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Abstract: Land use and land cover (LULC) models are essential for analyzing LULC change 

and predicting land use requirements and are valuable for guiding reasonable land use 

planning and management. However, each LULC model has its own advantages and 

constraints. In this paper, we explore the characteristics of LULC change and simulate future 

land use demand by combining a CLUE-S model with a Markov model to deal with some 

shortcomings of existing LULC models. Using Beijing as a case study, we describe the 

related driving factors from land-adaptive variables, regional spatial variables and  

socio-economic variables and then simulate future land use scenarios from 2010 to 2020, 

which include a development scenario (natural development and rapid development) and 

protection scenarios (ecological and cultivated land protection). The results indicate good 

consistency between predicted results and actual land use situations according to a Kappa 

statistic. The conversion of cultivated land to urban built-up land will form the primary 

features of LULC change in the future. The prediction for land use demand shows the 

differences under different scenarios. At higher elevations, the geographical environment 

limits the expansion of urban built-up land, but the conversion of cultivated land to built-up 

land in mountainous areas will be more prevalent by 2020; Beijing, however, still faces the 

most pressure in terms of ecological and cultivated land protection. 

Keywords: LULC change; spatial pattern; CLUE-S model; Markov model; scenario 

simulation and prediction; Beijing 
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1. Introduction 

Since the land use and land cover (LULC) change project was launched by the International 

Geosphere and Biosphere Program (IGBP) and the International Human Dimensions Program (IHDP) 

on Global Change, land use research programs on a global scale have become central to international 

climate and environmental change research [1–3]. In recent years, the land use change process on a 

regional and local scale has also drawn the interest of scholars, who argue that the more local scales may 

be capable of testing and verifying the spatial patterns of LULC change on a global scale and that they 

also reveal the connection between land use change and human activity [4]. Some scholars focused on 

the impact of urbanization on LULC change [5–8], who considered that population growth and economic 

development drove urban land expansion and resulted in a great quantity of water bodies and agricultural 

lands being converted to built-up areas, which significantly affected the local, regional and global 

environment, including habitat quality [5], green spaces [7], environmental degradation [6,8], water 

quality [9,10], and so on. For instance, taking the Greater Dhaka of Bangladesh as the study area,  

Dewan et al. found the increasing contribution of GDP to the national economy and industrial growth 

was the major factor driving rapid LULC change, which led to environmental degradation and landscape 

fragmentation [6,11,12]. We know the LULC change process is dynamic and resulted from the 

interaction between natural and socio-economic elements at different scales. Because of the scale effect 

and the scale sensitivity of land system patterns [13], the related factors affecting LULC change differ, 

so it is important to understand their interaction and reasonably predict the future demand of land, which 

is key in land use planning and management. 

Land use models are powerful tools that can be used to analyze the causes of LULC change and to 

evaluate land use policy [14]. Based on model analysis and the simulation of land use spatial patterns, 

the driving factors of LULC change can be revealed, clarifying the rate of land use and making possible 

multiple LULC scenarios in order to predict future land use demand. At present, models of LULC change 

have been developed to explore where, when and why it occurs based on the goals of a particular study. 

Existing studies on the LULC offer both global scale [15], national and regional scale [12,16–18], as 

well as some other research on different basins, such as Erhai Basin [19], the Mississippi River  

Basin [20], and different climate zones [18,21]. In these studies, the models involved mainly refer to the 

agricultural land dynamics (ALADYN) model [18], ant colony optimization [19], artificial neural 

networks and cellular automata [20], and so on. According to different research objectives, the relevant 

LULC models can be divided into three categories. Firstly are empirical-statistical models, such as 

regression models, etc. These models are developed based on mathematical equations to carry out 

statistical analysis on the factors affecting LULC change; however, they lack the consideration of social 

factors [22]. Secondly are spatially explicit models or rule-based models, such as the cellular automata 

model [23,24]. These spatial models are primarily used to determine the pattern and process of LULC 

change and to project the locations of future changes; however, it is still difficult to simulate the effect 

of human activities on LULC change [25]. Thirdly, agent-based models have been developed to simulate 

LULC change by individual agents [26]. However, due to the large number of interacting agents that 

need to be taken into account, most current multi-agent LULC models are only able to simulate 

simplified landscapes [26].  
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Previous models have attempted to incorporate biophysical and socio-economic data into land use 

simulations, but it still remains a major research challenge, because of the discrepancy among these 

different datasets [27,28]. As noted by Verburg et al., no single model is capable of considering all of 

the processes of LULC change at different scales [29]. Some current LULC models have improved the 

analysis of the influence of a single factor on LULC change, but are unable to consider the effects of 

multiple factors and different processes that reflect spatial dimensions [30]. In view of the stability and 

resilience of LULC systems [31], LULC models should not only analyze land use at a single scale, but 

should also address the multiscale characteristics of land use systems and pay more attention to the 

interaction of the driving factors. The method for the selection of an appropriate integrated LULC model 

has therefore become important in LULC simulation studies. 

