual
1950–1995 | 172 | 16 | direct | milligrams/liter; accounts for: atmospheric
nitrogen deposition, nitrogen fixation,
nitrogenous fertilizer loads, livestock
nitrogen loading; and human nitrogen
loading | Table S1. Cont. | # | Name of the Variable | Source of
Data | Original Source | Reference
Year | Total Number of
Observations | Number of
Island States | Interpretation | Explanation | |----|--|-------------------|---|-------------------|---------------------------------|----------------------------|----------------|---| | | Air and emissions | | | | | | | | | 7 | Sulfur dioxide
emissions per capita
(proximity to target) | EPI 2012 | Smith <i>et al.</i> (2011).
Anthropogenic sulfur
dioxide emissions: 1850–
2005, Atmos. Chem. Phys.,
WDI, CIA World Factbook | 1850–2005 | 138 | 13 | direct | Kilograms of sulfur dioxide/person | | 8 | Sulfur dioxide
emissions per GDP
(proximity to target) | EPI 2012 | Smith <i>et al.</i> (2011).
Anthropogenic sulfur
dioxide emissions: 1850–
2005, Atmos. Chem. Phys.,
WDI, CIESIN | 1850–2005 | 138 | 13 | direct | grams of sulfur dioxide per US dollar PPP
(in 2005 constant US dollars) | | 9 | Carbon dioxide per capita (proximity to target) | EPI 2012 | International Energy
Agency | 1960–2009 | 137 | 13 | direct | kilograms of carbon dioxide per person | | 10 | Carbon dioxide per
GDP (proximity to
target) | EPI2006 | Carbon Dioxide
Information Analysis | 2000 | 181 | 34 | direct | tons of carbon dioxide/ US dollar GDP
PPP, in 2000 US dollar | | 11 | CO ₂ emissions per
electricity generation
(proximity to target) | EPI 2012 | International Energy
Agency | 1960–2009 | 137 | 13 | direct | grams of CO2 per kWh | | 12 | Urban Particulates
(proximity to target) | EPI2006 | Global Model of Ambient
Particulates (GMAPS),
World Bank | 1999, 2000 | 180 | 27 | direct | µg/m 3; only cities larger than 100,000 population and national capitals were considered, with a population weighted PM10 concentration to account for exposure | | 13 | Anthropogenic NOx
emissions per
populated land area | ESI 2005 | UNFCCC, Greenhouse gas (GHG) emissions database, <i>etc</i> . | 1990–2003 | 158 | 19 | inverse | metric tons NOx emissions per populated land area | | 14 | Anthropogenic sulfur dioxide emissions per populated land area | ESI 2005 | UNFCCC, Greenhouse gas (GHG) emissions database, <i>etc</i> . | 1990–2003 | 153 | 17 | inverse | metric tons sulfur dioxide per populated land area | | 15 | Anthropogenic volatile organic compound emissions per populated land area | ESI 2005 | UNFCCC, Greenhouse gas (GHG) emissions database, etc. | 1990–2003 | 159 | 20 | inverse | metric tons of non-methane volatile organic compounds per populated land area | Table S1. Cont. | # | Name of the Variable | Source of
Data | Original Source | Reference
Year | Total Number of
Observations | Number of
Island States | Interpretation | Explanation | |----|--|--------------------|--|-------------------|---------------------------------|----------------------------|----------------|--| | 16 | Acidification exceedance from anthropogenic sulfur deposition | ESI 2005 | Stockholm Environment
Institute at York | 1990 | 236 | 40 | inverse | percentage of total land area at risk of acidification exceedance | | 17 | Import of polluting goods and raw materials as a percentage of total imports of goods and services | ESI 2005 | COMTRADE | 2002 | 114 | 14 | inverse | import of polluting goods and raw
materials as a percentage of total imports
of goods and services | | 18 | Use of ozone depleting
substances per land
area | Wellbeing
index | Ozone Secretariat, United
Nations Environment
Programme. 1999.
Production and
consumption of ozone
depleting substances
1986–1998. Ozone
Secretariat, UNEP, Nairobi | 1995 | 154 | 27 | inverse | the use of ozone depleting substances per
hectare of total (land and inland waters)
area in grams of ozone depleting potential
(g odp/ha) | | 19 | Use of ozone depleting substances per capita | Wellbeing
index | Ozone Secretariat, UNEP.
