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Abstract: A shrimp farmer in Taiwan practices innovation through trial-and-error for better 

income and a better environment, but such farmer-based innovation sometimes fails because 

the biological mechanism is unclear. Systematic field experimentation and laboratory 

research are often too costly, and simulating ground conditions is often too challenging. To 

solve this dilemma, we propose a decision support framework that explicitly utilizes farmer 

experiential knowledge through a participatory approach to alternatively estimate 

prospective change in shrimp farming productivity, and to co-design options for 

improvement. Data obtained from the farmer enable us to quantitatively analyze the 

production cost and greenhouse gas (GHG) emission with a life cycle assessment (LCA) 

methodology. We used semi-quantitative graphical representations of indifference curves 

and mixing triangles to compare and show better options for the farmer. Our results empower 

the farmer to make decisions more systematically and reliably based on the frequency of 

heterotrophic bacteria application and the revision of feed input. We argue that experiential 

knowledge may be less accurate due to its dependence on varying levels of farmer 

experience, but this knowledge is a reasonable alternative for immediate decision-making. 

More importantly, our developed framework advances the scope of LCA application to 

support practically important yet scientifically uncertain cases. 
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1. Introduction 

Farmer-based innovation will boost agricultural (including aquaculture) yield and protect the  

planet [1], but it is often neglected in terms of research and investment [1,2]. In contrast to a one-size-fits-all 

global-scale improvement (the Green Revolution), agricultural innovation relies on farmer expertise on 

the local environment and traditional wisdom of practice [3]. MacMillan and Benton [1] argue that the 

effect of conventional institutional effort is slowing down based on recent global production. Thus, 

engaging farmers in research is the next stage for improvement. According to the Food and Agriculture 

Organization of the United Nations, individuals or single families run 90% of the farms around the  

world [4]. Among the small-scale farmers, those in poor or developing regions can still increase their 

productivity given sufficient support [5]. The potential of farmer-based innovation is agreed upon, but 

progress can be slow and random. Therefore, a decision support framework from the scientific 

community that is designed for empowering farmers can promote sustainable agriculture [1]. 

This research aims at exploring farmer-based innovation using a case of shrimp farming. Generally, 

innovative methods for improving shrimp farming productivity are uncertain due to the complex 

mechanisms in biological growth and ecology [6,7]. Rong-Hong Yan, a Taiwanese shrimp farmer, has 

innovated a unique ecological method (or innovation) that improves pond ecology by regularly applying 

specific types of heterotrophic bacteria, i.e., Bacillus spp., with a revised feeding strategy (Figure 1). In 

the shrimp pond, the bacteria are able to grow to a significant number by feeding on existing nutrients 

and shrimp metabolic waste. The bacteria reduce shrimp disease outbreaks by interfering with the virus 

activity, the main cause of unstable shrimp production [8–10]. Furthermore, the bacteria can reduce feed 

demand by serving as an alternative organic food source. The innovation has proved effective according 

to the farmer’s trial and error. In other words, no direct scientific knowledge to quantify the effects of 

the method has been applied. Moreover, the earthen pond exhibits specific micro-ecology, soil carbon, 

pH, and other environmental characteristics. These variations imply that the optimum practice of feeding 

and the bacteria application cannot be standardized as an across-the-board measure. Despite the 

uncertainty, the farmer must decide the amount of feed and bacteria application each time based on 

experiential knowledge in the hope of achieving a better investment return and a lower GWP. Therefore, 

we are seeking a reusable decision support framework to strategize how often the bacteria should be 

applied and how much feed input can be revised. 

Conventional experimental approaches that require rigorous examination are ineffective for the 

following reasons: (1) actual ground conditions are difficult to simulate in the laboratory; (2) real-time 

monitoring of the shrimp growth effect in turbid water is difficult; (3) general conclusions cannot be 

drawn from a one-pond experiment as each pond is environmentally and ecologically unique; (4) small-scale 

household farmers cannot afford to risk the entire farming cycle for an experiment due to the limited 

number of ponds and options for alternative income. 
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Figure 1. Schematic representation of the ecological shrimp farming method innovated by 

the farmer, showing the hypothetical effect that bacteria input has in inhibiting disease 

outbreak and reducing feed demand. 