The Conversion of Land Use and its Effects at Small regional extent (CLUE-S) model is a scale 

dynamic model with multiscale characteristics based on system theory. The scale is better suited than 

others to understand the relationship between LULC change and its driving factors and to explore 

possible process changes in various LULC scenarios at different spatial scales [11]. Compared with the 

above-mentioned models, the CLUE-S model incorporates the natural factors and social-economic 

factors, spatial and non-spatial distribution by combining a top-down with a bottom-up method, so the 

model is more comprehensive, open and extensive [32]. The CLUE-S model is preferred for addressing 

the spatial allocation of LULC change [14,31], but has some limitations in that it requires another 

mathematical model to calculate future land use demand.  

The Markov model can most importantly depict the direction of LULC shifts, providing a framework 

for analyzing future land use demand. The model has been widely used to predict LULC change [33]. 

However, the traditional Markov model’s ability to provide spatial analysis is weak, and it therefore has 

some difficulties in allocating predicted land requirements to geographical space. Moreover, existing 

research on LULC prediction, for the most part, takes the transition probabilities for land use types as a 

constant value, with little adjustment for socio-economic development and is thus also limited [34]. 

Based on the above discussion, we propose an approach by combining the Markov model and the  

CLUE-S model to deal with some shortcomings of the existing LULC models, taking the LULC 

prediction module and spatial analysis module as a whole to achieve the spatio-temporal simulation and 

prediction of LULC change. In this model, the Markov model assigns a transition probability to each 

single pixel at the time steps [35], and the CLUE-S model undertakes the simulation of the  

spatio-temporal dynamics of each single pixel. The CLUE-S and Markov model integrate human 

decision-making to achieve a more realistic simulation of LULC changes, which can provide a scientific 

method for LULC planning and management. 

China has experienced a transition from its planned economy to a market economy, the rapid 

development of the economy and society, the acceleration of the urbanization process and the 

implementation of a regional development and ecological protection strategy, all of which significantly 

influence the spatial pattern of its LULC change [3]. Since the establishment of the market economic 

system, the real estate market has continued to develop, inspired by housing demand, leading to a rational 

readjusting of urban industrial structure, which, in turn, results in a large amount of agricultural land that 

has been transformed into urban land. As a result, the landscape of Chinese cities has changed 

dramatically. As the capital of China, the characteristics of LULC change in Beijing are typical and 

representative as a result of the faster economic and population growth. The objectives of the study are 
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to: (1) propose an approach by developing a CLUE-S model that will transfer and allocate land demand 

from the Markov model to improve LULC change projection; (2) describe the temporal and spatial 

characteristics and identify the primary driving factors of LULC change patterns; and (3) predict and 

simulate the evolution tendency of land use spatial patterns under different scenarios. 

2. Materials and Methods 

2.1. Study Area 

Beijing, the capital of China and one of the largest cities in the world, covers 16 districts and two 

counties with a land area of 16,410 km2. The administrative region of Beijing is traditionally divided 

into three parts: the central city, the suburbs and the outer suburbs. The central city includes two districts, 

Xicheng and Dongcheng. The suburbs are made up of four districts, Haidian, Chaoyang, Fengtai and 

Shijingshan, and the outer suburbs are made up of eight districts and two counties, Tongzhou, Shunyi, 

Fangshan, Daxing, Changping, Mentougou, Huairou and Pinggu districts and Miyun and Yanqing 

counties (Figure 1). Beijing has undergone rapid urbanization and economic growth since the economic 

reforms of 1978, and in 2013, the population was approximately 21.15 million. Within the administrative 

region, the urban population is 18.25 million, which accounts for 86.31% of permanent residents.  

The new population will need new space and so creates a higher demand for residential land, thus 

encouraging rapid expansion of the region’s urbanized area. Beijing’s built-up areas grew from 397 km2 

to 1268 km2 from 1980 to 2013, and the expansion of urban built-up land areas led to the decrease of 

cultivated land from 4258 km2 in 1980 to 2317 km2 in 2008. According to the overall land utilization 

plan in Beijing (2006–2020), the amount of reserved cultivated land cannot be less than 2147 km2 by 

2020, which means that the amount of cultivated land converted to built-up land is very limited. 

However, rapid population growth and expansion of built-up areas represent a daunting challenge to 

cultivated land protection, all of which lead to some traffic congestion, pollution and other issues. 