1999. Production and
consumption of ozone
depleting substances
1986–1998 | 1995 | 154 | 27 | inverse | use of ozone depleting substances per
person in grams of ozone depleting
potential (g odp/capita) | | 20 | Regional ozone
(proximity to target) | EPI2006 | MOZART-data, dev. at
NCAR processed at
Princeton University | 1990–2004 | 218 | 39 | direct | parts per billion, ozone concentration; 10 highest concentrations from 1990–2004 years | | | Biodiversity | | | | | | | | | 21 | Threatened native bird species as a percentage of total native species | Wellbeing
index | IUCN Species Survival
Commission | 1995 | 168 | 32 | inverse | percentage | | 22 | Threatened native species as a percentage of total native mammal species | Wellbeing
index | IUCN Species Survival
Commission | 1995 | 176 | 31 | inverse | percentage | Table S1. Cont. | # | Name of the Variable | Source of
Data | Original Source | Reference
Year | Total Number of
Observations | Number of
Island States | Interpretation | Explanation | |----|---|--------------------|--|-------------------|---------------------------------|----------------------------|----------------|---| | 23 | Threatened native reptiles as a percentage of total native reptile species | Wellbeing
index | IUCN Species Survival
Commission | 1995 | 139 | 31 | inverse | percentage | | 24 | Threatened amphibian species as a percentage of known amphibian species in each country | ESI 2005 | IUCN-The World
Conservation Union Red
List of Threatened Species | 2004 | 191 | 27 | inverse | percentage | | 25 | Threatened flowering plants species as a percentage of all wild species | Wellbeing
index | IUCN Species Survival
Commission | 1995 | 142 | 30 | inverse | percentage | | 26 | Threatened gymnosperms as a percentage of total native species of gymnosperms | Wellbeing
index | IUCN Species Survival
Commission | 1995 | 81 | 18 | inverse | percentage | | 27 | Threatened native species of pteridophytes as a percentage of total native species | Wellbeing
index | IUCN Species Survival
Commission | 1995 | 69 | 15 | inverse | percentage | | 28 | Endangered species | EVI2004 | Needed Source? | 2000 | 230 | 39 | inverse | number of endangered and vulnerable species per 1000 square kilometers; focuses on those species that have become endangered or threatened in a country with implied impacts on biodiversity and ecosystem integrity | | 29 | Extinctions | EVI2004 | IUCN Red Book 2000 | 1900–2000 | 229 | 39 | | number of species known to have become
extinct since 1900 per 1000 square
kilometers | | 30 | National Biodiversity
Index | ESI 2008 | Convention on Biological
Diversity, Global
Biodiversity Outlook | 2001 | 160 | 14 | direct | score 0–1; assesses a country's species richness by measuring species abundance (includes some adjustment allowing for country size); countries with land area less than 5000 square kilometers are excluded as are overseas territories and dependencies | Table S1. Cont. | # | Name of the Variable | Source of
Data | Original Source | Reference
Year | Total Number of
Observations | Number of
Island States | Interpretation | Explanation | |----|--|-------------------|--|-------------------|---------------------------------|----------------------------|----------------|--| | | Protected areas | | | | | | | | | 31 | Marine protection (proximity to target) | EPI 2012 | IUCN and UNEP-WCMC | 1990–2010 | 185 | 40 | direct | percentage of exclusive economic zone area protected | | 32 | Terrestrial protected areas | WB | UNEP-WCMC, WRI | 2010 | 202 | 34 | direct | percentage of total terrestrial area | | 33 | Ecoregion protection | NRMI | CIESIN | 2011 | 233 | 40 | direct | percentage of biome area protected within country's land area; capped at 10% for each biome, consistent with international target, and weighted by share of biome's area in the country land area. | | 34 | Percentage of country's
territory in threatened
ecoregions | ESI 2005 | Jonathan M. Hoekstra,
Timothy M. Boucher,
Taylor H. Ricketts, and
Carter Roberts. (2005).
