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Abstract: Natural deltas can provide human beings with flat and fertile land to be 

cultivated. It is important to monitor cropland dynamics to provide policy-relevant 

information for regional sustainable development. This paper utilized Landsat imagery to 

study the cropland dynamics of the Yellow River Delta during the last three decades. 

Multi-temporal Landsat data were used to account for the phenological variations of 

different plants. Several spectral and textural features were adopted to increase the 

between-class separability. The robust random forest classifier was used to generate the 

land cover maps of the Yellow River Delta for 1986, 1995, 2005 and 2015. Experimental 

results indicated that the proposed methodology showed good performance with an average 

classification accuracy of 89.44%. The spatial-temporal analysis indicated that the 

cropland area increased from 467.6 km2 in 1986 to 718.5 km2 in 2015 with an average 

growth rate of 8.65 km2/year. The newly created croplands were mainly due to the 

reclamation of grassland and bare soil while the losses of croplands were due to abandoned 

cultivation and urban sprawl. The results demonstrate that a sustainable perspective should 

be adopted by the decision makers in order to simultaneously maintain food security, 

industrial development and ecosystem safety. 
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1. Introduction 

Natural river deltas are home to many valuable wetland ecosystems around the globe, which 

provide a variety of functions beneficial to the sustainability of human communities, including 

flooding control, water quality protection, and biodiversity conservation, to name a few. [1–5]. 

Meanwhile, the flat topography, sufficient water supply and fertile arable land have made river deltas 

preferential areas for human settlements and intensified agriculture practices [3–5], resulting in plenty 

of croplands co-existing with coastal wetlands. However, due to intensive anthropogenic activities such as 

industrialization and urban sprawl, the croplands in natural deltas have experienced great dynamics [6–10], 

e.g., some croplands were converted to built up areas while some wetlands were reclaimed as the 

cultivated land in some natural deltas of China. Therefore, it is of great significance to monitor 

cropland dynamics appropriately and frequently to assist in the sustainable development of natural 

river deltas. 

Considering the dynamic nature of river deltas [3–5], it is time-consuming and impractical to rely 

on traditional field surveys to monitor the land use and land cover change (LUCC). Nevertheless, 

satellite remote sensing has yielded promising results in mapping and monitoring river deltas due to its 

synoptic view, multi-temporal coverage, multi-sensor data collection and cost-effectiveness [1–16]. 

The Landsat program has been considered as one of the most successful and important missions for 

Earth Observation in the last forty years [5]. Archived Landsat data are free of charge online [17] and 

have demonstrated great capabilities in resource investigation, LUCC, disaster monitoring, urban heat 

island and global change research [11–16,18–20]. In this study, multi-temporal Landsat imagery was 

utilized to monitor the cropland dynamics of the Yellow River Delta of China. 

Yellow River Delta is China’s largest natural delta and one of the fastest growing deltas in the 

world [21]. It is located at the northeast of Shandong Province and is home to many valuable coastal 

wetlands together with China’s second largest oil field, Shengli Oil Field. Due to intensive human 

activities and global climate change, the Yellow River Delta has been experiencing many challenges, 

including sea level rise, water discharge decrease, soil salinization and fertile decline, wetland loss and 

fragmentation, to name a few. [5,21–28], which calls for sustainable actions to achieve the balance 

between socio-economic development and ecosystem protection. Previous studies [5,21–28] have been 

conducted on the LUCC of the Yellow River Delta to investigate its spatial-temporal patterns.  

Yue et al. [22] researched the landscape change detection of the newly created wetlands in the Yellow 

River Delta using Landsat Thematic Mapper (TM) data of 1984, 1991 and 1996. Significant landscape 

changes were reported and several measures were suggested to protect the newly created wetlands. 