 

Figure 1. A map of the study area. 
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2.2. Data 

Multi-annual socio-economic statistical data and spatial data were collected for evaluating the LULC 

change process. Among these data, the socio-economic statistical data came from the Beijing statistical 

yearbook, the Beijing area statistical yearbook and population census data and included permanent 

resident population, population density, GDP, per-capita living area, urbanization level and investment 

in fixed assets. Spatial data included remotely-sensed data that were obtained from Landsat TM images 

in 1985, 2000 and 2010. The TM image has a spatial resolution of 30 m. In addition to the  

remotely-sensed data, topographic maps were collected for establishing the digital elevation model 

(DEM) to obtain other biophysical data and also had a spatial resolution of 30 m. Moreover, landform 

and soil vector data were extracted from a digital geomorphology database and soil database in China at 

a 1:1,000,000 scale. All of the spatial data had unified projection and spatial registration, and the remote 

sensing image data were pretreated using Erdas image-processing software. We cut the remote sensing 

image according to the administrative boundary of the study area and then extracted the remote sensing 

information using the supervised classification method and a man-machine interactive interpretation.  

Based on the characteristics of LULC change in the study area, we followed the classification system 

of the national resources and environmental background dynamic remote sensing survey database.  

Six LULC types were identified, including cultivated land, woodland, grassland, construction land 

(mainly referring to built-up land, that is land for the construction of buildings, fixtures and their 

auxiliary facilities, including commercial and industrial land, residential land, warehousing land,  

traffic-dominated land and other infrastructure, such as roads), water and unused land. After that, field 

investigation and Google Earth were used to check and correct the accuracy of the interpreted images, 

which allowed obtaining the land use maps for 1985, 2000 and 2010.  

The classification accuracy of LULC types by Kappa coefficients for 1985, 2000 and 2010 had values 

that were greater than 0.80, which confirmed that the interpretation results met the analysis requirements. 

We estimated the slope direction of Beijing based on the DEM, and then, we calculated the spatial 

accessibility of LULC types to the administrative center, to roads and to main water bodies, as well as 

the corresponding distance layers. In addition, the spatial distribution of population and socio-economic 

data could be obtained by spatial interpolation using the method of kriging and natural neighbor. 

According to the requirements of the CLUE-S model combined with the actual situation of Beijing, the 

LULC maps and spatial layers were transformed to a grid format with a resolution of 300 m × 300 m in 

the same projection coordinates. Finally, the grid maps, including three periods of land use and some 

driving factors, were prepared for the model. Considering the periodic variation of LULC change and 

the rate of socio-economic development, the time span of the prediction could not be too short, so we 

selected 1985, 2000 and 2010 as the time nodes to simulate Beijing’s LULC pattern in 2020. 

2.3. Methods 

2.3.1. Land Use Dynamic Degree 

The land use dynamic degree refers to the rate of change in land use types for a specific time horizon, 

including quantitative changes in land resources and spatial changes in land use patterns [36]. It is an 

index that describes the regional difference of the rate of LULC change and reflects the comprehensive 
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influence of social and economic activities on LULC change. The land use dynamic degree (S) in the 

period t is calculated as follows: 

where Si is the area of land type i in the beginning of the period, ΔSi-j is the total area of land type i 

converted into other types and t is the study period. 

2.3.2. Markov Model 

LULC change is not unidirectional in nature; a given land type might theoretically change from one 

category of land use to any other. The Markov model can represent all of the possible directions of LULC 

change among all of the land use categories [23]. The Markov model is closely related to dynamic 

distributed lag models and consists of two primary land components: the transition matrix and the transition 

probability matrix, which represent the number and the probability of land shifting from one land use group 

to other groups in some observed period [34]. The transition probability matrix can be expressed as follows: 

where Pij denotes the probability of land use i shifting to land use j; m and n are the number of land use types. 

The Markov model is a random process of a state with no aftereffect characteristics, that is to say, a 

state of the system at some point t + 1 is only relevant to the state that is currently known at time t, but 

is unrelated to the moment before t. Land use demand is closely related to regional socio-economic 

development, which is mainly driven by human factors. The Markov model effectively combines human 

factors and land use. The land use distributions at the beginning (St) and at the end (St + 1) of a time 

period, as well as a transition probability matrix (Pij) representing the LULC change that occurred during 

that period are used to construct the Markov model [23], which is expressed as follows: 

where St + 1 and St represent the states of land use at given point t + 1 and t, respectively. 

Based on local socio-economic information, land use planning and related policies in Beijing from 

1985 to 2010, three future socio-economic scenarios have been defined to predict land use demand for 

2020 using the Markov model. The first scenario is characterized by natural development in which we 

assume that the factors that currently influence land use keep pace with the trend of LULC change from 

1985 to 2010 and will not have changed greatly from 2010 to 2020. The second scenario is characterized 

by rapid development, in which we assume that areas of LULC change quickly by considering the growth 

rate of GDP and population, urbanization level, per capita living space and the floating population to 

obtain the demand for land use in 2020. The third scenario is characterized by ecological and cultivated 

land protection. In this scenario, woodlands and water bodies are designated as nature reserves that play 

an important role in ecological security and cannot change to any other land use categories, and the basic 

farmland is then taken as a restricted area in which the cultivated land cannot be converted into other 

land use types. 