Confronting a biome
crisis: Global disparities of
habitat loss and
protection. <i>Ecology Letters</i> ,
8, pp. 23-29 | 2004 | 230 | 39 | inverse | threatend ecoregions are ecoregions with
high ratios of habitat conversion to habit
protection that are classified as vulnerable,
endangered, or critical | | 35 | Critical habitat protection (proximity to target) | EPI 2012 | UNEP-World
Conservation Monitoring
Centre | 2011 | 88 | 22 | direct | percentage of the total Alliance for Zero
Extinction site area that is within protected
areas | | 36 | Wilderness protection
(proximity to target) | EPI2006 | World Database on
Protected Areas | 2000 | 204 | 31 | direct | percentage of wild areas that are protected; for each biome in a country, the following were calculated: the mean and standard deviation of Human Influence Index values, the sum of the footprint of human habitation (settlements, land use), infrastructural development (transportation and electric grid), and the population density | Table S1. Cont. | # | Name of the Variable | Source of
Data | Original Source | Reference
Year | Total Number of
Observations | Number of
Island States | Interpretation | Explanation | |----|---|--------------------|--|------------------------------|---------------------------------|----------------------------|----------------|---| | | Forest and vegetation | | | | | | | | | 37 | Growing stock change (proximity to target) | EPI 2012 | FAO | 1990, 2000,
2005 and 2010 | 155 | 19 | direct | the standing tree volume of the forest resources, ratio of period 1 to period 0 | | 38 | Forest loss (proximity to target) | EPI 2012 | FAO | 1990, 2000,
2005 and 2010 | 189 | 31 | direct | the percentage loss of forest area owing to
deforestation from either human or
natural causes | | 39 | Forest cover change (proximity to target) | EPI 2012 | FAO | 1990, 2000,
2005 and 2010 | 215 | 37 | direct | percentage change in the forest cover from period 0 to period 1 | | 40 | Percentage of total
forest area that is
certified for sustainable
management | ESI 2005 | The Forest Stewardship
Council, WRI | 2000, 2004 | 230 | 40 | direct | percentage of total forest area that is
certified for sustainable management by
The Forest Stewardship Council or Pan-
European Forest Certification Council | | 41 | Natural vegetation cover remaining | EVI2004 | WRI, FAO | 2000–2001 | 155 | 19 | direct | percentage of original (and regrowth) vegetation cover remaining | | 42 | Loss of natural vegetation cover | EVI2004 | WRI, FAO | 2000–2001 | 155 | 12 | direct | net percentage change in natural vegetation cover over the last five years | | 43 | Timber harvest rate (proximity to target) | EPI2006 | FAO | 2000 and 2004 | 168 | 19 | direct | timber harvest rate (percentage) | | | Fisheries and the marine | environment | | | | | | | | 44 | Fishing stocks
overexploited
(proximity to target) | EPI 2012 | Sea Around Us Project | 1950–2006 | 181 | 40 | direct | fraction of exclusive economic zone with overexploited and collapsed stocks | | 45 | Coastal shelf fishing pressure (proximity to target) | EPI 2012 | Sea Around Us Project | 1950–2006 | 185 | 40 | direct | the catch from trawling and dredging
gears divided by the exclusive economic
zone area, tons per square kilometer | | 46 | Overfishing (proximity to target) | EPI2006 | Environmental
Vulnerability Index | 1993–1998 | 172 | 38 | direct | average ratio of productivity to catch for five years 1993-1998 | | 47 | Fish catching capacity per fish producing area score | Wellbeing
index | FAO, etc. | 1995 | 154 | 32 | direct | the score (0–100) for weight of fish catching capacity per unit of fish producing area | | 48 | Fishing effort | EVI 2004 | WRI | 1994–1996 | 97 | 11 | inverse | average annual number of fishers per
kilometer of coastline over the last 5 years,
captures the risk of damage to fisheries'
stocks through overcapacity of human effort | Table S1. Cont. | # | Name of the Variable | Source of
Data | Original Source | Reference
Year | Total Number of
Observations | Number of
Island States | Interpretation | Explanation | |----|--|--------------------|--|-------------------|---------------------------------|----------------------------|----------------|---| | 49 | Percentage of fish species overexploited and depleted | Wellbeing
index | FAO Marine Resources