This research proposes a decision support framework that systematically utilizes farmer experiential 

knowledge when scientifically sound knowledge is insufficient. Experiential knowledge includes 

explicit, implicit, and tacit knowledge [11]. Implicit knowledge is hard to articulate compared to explicit 

knowledge, and tacit knowledge cannot be articulated. Tacit knowledge is context-specific,  

experience-based, often used intuitively and unconsciously, and constitutes a keen sense of skills that is 

challenging to replicate [3]. Unlike formal knowledge, the value of experiential knowledge is often 

neglected and is rarely extracted to scientific research due to its subjectivity [3]. In shrimp farming, 

farmers acquire an implicit ability to predict shrimp growth through observing the shapes of small sample 

shrimps, the number of seagulls surrounding a shrimp pond, the color and turbidity of the water, and by 

relying on farming experiences. Engaging farmers in research can provide invaluable insights for 

evaluating uncertainties in modeling the prospective change in practices. In this research, experiential 

knowledge is utilized in estimating shrimp yield in response to bacteria input frequency, in co-designing 

scenarios for feed input revision (i.e., reducing total amount, replacing animal-based protein with  

plant-based), and in estimating likely shrimp yield. 

The developed decision support framework is built on life cycle assessment (LCA) methodology. 

LCA quantifies the environmental impact and production cost of providing one product or service by 

explaining the impact spanning across its life cycle stages [12]. This is often termed cradle-to-grave, a 

scope covering raw material acquisition, production, transportation, consumer use, and end-of-life 

disposal [13]. This system-wide view provides a holistic analysis to avoid any hasty decisions due to the 

ignorance of burden shift from one life cycle stage to the other. For instance, farmer-based innovation is 

often limited to the on-farm production stage because other stages are intangible to farmers. Constraints 

might alter the decision when determining the environmental friendliness of the activity. In the case of 

greenhouse gas (GHG) emissions, if the emissions of feed manufacturing remain unexplained, then 

farmers may be encouraged to apply excess amounts of feed to increase shrimp farming productivity. 

Technically, harvesting more shrimp means lower emissions for each unit of shrimp production, but 

increasing emissions in the feed manufacturing stage will cancel that effect. In fact, farming activity, as 

a whole, contributes significantly to global warming potential (GWP), as estimated by the International 

Panel on Climate Change (IPCC) [14]. 
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Previous LCA studies fail to elucidate how to incorporate farmer experiential knowledge into a  

LCA-based decision support framework. A review in aquaculture [15] finds (1) more studies on non-finfish 

species, e.g., shrimp, production in developing regions; and (2) better farming practices are required to 

protect the environment. Mungkung et al. [16] investigated the Thailand shrimp farming industry to 

examine the application of product eco-labeling, which is designed to create consumer awareness.  

They examine the differences between impact characterization methods of CML2, IMPACT2002+, and 

Eco-indicator. Cao et al. [17] investigate the environmental impact of shrimp supply chains on the local 

Chinese market and the American exporting market. They assess the potential of lowering environmental 

impact through scenarios of various energy structures (e.g., eliminating coal power plants), feed 

conversion ratios, and substitution of feed protein sources. In summary, these studies support the 

decision-making of government policies and research projects, rather than looking into farmer needs. 

An exception to the above is a study that attempted to include the expectations of sugarcane farmers in 

decision-making [18]. For farmer-based innovation, LCA must be tailored to a transdisciplinary setting [19], 

where the viewpoints of non-academic actors, i.e., farmers, are factored into the solution. 

This work contributes in proposing a novel LCA-based decision support framework that utilizes 

experiential knowledge to confront the challenges of farmer-based innovation and addresses 

uncertainties in estimating prospective outcomes. Two sets of easy-to-understand graphical 

representations, indifference curves and mixing triangles, are developed to support the farmer in the 

demonstrated case. Here, the role of the farmer is explored from two aspects: (1) providing experiential 

knowledge to supplement analysis in the absence of scientific knowledge and (2) participating in the 

scenario analysis as the final decision maker. 