 S	=	 ቐ෍ሺ∆Si-j/Siሻ
n

ij

ቑ ൈ ሺ1/ݐሻ ൈ 100% (1)

௜ܲ௝ ൌ อ
ଵܲଵ ⋯ ଵܲ௡
⋮ ⋮ ⋮
௠ܲଵ ⋯ ௠ܲ௡

อ (0 ൑ ௜ܲ௝ ൑ 1, ∑ ௜ܲ௝
௡
௝ୀଵ ൌ 1) (2)

ܵ௧ାଵ ൌ ௜ܲ௝ ൈ ܵ௧ (3)
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2.3.3. CLUE-S Model 

The CLUE-S model was developed by Dutch scholars for the spatial simulation of LULC change on 

a small and medium-sized scale [31]. It was primarily used to explore the relationship between LULC 

change and related natural and socio-economic factors using a quantitative method, which was then used 

to simulate the LULC change process and to analyze the basic rule of the spatial-temporal evolution of 

land use [37]. 

The CLUE-S model has two parts: a spatial analysis module and a non-spatial analysis module.  

The spatial analysis module allocates land demands from the Markov model to spatially explicit land 

use patterns according to different transition probabilities and transition rules in land use categories and 

then will conduct a spatial simulation of land requirements in different scenarios [31]. The non-spatial 

analysis module focuses on factors that influence the spatial pattern of LULC change, such as  

socio-economic variables, regional spatial variables and land-adaptive variables. Socio-economic 

variables include population, economic factors, marketing conditions and related policies that are used 

to discuss the relationship between LULC change and economic development. Regional spatial variables 

mainly refer to the accessibility of land use types to the administrative center, roads and main water 

bodies, which are used to restrain the land use demand. The location suitability is a weighted average of 

suitability based on empirical analysis and capturing the historic and current location preferences in 

response to location characteristics [29]. Land-adaptive variables in this study include slope, soil, 

temperature and altitude, which are regarded as the potential LULC change factors. The contribution of 

different variables to the driving effect for one specific land use type presents the difference, so in this 

study, a logistic regression model is selected to estimate the influence of related factors on different land 

use types. The equation is expressed as follows [31,37]: 

where Pi is the probability of a grid cell for the occurrence of land use type i. X is the related driving 

factors; β represents the regression coefficients between land use types and driving factors. 

3. Results and Analysis 

3.1. LULC Change Characteristics 

We obtain the LULC maps for 1985, 2000 and 2010 with the help of Erdas image processing software 

and the ArcGIS platform (see Figure 2). The rate of LULC change during the different periods is 

illustrated by the index of the land use dynamic degree. From 1985 to 2000, the value of the land use 

dynamic degree is 0.99, which indicates that the rate of LULC change is relatively slow. From 2000 to 

2010, the value of the land use dynamic degree is 1.64, which demonstrates that the rate of LULC change 

has accelerated compared to the previous period and that the effects of socio-economic activities on the 

land use pattern have become more intense. 

On a spatial scale, the expansion of construction land is strikingly clear from the center to the edges, 

which confirms a spatial pattern of urban growth. The direction of construction land expansion is 

primarily along the Ring road from Chaoyang and Haidian in the suburbs to Tongzhou and Changping 

ሺ݃݋ܮ	 ௜ܲ

1 െ ௜ܲ
ሻ ൌ β0 + β1X1,i + β2X2,i⋯⋯൅	βnXn,i (4)
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in the outer suburbs. In addition, the area with reductions in cultivated land is primarily in the eastern 

and southern regions of Beijing, which coincides with the extension direction of radioactivity along the 

highways and national roads. 

 

Figure 2. Land use pattern by year in Beijing (1985–2010). 

3.2. Regression Analysis of the LULC Change Process  

A logistic regression model was constructed to explore the relationship between LULC change and 

the related driving factors that play an important role in revealing the internal mechanism of LULC 

change. A logistic regression model is run for each of the land use types in 1985, 2000 and 2010, 

respectively. We test the statistics of the driving factors using the ROC curve proposed by  

Pontius [38], which evaluates the predicted probabilities by comparing them with the observed  

value [31]. Pontius Jr found that any ROC above 50% was better than random [38]. The obtained value 

was greater than 50%, indicating a probability distribution consistent with the actual distribution of land 

use types. Generally, an ROC above 70% shows that the driving factors had a greater explanatory power 

for a certain land use type. 

Due to the statistical caliber inconsistencies for 1985 and a lack of restrictions on basic farmland, the 

regression results are poor. The ROC test of three land types is less than 0.6, so we list only the results 

for 2000 and 2010 (Table 1). Some driving factors, including altitude, slope, GDP, urbanization, 

population density, distance to the urban center, distance to the local road, distance to the railway, 

distance to the highway and distance to the river, are selected to evaluate their influence on land use 

types. As shown in Table 1, the ROC test statistics for various land use types is above 0.7, which shows 

clearly that the spatial distribution for all land use categories can be explained by the related driving 

factors, but different driving factors result in some differences in various land use types. 