Fang et al. [26] studied the land cover and vegetation composition changes of the Yellow River Delta 

Nature Reserve (YRDNR) based on the Landsat TM data of 1995 and found that the YRDNR has 

experienced great landscape changes and environmental improvement after 1992 [26]. Liu et al. [27] 

monitored the land cover changes also in the YRDNR from 1999 to 2008 based on remote sensing, 

geographical information system (GIS) and Markov chain transition probability matrices.  

Ottinger et al. [5] utilized Landsat TM data of 1995, 2004 and 2010 to investigate the land cover 

changes of the entire Yellow River Delta (Dongying City), which showed that land cover changes 

were mainly caused by intensified farming and urban sprawl. There are several studies whose research 
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area is also the Yellow River Delta; however, their focuses were not on land use and land cover 

changes. Therefore, they are not discussed in detail in this introduction [21,23–25,28].  

However, previous studies [5,21–28] mainly discussed the general geomorphic features and changes 

of the Yellow River Delta, very few studies used Earth Observation techniques to focus on and 

research into the cropland dynamics and the driving forces behind [29]. The only exception is Zhao’s 

study [29], which utilized Landsat TM data to detect the cultivated land dynamics of Kenli County. 

Considering that Zhao only studied a short period from 1987 to 1998 and only part of the whole delta, 

it is necessary to extend Zhao’s study to a longer period while covering the whole Yellow River Delta 

at the same time. 

Inspired by Zhao et al. [29], we studied the cropland dynamics of the Yellow River Delta from 1986 

to 2015 (present) using satellite remote sensing techniques. Meanwhile, the previous studies [5,21–28] 

only used single-date remote sensing imagery, which could not well account for the seasonal and 

phenological variations of wetland ecosystems, resulting in the classification errors between cropland 

and other vegetated land cover types such as grassland and forest. Considering that multi-temporal 

remote sensing data provide the potential to improve classification accuracy when compared to single-date 

classification [30–33], we utilized multi-temporal Landsat imageries to aid in the discrimination 

between different land cover types. Moreover, given the landscape complexity of the delta, the 

classifier involved should be robust, efficient and insensitive to outliers and require no assumptions of 

data distribution [33]. The random forest (RF) classifier [33], which satisfies the above requirements, 

was selected in this study for the classification of the multi-temporal Landsat data. Additionally, 

random forest has been rarely documented in the LUCC of the Yellow River Delta and other 

ecological studies (e.g., forest biomass estimation, chlorophyll-a concentration of the water body), and 

its performance should be justified. 

Overall, the objective of this paper was to monitor the cropland dynamics of the Yellow River Delta 

using multi-temporal Landsat imagery. Specifically, this paper aimed to (i) study the spatial-temporal 

dynamics of cropland to provide scientific basis for the sustainable development of the Yellow River 

Delta; (ii) justify whether the integration of multi-temporal images can increase the classification 

accuracy; (iii) verify the performance of the random forest classifier in the land cover mapping of the 

Yellow River Delta. 

2. Study Area and Data 

The Yellow River Delta is located at the estuary of the Yellow River, which is the second longest 

river in China with a total length of 5,464 km (Figure 1). In this study, the Yellow River Delta refers to 

the modern Yellow River Delta which has been formed since 1855, when the river’s lower course 

translocated the river towards the coast of the Bohai Sea [5]. The modern Yellow River Delta starts 

from Yuwa village and extends to the mouth of Tiaohe River in the northwest and Song Chunrong 

Channel in the southeast [34]. 

Due to the deposition of large amount of sediments transported by the Yellow River, the newly 

created wetland of the Yellow River Delta increases by about 30 km2 each year, making it one of the 

fastest sedimentation areas around the world [21]. 



Sustainability 2015, 7 14837 

 

 

(a) (b)  

Figure 1. Study area. (a) China; (b) True color image of the Yellow River Delta on 5 June 2015. 