Service | 1995 | 80 | 14 | inverse | overexploited species + depleted species + depleted but recovering species as a percentage of assessed species | | 50 | Fisheries protection score | Wellbeing
index | FAO Marine Resources
Service | 1995 | 80 | 14 | direct | score (0–100) for overexploited species + depleted species + depleted but recovering as a percentage of assessed species, but the tops were set at five times those for the wild species indicators, since depleted and overexploited species are not necessarily threatened | | 51 | Fish catch in marine and inland waters | Wellbeing
index | FAO | 1995 | 157 | 32 | inverse | metric tons of catch | | 52 | Tons of fish catch per
ton of fish catching
capacity | Wellbeing index | FAO | 1995 | 157 | 32 | direct | the score (0–100) for weight of catch per unit of fish catching capacity | | 53 | Ecosystem imbalance | EVI2004 | University of British
Columbia, Fisheries
Centre, Lower
Mall Research Station | NA | 180 | 39 | inverse | + or – change in trophic level calculated by weighting each trophic level present in the national catch by the tons reported.; captures the risk of ecosystem stress and loss of diversity/ balance; the greater the downward trend, the more likely that the marine biomass and trophic structures have been damaged | | 54 | Food provision—Wild caught fisheries | OHI 2012 | Ocean Health Index | 2012 | 157 | 39 | direct | index, 0–100; reflects the amount of
seafood captured in a sustainable way; the
more seafood harvested or cultured
sustainably, the higher the goal score | | 55 | Food provision—
Mariculture | OHI 2012 | Ocean Health Index | 2012 | 157 | 39 | direct | index, 0–100; reflects the amount of
seafood raised in a sustainable way; the
more seafood harvested or cultured
sustainably, the higher the goal score | | 56 | Natural products | OHI 2012 | Ocean Health Index | 2012 | 157 | 39 | direct | index, 0–100; measures how sustainably people harvest non-food products from the sea | Table S1. Cont. | # | Name of the Variable | Source of
Data | Original Source | Reference
Year | Total Number of
Observations | Number of
Island States | Interpretation | Explanation | |----|---|-------------------|--------------------------------------|-------------------|---------------------------------|----------------------------|----------------|--| | 57 | Carbon storage | OHI 2012 | Ocean Health Index | 2012 | 157 | 39 | direct | index, 0–100; compares the current extent
and condition of carbon dioxide storing
coastal habitats (mangrove forests,
seagrass meadows, and salt marshes)
relative to their condition in the early
1980s. | | 58 | Coastal protection | OHI 2012 | Ocean Health Index | 2012 | 157 | 39 | direct | index, 0–100; measures the condition and extent of habitats that protect the coasts against storm waves and flooding; compares the current extent and condition of five key habitats that protect coastlines (mangrove forests, seagrass meadows, salt marshes, tropical coral reefs, and sea ice) from flooding and erosion relative to their condition in the early 1980s. | | 59 | Sense of place—Iconic species | OHI 2012 | Ocean Health Index | 2012 | 157 | 39 | direct | index, 0–100; measures the condition of iconic species to indicate some of ocean's intangible benefits | | 60 | Sense of place—Lasting special places | OHI 2012 | Ocean Health Index | 2012 | 157 | 39 | direct | index, 0–100; measures the percent of protected coastline to indicate some of ocean's intangible benefits | | 61 | Clean waters | OHI 2012 | Ocean Health Index | 2012 | 157 | 39 | direct | index, 0–100; measures contamination of waters by trash, nutrients, pathogens, and chemicals | | 62 | Biodiversity – Habitats | OHI 2012 | Ocean Health Index | 2012 | 157 | 39 | direct | index, 0–100; reflects conservation status of marine species | | 63 | Biodiversity—Species | OHI 2012 | Ocean Health Index | 2012 | 157 | 39 | direct | index, 0–100; reflects the condition of key
habitats that support high numbers of
species | | | Energy | | | | | | | | | 64 | Energy efficiency (proximity to target) | EPI2006 | Energy Information
Administration | 1994–2003 | 182 | 31 | direct | percentage of hydroelectric, biomass,
geothermal, solar, and wind power
production of total energy consumption | Table S1. Cont. | # | Name of the Variable | Source of
Data | Original Source | Reference
Year | Total Number of
Observations | Number of