Traffic and socio-economic factors may play an important role in the conversion of land use types, 

especially their accessibility to the administrative center and roads, as well as their urbanization level. 

In terms of topographic factors, the effect of the slope on land use types is clearer, with a higher slope 

conducive to forest land and a lower slope good for other land types. 
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Table 1. Logistic regression results of the spatial distribution of land use types in Beijing from 2000 to 2010.  

Driving factors Years 
Cultivated land Woodland Grassland Waters Construction land Unused land 

β Exp(β) β Exp(β) β Exp(β) β Exp(β) β Exp(β) β Exp(β) 

Elevation 
2000 −0.0011 0.9989 0.0004 1.0004     0.0011 1.0011   

2010 −0.0008 0.9992 −0.0003 0.9997     0.0015 1.0015   

Slope 
2000 −0.2270 0.7734 0.0331 1.0337   −0.0264 0.9739 −0.0220 0.9783 −0.0581 0.9435 

2010 −0.1121 0.8980 0.0171 1.0173     −0.0217 0.9785   

Distance to the 

river 

2000 −0.0614 0.9404 0.0917 1.0960 −0.0476 0.9535 −0.1784 0.8366 0.0620 1.0640   

2010 −0.0606 0.9412 0.0954 1.1001 −0.0430 0.9579 −0.2470 0.7812 0.0260 1.0263   

Distance to the 

urban center 

2000 0.0234 1.0669 0.0185 1.0187 0.0519 1.0533   −0.0838 0.9196 0.0609 1.0628 

2010 0.0088 1.0212 0.0155 1.0156 0.0633 1.0654   −0.0877 0.9160 −0.0859 0.9177 

Distance to the 

local road 

2000   0.0351 1.0358     −0.1481 0.8623   

2010   0.0505 1.0518 0.0296 1.0301 0.0464 1.0475 −0.1658 0.8472   

Distance to the 

railway 

2000 0.0504 1.0517 −0.0630 0.9389 −0.0410 0.9598 0.0367 1.0640   −0.0423 0.9585 

2010 0.0331 1.0336 −0.0491 0.9521 −0.0215 0.9787 0.0513 1.0603     

Distance to the 

highway 

2000 0.0432 1.0577 0.0606 1.0625 0.0204 1.0206   −0.0546 0.9468   

2010 0.0357 1.0349 0.0628 1.0648     −0.0657 0.9364   

GDP 
2000 −0.0225 0.9777 −0.0185 0.9815 0.0322 1.0327       

2010     0.0015 1.0015 0.0015 1.0015 0.0013 1.0013   

Urbanization 
2000 −0.0274 0.9726 −0.0985 0.9062 −0.0807 0.9225 −0.0173 0.9828 0.0362 1.0369   

2010 −0.0055 0.9943 −0.0146 0.9855 −0.0347 0.9659       

Population 

density 

2000   0.0006 1.0006 0.0002 1.0002   −0.0002 0.9998   

2010 −0.0404 0.9584 −0.0011 0.9989 −0.0005 0.9995 −0.0014 0.9986 0.0013 1.0013   

Constant 
2000 −0.3677 0.6923 0.9723 2.6440 −1.7567 0.1726 −3.3856 0.0339 −1.3041 0.2714 −6.5598 0.0014 

2010 −0.0352 0.9654 −0.8484 0.4281 −3.1322 0.0436 −4.3192 0.0133 0.2457 1.2785 −4.8677 0.0077 

ROC value 
2000 0.7730 0.8460 0.8100 0.7470 0.8250 0.7990 

2010 0.7080 0.8300 0.7970 0.7980 0.8390 0.7320 

Note: β represents the regression coefficients between land use types and driving factors, Exp(β) represents the probability of land use type change. All driving forces are significant at  

p < 0.05. When Exp(β) > 1, this indicates the probability increases of land use types upon an increase in the value of the driving factors, and when Exp(β) < 1, this indicates the probability of 

land use type reductions. 
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3.3. Analysis of Transition Probability Matrix  

The transition probability matrix shows the transfer direction of land use types (see Tables 2 and 3). 

From 1985 to 2000, construction land, woodland and grassland are the most stable classes, with 0.99, 

0.99 and 0.94 probabilities, respectively. The most dynamic classes are unused land, water and cultivated 

land, with transition probabilities of 0.62, 0.63 and 0.83; in these classes, cultivated land was primarily 

transformed into construction land, and cultivated land that is occupied for urban expansion is evident. 

From 2000 to 2010, the transition of various land use types is consistent with the previous period; the 

most stable classes are still construction land, woodland and grassland, with 0.94, 0.97 and 0.92 

probabilities, respectively. The most dynamic class is unused land, which was primarily transformed 

into woodland with transition probabilities of 0.61, indicating that the afforestation policy played a role 

in Beijing. Moreover, the transition of construction land to other types of land is also clear.  