The Yellow River Delta belongs to the temperate continental monsoon climate and has four distinct 

seasons [21]. It enjoys a hot and humid summer and a cold and dry winter. The annual temperature is 

about 11.9 °C while the annual average precipitation is about 640 mm [21]. The major crops include 

winter wheat, rice, corn, cotton and soybeans while the main natural vegetation includes reed, 

tamarisk, seablite and robinia [5,21].  

The Yellow River Delta is also home to Shengli Oil Field which is the basis of Dongying City 

establishment since 1983 [5]. The intensive oil related industrial activities have caused rapid urban 

expansion and population growth [5], resulting in the conversion of plenty of wetlands, croplands and 

bare soil into built up areas including oil fields, chemical factories, harbors and residential areas. 

The multi-temporal Landsat-5 TM data of 1986, 1995, 2005 and Landsat-8 OLI (Operational Land 

Imager) data of 2015 were utilized in this study for land cover classification of the Yellow River Delta 

(Table 1). In fact, the data used belong to the optical multispectral bands of Landsat 5 TM and  

Landsat 8 OLI. Six of the seven multispectral bands of OLI are nearly consistent with TM, providing 

for the compatibility with the historical Landsat data. However, the spectral response and radiometry 

of TM and OLI are not exactly the same, which may introduce errors and differences when using the 

data of the two sensors at the same time. All data used were acquired under almost cloud free 

conditions and were provided by the U.S. Geographical Survey (USGS) [17]. In addition, TM and OLI 

sensors have a spatial resolution of 30 m while the Landsat 8 platform has a revisit time of 16 days. 

Meanwhile, the actual revisit of Landsat 5 is not 16 days since the acquisition is not systematic [17]. 

Given that the incorporation of multi-temporal (or multi-seasonal) imagery can provide additional 

phenological information for differentiating plant species within a single growing season [30–33], we 

also employed multi-temporal Landsat data to increase the classification accuracy.  
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Table 1. Description of Landsat data used in this study. 

Year Platform Sensor Date Path/row Resolution Band number 

1986 
Landsat-5 TM 1986.04.18 121/34 30 m 1, 2, 3, 4, 5, 7 
Landsat-5 TM 1986.06.05 121/34 30 m 1, 2, 3, 4, 5, 7 

1995 
Landsat-5 TM 1995.03.26 121/34 30 m 1, 2, 3, 4, 5, 7 
Landsat-5 TM 1995.09.18 121/34 30 m 1, 2, 3, 4, 5, 7 
Landsat-5 TM 1995.10.04 121/34 30 m 1, 2, 3, 4, 5, 7 

2005 
Landsat-5 TM 2005.04.22 121/34 30 m 1, 2, 3, 4, 5, 7 
Landsat-5 TM 2005.05.24 121/34 30 m 1, 2, 3, 4, 5, 7 
Landsat-5 TM 2005.10.15 121/34 30 m 1, 2, 3, 4, 5, 7 

2015 
Landsat-8 OLI 2015.03.01 121/34 30 m 1, 2, 3, 4, 5, 6, 7 
Landsat-8 OLI 2015.05.04 121/34 30 m 1, 2, 3, 4, 5, 6, 7 
Landsat-8 OLI 2015.06.05 121/34 30 m 1, 2, 3, 4, 5, 6, 7 

3. Methods 

3.1. Workflow 

The whole workflow of this study is depicted in Figure 2. 

 

Figure 2. The workflow of this study. 

The workflow mainly consists of the following steps: (i) remote sensing data preprocessing  

(Section 3.2), which includes radiometric calibration, geometric rectification and atmospheric 

correction of the downloaded Landsat data; (ii) feature calculation (Section 3.3), which includes the 

Tasseled Cap Transformation (TCT) [35–38], Normalized Difference Vegetation Index (NDVI) [39], Soil 

Adjusted Vegetation Index (SAVI) [39], Modified Normalized Difference Water Index (MNDWI) [40] 

and six texture features derived from the gray level co-occurrence matrix (GLCM) [41–43];  

(iii) random forest classification (Section 3.5), which utilized the RF to classify the multi-temporal 

Landsat data into land use and land cover (LULC) maps. Additionally, accuracy assessment (Section 3.6) 
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was carried out to justify the performance of the proposed approach in this study. Finally, spatial-temporal 

pattern analysis was utilized to study the cropland dynamics of the Yellow River Delta based on the 

LULC maps. 