Island States | Interpretation | Explanation | | |----|---|--------------------|--|--|---------------------------------|----------------------------|----------------|---|--| | 65 | Renewable energy
(proximity to target) | EPI2006 | Energy Information
Administration | 1994–2003 | 210 | 36 | direct | hydropower and renewable energy
production as a percentage of total energy
consumption; some countries exceed 100
percent because they are net exporters of
renewable energy | | | 66 | Energy materials score | Wellbeing
index | FAO | 2001 | 180 | 32 | direct | the lower score of two indicators: energy consumption per hectare of total area and energy consumption per person; it is limited to an energy index because of a lack of data on consumption of materials and waste generation. | | | | Waste | | | | | | | | | | 67 | Generation of
hazardous waste | ESI 2005 | UNEP | 1992–2001 | 91 | 15 | inverse | metric tons of hazardous waste to be managed in the country | | | | Agriculture, pesticides, fertilizers | | | | | | | | | | 68 | Salinized area due to irrigation as a percentage of total arable land | ESI 2005 | FAO | Arable land:
2000, Salinized
area: MRYA
1990–1999 | 73 | 10 | inverse | percentage of total salinized arable land from irrigation | | | 69 | Fertilizer consumption per hectare of arable land | ESI 2005 | World Bank World
Development Indicators | MRYA 2001–
2003 | 176 | 27 | inverse | 100 grams fertilizer consumption per hectare of arable land | | | 70 | Pesticide consumption per hectare of arable land | ESI 2005 | FAO | MRYA 1990–
2003 | 127 | 17 | inverse | kilograms of pesticide consumption per
hectare of arable land | | | 71 | Intensive farming | EVI 2004 | FAO | 1995–2000 | 176 | 32 | | mean tons of intensively farmed animals
produced per year per square kilometer of
land | | | | Land use | | | | | | | | | | 72 | Percentage of modified land | Wellbeing index | WCMC, etc. | mid-1990s | 180 | 32 | inverse | percentage | | | 73 | Percentage of land cultivated | Wellbeing index | FAO, UNECE & FAO | 2001 | 180 | 32 | inverse | percentage | | | 74 | Percentage of land that is built upon | Wellbeing index | WCMC, etc. | mid-1990s | 180 | 32 | inverse | percentage | | Table S1. Cont. | # | Name of the Variable | Source of
Data | Original Source | Reference
Year | Total Number of
Observations | Number of
Island States | Interpretation | Explanation | |----|---|--------------------|------------------|-------------------|---------------------------------|----------------------------|----------------|--| | 75 | Percentage of cultivated
and modified land area
with light soil
degradation | Wellbeing
index | UNEP/ISRIC, etc. | 1990 | 167 | 19 | inverse | a percentage of land with somewhat reduced agricultural suitability, where the light degree explains the level of soil degradation affecting an area given the weighted total percentage by the factors given; restoration to full productivity possible by modifying management; original biotic functions still largely intact | | 76 | Percentage of cultivated
and modified land area
with moderate soil
degradation | Wellbeing
index | UNEP/ISRIC, etc. | 1990 | 167 | 19 | inverse | percentage of land with greatly reduced
agricultural suitability; major
improvements required to restore
productivity; original biotic functions are
partly destroyed | | 77 | Percentage of cultivated
and modified land Area
with strong soil
degradation | Wellbeing
index | UNEP/ISRIC, etc. | 1990 | 167 | 19 | inverse | percentage of land that is non-reclaimable
at farm level; major engineering works
required for restoration; original biotic
functions destroyed | | 78 | Percentage of cultivated
and modified land area
with Extreme soil
degradation | Wellbeing index | UNEP/ISRIC, etc. | 1990 | 167 | 19 | inverse | percentage of land that is unreclaimable
and beyond restoration; original biotic
functions fully destroyed | | 79 | Degradation | EVI2004 | FAO | 2000 | 165 | 12 | inverse | percentage of a country's land area considered severely and very severely degraded; reflects the status of loss of ecosystems in a country (land can no longer revert to its natural ecosystem without active and costly rehabilitation by humans to reverse permanent damage, if at all) | | 80 | Desertification sub-
index | EVI2004 | EVI | 2004 | 234 | 39 | | unweighted average of the scores for
environmental risk occurrence (dry
periods, hot winds, etc.) | Table S1. Cont. | # | Name of the Variable | Source of