2. Materials and Methods 

The decision support framework is developed through two main steps: benchmarking innovation  

(i.e., GWP performance and production cost of shrimp, introduced in Section 2.1), and scenario analysis 

with semi-quantitative graphical representation (i.e., indifference curves and mixing triangles, 

introduced in Section 2.2) [18]. Figure 2 illustrates the overall framework, showing the flow of formal 

and experiential knowledge. LCA, the core quantitative analysis method, is used to evaluate benchmark 

performance and scenarios. Farmer experiential knowledge is used to estimate shrimp yield and  

co-design scenarios for feed revision by supplementing agricultural science knowledge. 

2.1. Benchmarking Innovation with LCA 

The benchmark was set on a farm-scale experiment conducted by the farmer during January to 

September 2013. A common white shrimp species, Penaeus vannamei, was farmed with zero-exchange 

of water in a 2000-m2 earthen pond for 245 days. This innovative ecological method was implemented 

with the application of heterotrophic bacteria to the pond at a 28-day interval, and feeding a total of 1953 

kg of shrimp feed. The harvest was 815 kg of fresh shrimp. 

The environmental impact and economic performance of the innovation are quantitatively analyzed 

using the LCA methodology [20]. The life cycle scope is tailored from cradle to farm-gate (Figure 3). 

The four main farming stages are pond preparation, initial-stage farming, grow-out farming, and the 

harvest. Upstream processes include post-larvae production, camellia powder production, feed 
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production, bacteria production, electricity generation, lighting, water pumping, and air and flow 

generation. After the harvest stage, the downstream processes are excluded because they are unrelated 

to the objective of improving shrimp farming. 

 

Figure 2. The decision support framework shows two main operating steps—benchmarking 

innovation and scenario analysis, and the flow of formal and experiential knowledge. Life 

cycle assessment, the core quantitative analysis method, is used to evaluate the benchmark 

and scenarios. Farmer experiential knowledge is used to estimate shrimp yield and develop 

scenarios for feed revision by supplementing agricultural science knowledge. 

 

Figure 3. The cradle-to-gate lifecycle stages in the ecological shrimp farming. Primary data 

are collected for pond preparation, initial-stage farming, grow-out farming, and harvest. A 

dotted rectangle indicates the cutoff of this study. 

We assumed there is no direct emission of methane from the farming stages, as measured data are not 

available. Shrimp farming with modified biofloc technology is expected to lower the carbon content, 

which is the source of methane formulation, due to its consumption by heterotrophic bacteria in the pond. 
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In addition, the shrimp pond is aerated, so the contribution of methane emission is considered limited. 

Therefore, if our assumption does not apply, the consequence is likely to work in favor of current 

practice, rather than the new farming practice. 

Primary inventory data in four main farming stages were collected through field survey and interviews 

with the farmer. Secondary data in upstream processes were adapted from the Ecoinvent Version 3 [21], 

a global LCA database, in the absence of raw data. Then, the environmental impact of GWP over 100 

years was characterized in carbon dioxide equivalent units for GHGs according to the IPCC 2001  

method [22]. The economic performance of production cost was calculated in Taiwanese Dollars 

(TWD); 1 TWD was approximately equivalent to 0.03 US dollar. The inventory result has been 

summarized in Table 1. 

Table 1. Inventory result of material use quantity, cost, and global warming potential for the 

benchmark shrimp farming cycle that produced 815 kg of fresh shrimp. 

Materials  Quantity a 
Cost a (Taiwanese 

Dollar c) 

Global Warming 

Potential （kg 

CO2 equiv.) 

Reference for 

Global Warming 

Potential 

Post-larvae  (number) 400,000 3998 211 [17] 

Underground water b (m3) 3000 - - - 

Camellia powder (kg) 200 2499 224 Ecoinvent v3 

Fishmeal feed (kg) 548 20,797 378 LCA Food DK 

Poultry meal feed (kg) 568 27,243 132 Ecoinvent v3 

Algae meal feed (kg) 831 52,358 108 Ecoinvent v3 

Lactic acid bacteria (kg) 4 2432 0.49 Ecoinvent v3 

Herb supplement (kg) 2 1216 0.31 Ecoinvent v3 

Heterotrophic bacteria (kg) 16 6397 1.94 Ecoinvent v3 

Electricity (kWh) 4108 14,762 2185 Taiwan EPA 

Total   131,702 3240.74  
a The data is based on personal communication, collected in September 2013; b Cost and global warming potential are 

included in the inventory of electricity; c One Taiwanese Dollar is equivalent to approximately 0.03 US dollar. 