3.2. Image Preprocessing 

Remote sensing image preprocessing was utilized to acquire the ground surface reflectance through 

several steps, including radiometric calibration, geometric and atmospheric correction. Therein, 

radiometric calibration was to convert the digital number (DN) values of the original downloaded 

Landsat data into at-satellite reflectance. The following formula was utilized for the radiometric 

calibration of Landsat data. 

Ref Gain DN offset= × +  (1)

where Ref refers to the reflectance, DN refers to the digital number, and Gain and offset are calibration 

coefficients which can be derived from the header file of the Landsat data. Additionally, images 

acquired on different dates should be co-registered geographically to maintain the positional accuracy. 

The nearest neighbor resampling method was adopted in geometric correction to preserve the original 

spectral characteristics of each pixel. As for atmospheric correction, the by-band 6S model [44] was 

adopted in this study to remove the atmospheric effects from the remotely sensed data. 

3.3. Feature Calculation 

The integration of different image features can improve the classification results when compared to 

the original remote sensing imagery, according to many previous studies [11,12,30–33]. The image 

features were calculated for each Landsat image, consisting of spectral features (i.e., TCT components, 

NDVI, SAVI and MNDWI) and texture features (i.e., the six least correlated features derived from 

GLCM), which will be documented in detail below. 

3.3.1. Tasseled Cap Transformation 

Tasseled Cap Transformation was first introduced by Kauth and Thomas (1976) [35] and further 

developed by Crist and Cicone (1984) [36]. It transformed the original multispectral data orthogonally 

into a new set of axes associated with physical meanings [37]. Generally, three distinctive axes of 

brightness, greenness and wetness can be derived through the orthogonal rotation coefficients [37].  

TCT features have long been recognized as an efficient tool in understanding the vegetation growth 

patterns, estimates of forest structure, providing ancillary information for improving the LULC 

classification, to name a few. [37,38]. In this study, TCT features were employed to increase the 

between-class separability, such as the differentiation between cropland and other vegetated land cover 

types. The TCT coefficients for Landsat-5 TM and Landsat-8 OLI were listed in Table 2 according to 

previous studies [37,38]. 
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Table 2. TCT coefficients for Landsat-5 TM and Landsat-8 OLI at-satellite reflectance. 

Landsat-5 TM Band 1 Band 2 Band 3 Band 4 Band 5 Band 7 

Brightness 0.2909 0.2493 0.4806 0.5568 0.4438 0.1706 
Greenness −0.2728 −0.2174 −0.5508 0.7221 0.0733 −0.1648 
Wetness 0.1446 0.1761 0.3322 0.3396 −0.6210 −0.4186 

Landsat-8 OLI Band 2 Band 3 Band 4 Band 5 Band 6 Band 7 

Brightness 0.3029 0.2786 0.4733 0.5599 0.5080 0.1872 
Greenness −0.2941 −0.2430 −0.5424 0.7276 0.0713 −0.1608 
Wetness 0.1511 0.1973 0.3283 0.3407 −0.7117 −0.4559 

3.3.2. Spectral Indices 

Apart from TCT features, several spectral indices of NDVI, SAVI and MNDWI were also included 

due to their prevalence in remote sensing fields and the capability in describing the characteristics of 

the Earth’s surfaces [39,40]. These spectral indices are presented as follows. 
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where ρ(Green), ρ(Red), ρ(NIR) and ρ(MIR) refer to the reflectance of the green, red, near-infrared 

and short wave infrared band of Landsat data and L stands for the correction factor [39]. NDVI was 

used to separate the vegetated from non-vegetated land cover types while SAVI could improve 

NDVI’s performance in sparsely vegetated areas of the Yellow River Delta. MNDWI refers to the 

modified version of NDWI [45], which was proposed by Xu (2006) [40] for Landsat-5 TM data. 