Table 2. Transition probability matrix of land use types in Beijing from 1985 to 2000. 

 Cultivated land Woodland Grassland Waters Construction land Unused land 

Cultivated land 0.83 0.02 0.00 0.02 0.13 0.00 

Woodland 0.00 0.99 0.00 0.01 0.00 0.00 

Grassland 0.01 0.03 0.94 0.02 0.00 0.00 

Waters 0.21 0.06 0.01 0.63 0.09 0.00 

Construction land 0.00 0.00 0.00 0.01 0.99 0.00 

Unused land 0.25 0.02 0.01 0.02 0.08 0.62 

Table 3. Transition probability matrix of land use types in Beijing from 2000 to 2010. 

 Cultivated land Woodland Grassland Waters Construction land Unused land 

Cultivated land 0.78 0.03 0.00 0.01 0.17 0.01 

Woodland 0.01 0.97 0.00 0.01 0.01 0.00 

Grassland 0.02 0.04 0.92 0.00 0.02 0.00 

Waters 0.17 0.05 0.04 0.58 0.15 0.01 

Construction land 0.04 0.01 0.00 0.00 0.94 0.01 

Unused land 0.04 0.61 0.14 0.00 0.05 0.16 

3.4. Predicting LULC Change Based on the Markov Model 

Based on LULC change from 1985 to 2010, the Markov model is used to predict the land requirements 

for the different land use types in 2020 according to the three future socio-economic scenarios discussed 

above. The prediction results are presented in Table 4. The table shows that the areas of cultivated land, 

grassland and water have a decreasing trend, as do woodland and construction land. A large difference 

is found in the land requirements for various land use types under different scenarios. 
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Table 4. The prediction results of land use under different scenarios, 2010–2020 (units: ha). 

Years Scenario design Cultivated land Woodland Grassland Waters 
Construction 

land 

Unused 

land 

2010 Actual land use 406,692 741,789 119,772 44,082 311,013 10,305 

2020 

Natural development 333,279 756,891 115,083 21,330 400,014 7056 

Rapid development 328,535 757,223 114,975 17,333 408,672 6916 

Ecological-cultivated 

land protection 
360,912 751,635 116,718 34,890 364,575 4923 

3.5. Model Validation  

Combining the results of the logistic regression model, the transition matrix of the land use types and 

land-type conversion elasticity, the CLUE-S model is used to simulate the distribution of land use 

patterns in order to derive the simulated map of land use pattern for Beijing in 2010, then the simulated 

land use map is compared with the actual satellite-derived land use map for 2010 based on the Kappa 

statistic (see Figure 3). 

(a) (b)

Figure 3. Comparison of simulated (a) and observed (b) land use situations in Beijing, 2010. 

The Kappa statistic, which can reflect the simulation accuracy of the model, was used as the validation 

method to evaluate the ability of the model to simulate the spatial pattern of land use [39]. Its expression 

is as follows: 

ܽ݌݌ܽܭ ൌ ሺ ௢ܲ െ ௖ܲሻ ሺ ௣ܲ െ ௖ܲሻ⁄  (5)

where Po is the percent correct for the output, Pc is the expected percent correct due to chance and Pp is 

the percent correct when the classification is perfect. 

The value of the Kappa statistic is 0.87, which indicates that the consistency is good between the 

predicted results and the actual land use situation, and it shows that the model is reliable for Beijing and 
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can be used to predict LULC change under different scenarios. Figure 3 shows that although more 

similarity is found between the simulated map and the empirical map of land use in 2010, it still exhibits 

a certain bias. Cultivated land, woodland, grassland, waters and unused land in the simulated land use 

map are relatively similar to the corresponding classes in the actual land use map for 2010, while the 

construction land class is poorly simulated. Analysis of the simulated land use maps reveals that the 

model generally underpredicted the location of the construction land class. There are three explanations 

for this difference. On the one hand, the CLUE-S and Markov model employs the contiguity rule, which 

is used to simulate the growth of a land use type near the existing similar land use class [40]. This 

suggests that the model’s simulation accuracy increases with the proportion of a given land class relative 

to others [41]. Therefore, when a few of the nearby pixels belong to a land use type, such as construction 

land, then the transition potential is down-weighted, which may possibly result in the poor simulation of 

construction land [41]. On the other hand, the constraint layer of the simulation of land use is primarily 

based on the appropriate adjustments to basic farmland in 2002, which cause a small discrepancy on the 

bound level. Besides, the socio-economic data obtained in this simulation are mainly at the county level 

and do not cover the jiedao-level data, which influences the accuracy of the simulation to some extent. 

3.6. Analysis of Simulation Results  

Combined with the land demand under different scenarios, land transfer rules, related driving factors 

and constraints, we conduct the simulation and prediction of the spatial distribution of Beijing’s land use 

in 2020 (see Figure 4).  