To make the LCA reusable for different inputs (from scenario analysis in Section 2.2), the 

computational model is built on Microsoft Excel using the matrix algebra structure, which formulates a 

collection of numbers arranged in a rectangular grid for systematic calculation [23]. Here, the system of 

product processes is encoded as vector p, wherein p contains input and output data of the unit process. 

The p is structured with two systems—A entries as economic flow (e.g., amount of materials and energy 

use), and B entries as environmental flow (e.g., GHGs emission per unit electricity generation) and cost. 

The structure of matrix-based LCA model can be represented in two Equations (1): 

As = f

Bs = g
 (1)

where s is the scaling vector, f is the desired final demand of the product system (or functional unit of 

product—1 kg harvested shrimp in this case), and g describes the total environmental interventions or 

cost for the product system. The equations can be summarized with the equation g = BA−1f, allowing 
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results of one complex system to be conveniently calculated even with different entries of input variable 

or A. 

2.2. Scenario Analysis with Semi-Quantitative Graphical Representation 

An interview-based discussion with the farmer was conducted to co-design the scenarios for 

improving the innovation. Two approaches were applied: changing the heterotrophic bacteria application 

frequency, and revising the feed input. For bacteria applied frequency, the farmer estimates that an 

applied interval within ± 8 days is possible without compromising the effect of improving pond ecology. 

For feed input revision, the alternatives of reducing total feed amount and changing poultry meal to 

wheat meal were proposed based on literature review (i.e., changing from protein-rich feed to 

carbohydrate-rich feed to promote heterotrophic bacteria growth based on the concept of biofloc 

technology [24]) and the minimum-feeding model. Prospective outcomes are divided into three 

possibilities: increase, decrease, or no change in shrimp yield. 

The minimum-feeding model is built on the mass balance of nitrogen in a pond system [25]. Nitrogen 

is assumed to be the proxy of available protein feed, a limited nutrient for shrimp growth. Therefore, 

modeling the nitrogen budget can serve as an estimation of the minimum required feed. The nitrogen 

pathway in the pond environment is synthesized in Figure 4. The relationships of each element are 

acquired or modified from aquaculture science studies [25,26]. Minimum required feed ereq. is estimated 

for a given shrimp biomass production, enabling the excessive feed amount in current feed input to be 

determined. The model shows a 13% feed reduction potential in the benchmark case. 

 

Figure 4. Synthetic nitrogen pathway of pond environment based on aquaculture science 

shows 13% reduction potential for current applied feed (eapp.). The minimum feed required 

(ereq.) is determined through solving for ingested feed (i2) and its associated units (i1, b, c, e). 

From the above two approaches of alternatives and prospective outcomes, 22 scenarios are developed 

and summarized in Table 2, including 16 scenarios from the day interval of bacteria application, and six 

scenarios from two alternative feed input revision with three possible outcomes each. The bacteria 

application sets of scenarios are analyzed with the inclusion of farmer experiential knowledge in 

indifference curves, and the feed input sets of scenarios are in mixing triangle. These graphical 

representations provide only semi-quantitative results. The final interpretation shows if the alternative 

approach is better, worse, or the same relative to the benchmark. 
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Table 2. Scenarios for each approach, alternative, and prospective change of shrimp yield 

resulting from farmer discussion. 

Approaches Alternatives 
Prospective Change of 

Shrimp Yield 
Scenario Counts 

(No.) 

Heterotrophic bacteria 
applied frequency 

Applied within ± 8 days Judged by farmer 16 

Feed input revision 

Reduce—13% reduction of total 
feed to minimum requirement 

Increase by 10%, no 
change, decrease by 20% 

6 Replace—13% replacement of 
theoretical excess poultry meal to 

wheat meal 

Increase by 10%, no 
change, decrease by 5% 

2.2.1. Indifference Curves for Supporting Heterotrophic Bacteria Applied Frequency 

The indifference curves methodology is adapted from economic theory [27]. It shows a curve where 

consumer preference of comparative products is indistinguishable, or the performances of comparative 

sets of variables are equivalent. Decision can be supported by judging whether the anticipated outcome 

falls on the advantageous or disadvantageous side of the curves. 