Although NDWI has been widely used in the remote sensing field, it cannot suppress the signal from 

building up efficiently and the extracted water features are still mixed with built up land noise [40]. To 

tackle this issue, MNDWI was proposed by substituting the MIR band for the NIR band of NDWI 

(Formula (4)). A series of experiments were carried out by Xu [40] for lake water, sea water and river 

water enhancement and the results indicated that MNDWI can enhance open water features effectively 

and suppress or even remove the built up, vegetation and soil noise at the same time [40]. MNDWI has 

also been utilized in other studies, e.g., the water body extraction in the coastal zone east of the Nile 

Delta of Egypt [46] and the coastline detection of Qinhuangdao of China [47]. 

3.3.3. Texture Features 

According to visual interpretation and field survey, we have found that many land cover types of the 

Yellow River Delta manifest several distinctive geometric and textural characteristics, e.g., most 

croplands, reservoirs and cultivated aquatic surfaces have obvious rectangular boundaries, while reeds 

and seablites show long and narrow distribution patterns along the river and tidal flat, respectively. 
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Thus, the inclusion of texture features can help improve the classification results. Additionally, the role of 

texture in increasing classification accuracy has been recognized in many studies [41–43].  

Laliberte et al. [48] analyzed texture measures at multiple scales in object-based analysis to differentiate 

broad functional groups of vegetation in arid grassland with subdecimeter unmanned aerial vehicle 

(UAV) imagery. The results indicated that the inclusion of textures can help improve the classification 

accuracy and overcome the drawbacks of low-cost off-the-shelf digital cameras [48]. Similar findings 

can also be seen in the studies of Feng et al. [49,50], where textures were added to improve the 

classification accuracy in urban vegetation mapping and urban flood mapping based on UAV optical 

imagery. Additionally, Szantoi [42] also adopted texture features to improve the accuracy of analyzing 

fine-scale wetland composition using areal imagery. The six least correlated texture measures according 

to Szantoi [42] were used in this study, i.e., mean (MEA), standard deviation (STD), homogeneity 

(HOM), dissimilarity (DIS), entropy (ENT) and angular second moment (ASM) are as follows: 
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where N is the number of grey levels; P is the normalized symmetric GLCM of dimension N × N;  

P(i, j) is the normalized grey level value in the cell i, j of the co-occurrence matrix, such that the sum 

of P(i, j) is equal to 1 [42]. In order to determine the optimal size of the moving window within which 

the texture features were calculated, six different moving windows were chosen for Landsat-8 OLI 

imagery (2015-06-05) in this study: 3 × 3, 5 × 5, 7 × 7, 9 × 9, 11 × 11 and 13 × 13. Texture features 

derived at different window sizes were added separately as additional ancillary bands to the original 

multispectral bands for classification. Results indicated that textures calculated at a 5 × 5 moving 

window yielded the highest accuracy. 

3.4. Land Cover Classification Schemes 

After feature calculation, all of the image features and the original multi-temporal Landsat bands 

were integrated into a single dataset, from which the training samples were derived to train the random 
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forest classifier. According to field survey and previous studies [5,21–28], the land cover of this study 

included eight categories, i.e., cropland, forest, grassland, shrubs, water, tidal flat, built up area and 

bare soil. The landscape descriptions of the classification scheme are shown in Table 3. 

Table 3. Classification scheme of the Yellow River Delta. 