Under the natural development scenario (Figure 4a) and rapid development scenario (Figure 4b), the 

trend of construction land expansion is clearly along the direction of main traffic arteries, such as the 

airport express rail. Comparing the simulated scenarios for 2020 with the actual map for 2010, this 

conversion to urban land occurs primarily in the northeast, northwest, southwest and east of Beijing, in 

districts, such as Tongzhou, Shunyi, Changping, Fangshan and Huairou, and in Yanqing County. 

Affected by the development policy of the new town, the functions in the inner city gradually transfer to 

the new town, which attracts population concentrated in Changping and Shunyi, and leads to the 

expansion of residential land, with the area of cultivated land and waters greatly reduced. The results of 

the simulation in the rapid development scenario are similar to those in the natural development scenario, 

but the changes in land use types are more fundamental. The dramatic change in land use types, including 

water area reductions of 60.7% by 2020, will lead to water-resource shortages, most seriously in Beijing. 

In addition, construction land increases 31.4% and primarily comes from cultivated land, waters and 

unused land; the change trend of woodland and grassland is more subtle.  

Under the ecological and cultivated land-protection scenarios (Figure 4c), the study assumes a land 

use that is under a strict cultivated-land protection policy from 2010 to 2020. Similar to the above 

scenarios, the expansion trend for construction land is relatively moderate and occurs mainly in the east, 

northwest and southwest, in districts, such as Tongzhou, Shunyi, Changping and Fangshan. Woodland 

area increases slightly, and the increase rate of construction land is 17.2%, which decreases by 11.4% 

compared with the natural development scenario. Waters and cultivated land areas decrease 20.9% and 

11.3%, respectively, which indicates that the regulation has a significant effect on restricting the 

expansion of construction land. However, the conversion trend of cultivated land and woodland to 
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construction land is also more clearly in the mountainous area of Mentougou and Shijingshan districts 

and in Yanqing County, which indicates that Beijing still faces the pressure of ecological and cultivated 

land protection. 

(a) (b)

(c)

Figure 4. Simulation of land use demand under different scenarios in Beijing, 2020.  

(a) Natural development scenario (b) Rapid development scenario (c) Ecological and 

cultivated land protection scenario. 

4. Discussion 

To better simulate land use patterns, a group of LULC models were specifically developed for a 

particular case study [14,42], which provided some opportunities to select an approach that would best 

address the research questions and characteristics related to the study area. It was important to 
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acknowledge that no single model or approach can sufficiently describe the different processes at all 

spatial and temporal scales [42]. Because of residents’ travel being determined by the land use spatial 

pattern, some researchers linked land use with traffic demand and put forward the land use and 

transportation interaction model (LUTI model) to describe the relationship between urban land use and 

transportation, which improved the simulation accuracy of the model. However, these models just 

focused on the external results and had not explained the internal reason for individual behavior choices, 

so it was difficult to simulate the interaction between different behaviors [43]. Since then, other scholars 

proposed an urban spatial equilibrium model by combining spatial economics and the LUTI model, such 

as the TRANUS model (an integrated land use/transportation model was developed by Barra et al,) [44], 

which was mainly used to assess the social-economic impact of planning policy in a large spatial  

scale [45]. Due to the lower spatial precision of the macroscopic model, it was not conducive to capturing 

the individual behavior activities, so someone proposed spatial non-equilibrium models with 

macroscopic and microscopic characteristics, such as the IRPUD model (The model was initially 

designed and implemented at the Institute of Spatial Planning of the University of Dortmund) [46], the 

DELTA model (The model has been developed by Simmonds, which was used to extend relatively 

conventional transport models into land-use/transport interaction) [47], the UrbanSim model [48] and 

TIGRIS XL model (an land-use and transport interaction model for the Netherlands is developed for and 

owned by the Ministry of Infrastructure and Environment and the Netherlands Environmental 

Assessment Agency) [49]. The research objects of these models were still urban land and traffic system, 

but they adopted a bottom-up method. Taking UrbanSim as the example, this system is composed of 

four modules, such as employment location choice model, residential location choice model, land 

development choice model and real estate price model [48]. Compared with the previous models, spatial 

non-equilibrium models had difficulty in accurately simulating the complex economic behavior and 

agglomeration effect driven by market price [43,45]. According to the above discussion, we know that 

the interaction model is an applied urban model more fit for application, which is not limited to 

simulating LULC change, but can also be used for location selection and policy evaluation. 

Recent validation studies have indicated that most spatial models still contain a high level of 

uncertainty [50]. In this study, we develop an approach by combining the Markov model and CLUE-S 

model to deal with some shortcomings in existing LULC models and characterize the land change 

processes and predict LULC change under different scenarios. The Markov model can depict the 

direction of LULC shifts and predict the future land requirements for land use categories by taking into 

account the influence of related factors on land use requirements. The CLUE-S model can allocate the 

predicted land requirements to geographical space using the Markov model. The results of the combined 

Markov and CLUE-S models indicate that the model is capable of representing LULC change in Beijing, 

which suggests that the approach is a useful tool for the analysis of related driving factors and the 

estimation of their influence on LULC change. The methodology can be effective and realistic for 

predicting possible LULC change under different scenarios and for providing a scientific basis for land 

use decision making and planning. 