Here, the decision of heterotrophic bacteria applied frequency is supported. A line graph with two 

indifference-performance curves relative to the benchmark performance of GWP and cost of  

28 days interval are drawn. To calculate the value of the curves, the LCA model developed in Section 2.1 

is applied in a reverse manner—the GWP of shrimp production is assumed to be known and equivalent 

to the benchmark, and then the range of heterotrophic bacteria applied frequency is entered to calculate 

the required shrimp yield changes in the model. The same approach is applied to the cost of shrimp 

production. Two sets of resulting values, representing GWP and cost indifference curves, are then plotted 

on a two-dimensional line graph. The x-axis is the heterotrophic bacteria application frequency in  

days-interval unit, and the y-axis is the shrimp yield changes in percentage relative to the benchmark. 

The resulting graph is then presented to the farmer to judge the anticipated shrimp yield in response to 

changes in bacteria applied frequency. 

2.2.2. Mixing Triangle for Supporting Feed Input Revision 

The mixing triangle method is developed based on the methodologies of Bayesian decision  

analysis [28,29] and the mixing triangle graphical representation [30,31]. Here, the mixing triangle is 

aimed at supporting the decision of feed input revision. A Bayesian decision tree treats the decision and 

uncertain events in procedural order; in a graphical sense, each decision is seen as a node and a node 

leads to alternate outcomes. The performance of each event (GWP and production cost) can be calculated 

in the LCA model. The expected value, which is the basis of comparison, is calculated by multiplying 

the conditional probability by the performance of each event. As illustrated in Figure 5, the scenarios for 

feed input are “reduce”, “replace”, and “same”. Feed input leads to the possibility of shrimp yields of 

“up 10%”, “=”, “down 20%”, and other combinations that are predicted by the farmer based on his 

experiential knowledge (details described in Table 2). The cost and GWP of 1 kg harvested shrimp for 

each set of feed input and shrimp yield is calculated using the LCA model developed in Section 2.1 
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(results in Figure 5). The probability of occurrence for each scenario is assigned as variables t and v. The 

expected value for each feed input is the summation of probability multiplied by the cost or GWP. 

Comparisons among the feed input options are made using linear inequality equations. Equations (2)–(4) 

are the inequality equations for comparing the cost expected value of “reduce” to “replace”, “reduce” to 

“same”, and “replace” to “same”, respectively. The same approach is applied to the GWP expected value. 

132t +145v +181(1− t − v) <145t +160v +168(1− t − v) (2)

132 145 181(1 ) 161t v t v+ + − − <  (3)

145 160 168(1 ) 161t v t v+ + − − < (4)

 

Figure 5. Decision tree analysis showing the alternative feed inputs with possible shrimp 

yield changes. The probability of each scenario (variables t, v) is judged by the farmer. Cost 

and GWP are in TWD and kg CO2-equiv. for each kilogram of shrimp production. 

To best illustrate the comparisons of feed inputs, at three conditional probabilities, i.e., increase (t), 

decrease (1-t-v), and no change (v) to shrimp yields, the mixing triangle graphical decision support  

tool [30] is applied (illustration in Section 3.3). The conditional probabilities are represented on the  

three-side axes. The expected values of different feed inputs are compared and plotted in the triangle 

accordingly. The regions in the triangle are color-coded with the advantageous feed input revision, i.e., 

lower in GWP or cost. The mixing triangle graph is then presented to the farmer to judge the probability 

of each event based on experiential knowledge. Depending on the probability judgment of the farmer, 

advantageous strategies can be interpreted directly from the mixing triangles. 
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3. Results 

3.1. Benchmarking Innovation with LCA 

LCA results show the current performance of producing 1 kg of shrimp at farm gate as 161 TWD in 

cost and 3.977 kg CO2-equivalent in GWP. Figure 6 shows the breakdown by process. Feed input, which 

includes algae meal, poultry meal, fishmeal, etc., costs up to 76%. The feed cost may vary from farm to 

farm depending on the feed mixtures. Heterotrophic bacteria are sensitive to cost, and applying 16 kg of 

bacteria contributes to 5% of total cost. Electricity generation contributes to 67% of GWP, mainly for 

powering the aerators, i.e., night-aeration is used to increase dissolved oxygen level for day and night. 