Data | Original Source | Reference
Year | Total Number of
Observations | Number of
Island States | Interpretation | Explanation | |----|--|-------------------|--|--------------------|---------------------------------|----------------------------|----------------|--| | 81 | Fragmented habitats | EVI2004 | World Bank World
Development Indicators
2001 | 1990–1999 | 169 | 23 | inverse | total length of all roads in a country (km)/land area (sq km); cumulative area of all fragments of natural cover greater than 1000 hectares in the country as a percent of total land area; a proxy measure for pressure on ecosystems resulting from fragmentation into discontinuous pieces that also relates to habitat disturbance and degradation; fragmentation is likely to affect biodiversity | | | Ecofootprint | | | | | | | | | 82 | Water footprint of consumption—total | WWF 2008 | Living planet report,
WWF 2008 | 1997–2001 | 138 | 14 | inverse | gigameters cubed/year; total amount of
water that is used to produce the goods
and services consumed by the inhabitants
of the nation | | 83 | Water footprint of consumption—internal | WWF 2008 | Living planet report,
WWF 2008 | 1997–2001 | 138 | 14 | inverse | water footprint from domestic supply | | 84 | Water footprint of consumption—external | WWF 2008 | Living planet report,
WWF 2008 | 1997–2001 | 138 | 14 | inverse | water footprint from imported water | | 85 | Water footprint of production—Green water | WWF 2008 | Living planet report,
WWF 2008 | 1997–2001 | 138 | 14 | inverse | volume of rainwater stored in the soil that evaporates from crop fields | | 86 | Water footprint of production—Blue water | WWF 2008 | Living planet report,
WWF 2008 | 1997–2001 | 138 | 14 | inverse | volume of freshwater withdrawn from
water bodies
that is used and not returned | | 87 | Water footprint of production—Return flows | WWF 2008 | Living planet report,
WWF 2008 | 1997–2001 | 138 | 14 | inverse | volume of water polluted as a result of the production process | | 88 | Water footprint of production—stress on blue water resources | WWF 2008 | Living planet report,
WWF 2008 | 1997–2001 | 138 | 14 | inverse | Ratio of total production water footprint minus the green component to total renewable water resources available in a country. | | 89 | Ecological footprint per capita | ESI 2005 | Redefining Progress
Ecological Footprint of
Nations 2004 | MRYA 1999–
2000 | 145 | 10 | inverse | hectares of biologically productive land required per capita | Table S1. Cont. | # | Name of the Variable | Source of
Data | Original Source | Reference
Year | Total Number of
Observations | Number of
Island States | Interpretation | Explanation | |----|--|-------------------|--|-------------------|---------------------------------|----------------------------|----------------|--| | 90 | Other anthropogenic pre Percentage of total land area (including inland waters) having very low anthropogenic impact | ESI 2005 | The Human Influence
Index, CIESIN | 2004 | 222 | 39 | direct | measures anthropogenic impact on land
and inland waters based on human land
uses, human access from roads, railways
or major rivers, electrical infrastructure,
and population density | | 91 | Percentage of total land
area (including inland
waters) having very
high anthropogenic
impact | ESI 2005 | The Human Influence
Index, CIESIN | 2004 | 222 | 39 | inverse | Some repeat of above? | | 92 | Spills | EVI2004 | ITOPF 2002, CRED 2000 | 1996–2000 | 150 | 36 | inverse | number of spills greater than 1000 liters
between 1996-2000; captures the risk to
marine, estuarine, riverine, lake, ground
water, and terrestrial ecosystems from spills
of hydrocarbons and other toxic fluids. | | 93 | Mining | EVI2004 | USGS—US Geological
Survey | 1996–2000 | 233 | 39 | inverse | average total mining production from 1996–2000 in tons/square kilometers/year; captures the risk to terrestrial, aquatic ecosystems, and ground waters from the effects of ecosystem disturbance, accidents, oil spills and toxic leachates, and processing from mining of all kinds. | | | Environmental regulation | n | | | | | | 1 | | 94 | Number of environmental agreements total | ENTRI | ENTRI | 2008 | 202 | 39 | direct | Number of environmental agreements signed | | 95 | Participation in international environmental agreements | ESI 2005 | 9 major environmental