Land cover class Description 

Cropland 
Including irrigated and non-irrigated farmland, e.g. winter wheat, rice, corn, 
cotton and soybean 

Forest Broadleaved trees, mainly robinia, willow 

Grassland 
Including densely vegetated areas where reed is dominant and sparsely 
vegetated areas where seablite is dominant 

Shrubs Sparsely vegetated shrubs, mainly tamarisks 
Water Water bodies including rivers, reservoirs, aquaculture and brine ponds 

Tidal flat Non-vegetated foreshore areas  
Built up Artificial surfaces including residential areas, factories, harbors and oil fields 
Bare soil Non-vegetated bare land, mainly saline and alkaline land 

Training samples of each land cover type were selected randomly using a stratified sampling 

method in a small polygon block. It was assumed that the pixels within the polygon belong to the same 

land cover class. The number of training samples for each class was equally set to be 500 to ensure 

sufficient observations and to avoid any under- or overestimation of the spectral patterns of different 

land cover types. Specifically, before the stratified sampling process, a number of 600 sampling points 

were selected for each land cover type. During the sampling process, 500 sampling points out of 600 

were randomly selected as the training dataset for each land cover type. The remaining 100 points were 

selected as the testing dataset for accuracy assessment. 

3.5. The Random Forest Classifier 

The random forest classifier was utilized to classify the input data into thematic land cover types in 

this study. As an ensemble learning algorithm, random forest was proposed by Breiman in 2001 [51], 

which can be regarded as an ensemble of decision trees. The result yielded by random forest is 

determined by the output of all the decision trees involved [51]. As an ensemble learning method, the 

random forest classifier has several advantages including that it is easy to parameterize, non-sensitive 

to over-fitting of the training data and good at dealing with outliers [33,49]. Random forest requires no 

assumption of training data distribution when compared to statistical methods such as the maximum 

likelihood classifier (MLC) [49,50]. When compared to decision tree, over-fitting is less of an issue for 

random forest and there is no need for the cumbersome task of pruning the trees [51]. When compared 

to support vector machine (SVM), random forest has the advantage of easier parameterization and 

better generalization capability [49,50]. Due to the above advantages, random forest has been 

increasingly used for image classification in the remote sensing field [33,49,50,52–54]. Schneider [54] 

utilized the random forest classifier (boosted decision trees) to monitor land cover changes in urban 

and peri-urban areas based on multi-seasonal Landsat satellite data. Results indicated that both random 

forest and SVM outperformed MLC but random forest was superior to SVM at handling missing  

data [54]. Corcoran et al. [33] used the random forest classifier for wetland mapping in Northern 
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Minnesota and analyzed the influence of multi-source and multi-temporal remotely sensed and 

ancillary data on the classification accuracy. Feng et al. [49,50] also justified the role of random forest 

in urban vegetation mapping and urban flood mapping based on very high resolution UAV imagery. 

However, random forest has rarely been applied to the land cover classification of the Yellow River 

Delta and we are motivated to justify its performance.  

Two random selection steps are used to increase the generalization capability of random forest 

when generating each decision tree [51]. First, only about 2/3 of the training samples are selected with 

replacement to build every decision tree [51]. The left 1/3 training samples are called out-of-bag 

(OOB) data [51], which can be utilized for the inner cross validation of random forest. Generally, the 

plot of OOB error versus the number of trees (ntree) is needed to justify whether there exist sufficient 

trees in the grown forest [52]. Second, only a subset of the predictable variables is randomly selected 

to split every decision tree [51]. The number of picked up variables (mty) is set to be 1/3 or the square 

root of the number of all input variables [51]. 

The package randomForest in R language [55,56] was adopted for the parameterization of the random 

forest classifier used in this study. ntree was set to be 200 according to our previous studies [49,50] and 

the plot of OOB error of the 2015 Landsat dataset versus ntree is depicted in Figure 3 to verify whether 

200 decision trees can make the random forest classifier convergent. 

 

Figure 3. OOB error of random forest. 

Figure 3 depicts that the OOB error decreased quickly from 10% to less than 2% when ntree 

increased from 0 to 50. Afterwards, the OOB error continued to decline slightly and converged to a 

stable state (1.4%) when ntree reached 200. Therefore, 200 decision trees proved to be feasible for the 

random forest classifier. 