Feed production contributes 19% to GWP, which is much less than the electricity. Because the poultry 

meal and fishmeal are byproducts, the emissions are allocated by mass. For example, 1 kg fishmeal is 

produced for 0.208 kg fish oil; the emissions include the avoided rapeseed oil (which is replaced by the 

fish oil) in a consequential LCA. 

 

Figure 6. Breakdown of life cycle processes of current shrimp production practice to global 

warming potential over 100 years (GWP) and production cost (cost) in percentage. 

3.2. Indifference Curves for Supporting Heterotrophic Bacteria Applied Frequency 

The quantitative effect of applying heterotrophic bacteria to improve pond ecology and indirectly 

increase shrimp yield is unclear. A better practice means that the additional cost in applying bacteria 

more frequently can be compensated by the increasing in shrimp yield. Conversely, saving cost in 

applying bacteria less frequently does not necessarily result in a compromised shrimp yield. The decision 

of a farmer under such uncertainty is supported through indifference curves based on the compact 

information of lifecycle cost and GWP assessment. 

Figure 7 shows the indifference curves of producing 1 kg shrimp in terms of GWP and cost based on 

a 28-day interval of bacteria application. These curves are the thresholds to determine the improvement 

of the bacteria application frequency. In practice, if we intend to increase the applied frequency to a 24-day 
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interval, referring to the figure, the farmer must judge whether the prospective change in shrimp yield 

can achieve at least 1.2% to break even with the additional cost of purchasing the bacteria. If the 

anticipated change is better than the benchmark, then the improvement is recommended. If the 

anticipated change falls between GWP and cost curves, then a trade-off must be made. In this case, the 

GWP is very insensitive to heterotrophic bacteria application, thus increasing bacteria application for 

higher shrimp yield is always better for improving the GWP of farming 1 kg shrimp. Here, instead of 

relying on scientific proven theory, experiential knowledge is utilized as the basis of decision-making. 

 

Figure 7. The indifference curves for supporting heterotrophic bacteria applied frequency. 

The purple curve shows the cost equivalence to benchmark of a 28-day interval (161 TWD/kg 

shrimp), and the orange curve shows the GWP (3.977 kg CO2 equiv./kg shrimp). 

3.3. Mixing Triangle for Supporting Feed Input Revision 

The current feed input amount is 13% more than the required amount based on our estimation (Figure 4). 

However, the theoretical minimum feed input is not definite due to the variation of ecology and 

biological growth. As a result of discussion with the farmer, we designed two alternative feed input 

revisions, “reduce” and “replace” (Table 2), where “reduce” represents a higher risk option comparing 

to “replace”. These strategies are then compared in a decision tree analysis (Figure 5) and plotted on 

mixing triangles to support a farmer in making a final decision on feed input. 

Figure 8 shows the mixing triangles that were presented to the farmer. First, the conditional 

probabilities of shrimp yield changes (i.e., variables t and v on the axes) must be predicted based on the 

farmer’s experiential knowledge. Then, the farmer locates the point in the triangle and reads the color 

code to determine the most advantageous revision. For example, if the farmer feels that reducing the 

feed amount is unlikely to retard shrimp growth, he might therefore designate the probability of shrimp 

yield increase as 60%, that of decrease as 20%, and that of stagnation as 20%. Then, referring to Figure 8, 

the point drops to the red area (indicating a low-cost strategy), and green area (indicating a low-GWP 

strategy). This indicates that the strategy to “reduce” the feed has a higher chance of increasing profit 

but the strategy to “replace” is probably better for reducing GWP. 
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Figure 8. The mixing triangle shows decision support for feed input revision: low-cost 

strategy on left and low-GWP on right. The three-side axes show the probability of the 

prospective shrimp yield increasing, decreasing, or remaining stagnant relative to the 

benchmark. Color codes show the most advantageous strategy based on the expected  

value comparisons. 