The complexity of the LULC system requires that the selection of driving factors for the CLUE-S 

model be based on the theoretical relationships between driving factors and land use [31]. We select the 

related driving factors that affect LULC change from land-adaptive variables, regional spatial variables 

and socio-economic variables, but there are still some other factors that are difficult to quantify. The 
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selection of variables and indicators, to a certain extent, may cause some differences in the simulation 

results or model parameters, which will produce certain effects on the driving factors and the prediction 

of LULC change. For example, changes in household sizes may have an impact on housing demand and 

the land use spatial pattern. In the planned economy era, most of the families in China were three 

generations, even four generations under one roof. Now, the family structures have changed gradually 

to a nuclear family, and every newlywed couple generally requires a separate entrance from the newborn 

small family or nuclear family; DINK (a DINK household in which there are two incomes and no 

children) families and empty nesting are growing along with the development of society. The 

miniaturization of household sizes must put forward more requirements on housing. Increased housing 

demand is largely caused by shrinking household sizes, population growth, property taxes and other 

factors [51]. Housing demand stimuli will certainly change the land use pattern. When urban centers still 

have space, increased households may cause its development to be more compact. On the contrary, 

increased housing demands may lead to sprawl if not accommodated by high-density or not afforded by 

high housing price, particularly in the city center [52]. In this situation, the rapid spatial expansion of the 

city will lead to more rural and arable land converting to built-up areas and simultaneously putting 

immense pressure on the land use pattern in future. Therefore, the identification of the methods for the 

selection of the more scientific variables that reflect the influence of human activities on LULC change 

is critical.  

The method of combining the Markov model and the CLUE-S model is found to have the potential 

to reflect the complexity of LULC change, but if we select different forecasting models for land demand, 

it may produce different results. In many cases, it may even be most appropriate to use different model 

approaches to study the same region and to then compare the outcomes of such forecast models, which 

may lead to a better and more complete understanding of the LULC change process [53]. The method 

has therefore become an important direction for current research and could involve using a different 

model in combination with the CLUE-S model, such as the grey interconnect degree, the system 

dynamics model or multi-agent system models [26], which offer a reasonable alternative to predict and 

simulate land use patterns. In addition, as a megalopolis in the process of rapid urbanization, urban 

development and planning and major infrastructure construction, the related policies of functional 

dispersal from the central city could have significant impacts on the formation and evolution of land use 

patterns in Beijing. Now, many LULC models, for instance generic urban models [54], the TIGRIS XL 

model [49] and the SILENT (the Sustainable Infrastructure, Land-Use, Environment and Transport) 

model [55], have transformed some policies, such as infrastructure or land use zoning, into spatial 

parameters in simulating and predicting land use demand, so this can help decision makers to anticipate 

the impacts of the proposed policy. However, in this study, we do not consider the effects of various 

policy factors in the simulation process. A further study could employ regional spatial factors, land-adaptive 

factors, socio-economic and policy-related factors together in the simulation of further LULC change in 

Beijing, which could guide more informed decision making. 

5. Conclusions  

This paper explored the characteristics of LULC change and simulated future land use demand by 

combining a CLUE-S model with a Markov model, which overcame their respective disadvantages in 
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demand prediction and spatial allocation and gave some insight into a better understanding of possible 

changes in land use. The study chose Beijing as its case study, recognizing the related driving factors 

from land-adaptive variables, regional spatial variables and socio-economic variables, then performed 

the simulation on land use demand and revealed LULC change trends in 2020. 

The results suggest that following a rapid urbanization process, cultivated land converts to urban 

built-up land, which will become the main feature of LULC change in the future. The pattern will be 

more serious in the mountainous areas, such as the Mentougou, Shijingshan and Huairou districts and 

Yanqing County. From three scenarios, we find that the expansion trend of urban land occurs mainly 

northeast, northwest, southwest and east of Beijing, in districts, such as Tongzhou, Shunyi, Changping 

and Fangshan. The simulation of land use also shows, however, that the major difference between 

development scenarios (natural development and rapid development) and protection scenarios 

(ecological and cultivated land protection) occurs because the mountainous areas of Beijing are 

important ecological barriers and water conservation areas and the geographical environment with a 

higher elevation limits the expansion of urban land. The relationship between construction land and the 

ecological environment should therefore be comprehensively studied and estimated [37]. By protecting 

ecological and cultivated land and strictly controlling the expansion of built-up land, important 

adjustments can be made to the regional land use structure, the regional ecology can be accelerated and 

the sustainable economic development of Beijing can be prioritized. 
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