3.6. Accuracy Assessment 

In order to assess the performance of the proposed classification procedure, both confusion  

matrix [49] and visual evaluation were employed. Visual evaluation was used to check the visual 

effects of the classification results to see whether there existed obvious omission and commission 

errors. Confusion matrix was derived from reference samples to quantitatively assess the quality of the 



Sustainability 2015, 7 14844 

 

 

generated LULC maps through the following indicators: overall accuracy, producer accuracy, user 

accuracy and Kappa index [49]. Testing points were selected in the stratified sampling process 

mentioned at the end of Section 3.4. A number of 100 points were selected for each land cover type as 

the testing dataset for accuracy assessment. The overall accuracy was then weighted by the sampling 

probability of each class. The reason why proportional random sampling is not used is that the 

proportion of each land cover type remains unknown before the classification, therefore, we only 

utilized the stratified sampled testing points for accuracy assessment. Additionally, cross validation 

was used to determine the meta-parameters of the random forest classifier; however, it was not enough 

to characterize the results of the “optimal” classification. In remote sensing field, it is mandatory to 

carry out the accuracy assessment with an independent validation sample dataset. 

4. Results and Discussion 

4.1. Results of Land Cover Classification 

The spatial distributions of cropland of the Yellow River Delta together with other land cover types 

are illustrated in Figure 4. 

(a) (b)

(c) (d)  

Figure 4. LULC maps of the Yellow River Delta in (a) 1986; (b) 1995; (c) 2005; (d) 2015. 
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It can be observed that the cropland showed distinct spatial patterns. Most cultivated lands were 

distributed along the corridors of the present and the old courses of the Yellow River. This is mainly 

due to the high soil moisture content and low soil salinity in those areas [29], which can provide 

suitable and arable lands for agriculture. Specifically, in 1986, the cropland landscape was rather 

fragmented and large amount of croplands were surrounded by bare soil and grassland. The year 1995 

witnessed a similar cropland distribution pattern to that of 1986. However, the year 2005 manifested a 

great increase of cropland with numerous large patches. Lots of bare soil and grassland were converted 

to cropland during the period of 1995 to 2005. Finally, the cropland distribution of 2015 showed a 

similar spatial pattern to that of 2005. 

Besides, shrubs (mainly tamariks) were mainly distributed along the coastal regions with high soil 

salinity. Grasslands (mainly reed), as an important component of the wetland ecosystem, were 

distributed between shrubs and cropland. The water bodies were mainly located in the coastal regions 

where aquaculture and brine ponds were prevalent. Additionally, the water bodies of the inland regions 

were scattered including reservoirs and small fish ponds. 

4.2. Temporal Changes of Cropland and Other Land Cover Types 

The temporal changes of cropland in the Yellow River Delta are depicted in Figure 5. During the 

past three decades, croplands have increased from 467.6 km2 in 1986 to 718.5 km2 in 2015 with an 

average growth rate of 8.65 km2/year. During 1986 to 1995, the cropland percentage slightly decreased 

from 17.4% to 16.6% at a descent rate of 1.27 km2/year. However, the percentage increased 

dramatically to 24.8% in the year 2005 with a growth rate of 22.38 km2/year. The next decade 

witnessed a slight increase of the cropland area while the percentage grew to 26% from 2005 to 2015 

at a relatively lower rate of 3.85 km2/year. 

 

Figure 5. Temporal changes of cropland in the Yellow River Delta. 

In order to get a better understanding of the LULC dynamics of the whole Yellow River Delta, the 

overall LULC changes from 1986 to 2005 were summarized in Table 4. It indicates that cropland, 

grassland, bare soil and tidal flat were the four dominant land cover types, totally occupying 81.4%, 

74.8%, 78.1% and 65.6% for the years 1986, 1995, 2005 and 2015, respectively. Therein, the grassland 
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percentage dropped from 26.7% in 1986 to 16.6% in 2015 with a descent of 260.1 km2. The bare soil 

experienced the same trend and decreased from 22.6% to 9.2% during the past three decades. 