4. Discussion 

The decision support framework is an attempt to solve the practical problems of farmers by utilizing 

their experiential knowledge to supplement LCA-based knowledge. The designed framework is 

understandable to the farmer, but the impact in implementation is limited. First, the sensitivity of some 

parameters can be too low to distinguish by experiential knowledge. In the indifference curve (Figure 7), 

the farmer must judge changes in shrimp yield on the y-axis. However, the thresholds to break even on 

both the benchmark GWP and cost are only 2% apart because the contribution of applied bacteria is 

small relative to feed and other inputs. Practically, involving the farmer to distinguish a better application 

frequency when only such minor change is involved is unfeasible. The indifference curve is therefore 

more applicable to the cases where changes are more significant. Second, in the mixing triangles (Figure 8), 

the three alternative strategies are evaluated based on one cycle of farming period, which takes about six 

to eight months, whereas the farmer normally predicts shrimp yield changes based on daily observation, 

and adjusts the feeding amount accordingly. The mixing triangles are therefore only useful for planning 

an overall feeding strategy. Third, the decision tools treat GWP and cost separately. Whenever a trade-off 

is encountered, the farmer must choose based on his normative experiential knowledge, which usually 

places a high priority on the profit of farming activity. 

The framework is designed to complement LCA-based decision support with experiential knowledge. 

It is transferable to other case studies that have the following situations: (1) explicit scientific knowledge 

is insufficient, and (2) experiential knowledge is appropriate to make the necessary judgments. Beside 

the application in this shrimp farming study, the author has previously applied a similar concept to a case 
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in Taiwanese sugarcane farming [18]. In the study [18], the indifference curves of GHG emission in the 

changes of N, P, and K fertilizer consumption, quantity of irrigation water, and times of inter-tillage 

were drawn based on LCA. The sugarcane farmers could decide the benefits of the above improvements 

by estimating the prospective change in corresponding sugarcane yield. To examine the effectiveness of 

transferring the proposed framework, more studies on different aspects of applications, notably in 

agricultural activity, should be explored. 

This paper discusses only global warming among various impact categories in LCA. The decision 

support framework, however, is designed for a generic purpose. The assessment of GWP and other 

impacts are based on the formal knowledge of LCA (Figure 2); they can be performed individually using 

the same approach. We select GWP to assist the farmer in acquiring a carbon footprint label [32] for the 

shrimp product in this study. If more than one impact category must be addressed, the same graphical 

representations can be applied. The indifference curves (Figure 7), for example, must be updated with 

curves that reflect eutrophication, acidification, and other impacts. Similarly, the mixing triangles 

(Figure 8) can be layered to show the preference strategies for multiple impacts. However, as the impact 

categories increased, an increase in trade-offs between the impacts is likely to be encountered. Such 

trade-offs may complicate the decision-making process, making it less acceptable to the farmer. Another 

possible solution is aggregating the impact categories into a new indicator by scoring and weighting 

beforehand. Hofstetter et al. [30] show the aggregation of different environmental impacts, i.e., 

pesticides, greenhouse effects, acidification, and eutrophication, based on a universal scoring method in 

the Eco-indicator 95 in a study of mixing triangles application. This aggregated indicator can be easily 

adapted to our decision support framework. To summarize, the potential of the decision support 

framework goes beyond mere assessment of global warming; however, there is a need of further study 

on how to choose from various methodological options in incorporating all of the relevant impact 

categories into practical decision-making. 

5. Conclusions 

A decision support framework is developed to systematically utilize experiential knowledge in an 

LCA-based framework, notably in the scenario analysis with two semi-quantitative graphical 

representations of indifference curves and mixing triangles. The presented shrimp farming case 

demonstrates the use of our proposed framework. We assigned the uncertainty judgment to the farmer 

while taking the responsibility for removing the complexity of cost and environmental performance 

across the product’s life cycle. This approach is particularly useful in agricultural studies because 

acquiring a sufficient volume of data from experiments may be too costly in terms of time and money. 

Farmer experiential knowledge is assumed to be a reliable alternative source to supplement  

scientific knowledge. 
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