treaties considered | 2004 | 230 | 40 | direct | Score between 0 and 1 with 0 corresponding to no participation and 1 equal to full participation; combines ratifications of treaties and conventions with the level of active participation in, contribution to, and compliance with the treaties' obligations; comprises nine major environmental treaties including Kyoto protocol, CITES, UNCCD | Table S1. Cont. | # | Name of the Variable | Source of
Data | Original Source | Reference
Year | Total Number of
Observations | Number of
Island States | Interpretation | Explanation | |-----|--|-------------------|--|--|---------------------------------|----------------------------|----------------|---| | 96 | Number of
memberships in
environmental
intergovernmental
organizations | ESI 2005 | Yearbook of International
Organizations | 2003–2004 | 230 | 40 | direct | number of memberships in environmental intergovernmental organizations | | 97 | Pesticide regulation (proximity to target) | EPI 2012 | | | 232 | 40 | direct | legislative status of countries on the Stockholm Convention on POPs usage, and also the degree to which the country has followed through on the objectives of the conventions by limiting or outlawing the use of certain toxic chemicals | | 98 | World Economic Forum
Survey on
environmental
governance | ESI 2005 | World Economic Forum
(WEF) Survey, The Global
Competitiveness Report | 2003–2004 | 102 | 12 | direct | survey questions addressing several aspects of environmental governance | | 99 | Local Agenda 21 initiatives per million people | ESI 2005 | International Council for
Local Environmental
Initiatives, WDI | 2001 | 112 | 13 | direct | number of Local Agenda 21 initiatives per
million people | | 100 | Percentage of variables
missing from the
CGSDI "Rio to Joburg
Dashboard" | ESI 2005 | Consultative Group on
Sustainable Development
Indicators | 2002 | 159 | 17 | inverse | percentage; the greater the number of missing variables, the poorer the data availability in that country; environmental monitoring and data systems are vital for tracking progress towards environmental sustainability | | 101 | IUCN member
organizations per
million population | ESI 2005 | IUCN-The World
Conservation Union | IUCN
memberships:
2004,
Population:
2003 | 207 | 37 | direct | number of member organizations per million people; | | 102 | Participation in the
Responsible Care
Program of the Chemical
Manufacturer's
Association | ESI 2005 | International Council of
Chemical Associations | 2002 | 230 | 40 | direct | score 1–4; participation in the Responsible
Care Program of the Chemical
Manufacturer's Association; responsible
handling of chemicals is important for
environmental sustainability | Table S1. Cont. | # | Name of the Variable | Source of
Data | Original Source | Reference
Year | Total Number of
Observations | Number of
Island States | Interpretation | Explanation | |-----|---|-------------------|--|---|---------------------------------|----------------------------|----------------|---| | 103 | Number of ISO 14001
certified companies per
billion dollars GDP
(PPP) | ESI 2005 | For ISO14001/EMAS registered companies: Reinhard Peglau, c/o Federal Environmental Agency, Germany, For GDP (PPP) data: World Bank World Development Indicators 2004 | ISO14001:
2003, GDP:
MRYA 1998–
2002 | 222 | 38 | direct | number of ISO 14001 certified companies
per billion dollars GDP (PPP) | | | Other | | | | | | | | | 104 | World Economic Forum
Survey on private sector
environmental
innovation | ESI 2005 | World Economic Forum | 2003, 2004 | 102 | 12 | direct | survey questions on private sector
environmental innovation, which
contributes to developing solutions to
environmental problems | | 105 | Contribution to international and bilateral funding of environmental projects and development aid | ESI 2005 | Global Environmental Facility (GEF) contributions and receipts and Organisation for Economic Co-operation and Development (OECD) bilateral environmental aid; For ancillary economic data (GNI, PPP, USD current income): World Bank, World Development Indicators 2004; For population data: CIA World Factbook | 2004 | 178 | 35 | direct | score, 0–100 | Note: Direct interpretation of the indicator implies that higher values stand for "better" performance on this indicator. Inverse interpretation means that higher values mean "worse" performance on this indicator.