However, the tidal flat did not change much while the built up areas increased from 52.1 km2 in 1986 

to 221.3 km2 in 2015. 

Table 4. Statistics of LULC areas of the Yellow River Delta from 1986 to 2015. 

Class 
1986 1995 2005 2015 

Area (km2) % Area (km2) % Area (km2) % Area (km2) % 

Cropland 467.6 17.4 456.2 16.6 680.0 24.8 718.5 26.0 
Forest 38.8 1.4 58.8 2.1 39.9 1.5 52.8 1.9 
Grass 717.5 26.7 727.1 26.5 525.9 19.2 457.4 16.6 
Shrub 264.5 9.8 333.4 12.1 169.6 6.2 152.7 5.5 

Built up 52.1 1.9 92.9 3.4 140.2 5.1 221.3 8.0 
Tidal flat 394.7 14.7 471.7 17.2 545.2 19.9 381.9 13.8 
Bare soil 608.2 22.6 399.3 14.5 390.2 14.2 254.5 9.2 

Water 145.3 5.4 208.9 7.6 249.4 9.1 523.1 18.9 
Total 2688.7 100 2748.4 100 2740.3 100 2762.1 100 

Table 4 also indicates that the water bodies have experienced great changes during the past three 

decades. To be specific, water bodies have increased from 145.3 km2 in 1986 to 523.1 km2 in 2015 

with a mean increasing rate of 13.02 km2/year. The last decade of 2005 to 2015 has witnessed the 

fastest growing of water bodies at the speed of 22.87 km2/year. Figure 4 indicates that the increase of 

water bodies mainly happened in the southeastern, northeastern and northwestern coastal regions. 

Actually, the above mentioned regions consisted of aquaculture and brine ponds whose establishments 

were due to the market demand and economic stimulus. Besides, a number of reservoirs have been 

constructed in the inland regions to meet the increasing demand of fresh water supply due to the 

population growth, which also contributed to the expansion of water areas. 

Meanwhile, the built up areas have increased from 52.1 km2 in 1986 to 221.3 km2 in 2015 with a 

percentage increase of 324.7%. This is mainly due to the development of oil related industries resulting 

in the establishments of a number of oil fields in the east and chemical factories and harbors in the 

north. The growth of industrial workers also contributed to the expansion of residential areas and the 

urbanization process. 

The past three decades have also witnessed a decline of shrubs from 264.5 km2 in 1986 to 152.7 

km2 in 2015. One reason for this decline is the establishment of the dyke along the coastline. The dyke 

hindered the exchange of mass and energy between the terrestrial and marine ecosystems, which 

resulted in the habitat degradation of the shrubs and accounted for the decrease of shrub areas. As well, 

the area of forest is relatively small and has not changed much during the study period. 

In addition, statistical analysis should be carried out to determine whether significant differences 

exist among the four different dates. A one-way analysis of variance (ANOVA) has been done 

between different dates using SPSS 20 and the significance (Sig.) is described in Table 5. 
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Table 5. Significance derived from ANOVA between different dates. 

 1986 & 1995 1986 & 2005 1986 & 2015 1995 & 2005 1995 & 2015 2005 & 2015 

Sig. 0.951 0.958 0.939 0.993 0.988 0.981 

Table 5 indicates that all Sig. have a value more than 0.05 (Sig. > 0.05), which demonstrates that 

although the Yellow River Delta experienced great land cover changes during the past three decades, 

significant differences of land cover types between these dates do not exist. 

The uncertainties of temporal changes of land cover types should also be discussed here.  

The uncertainties mainly come from human factors and natural factors. As for the Yellow River Delta, 

the uncertainties with regard to land cover changes mainly stem from shifts in the land use policy, the 

negative effects of rapid economic development (e.g., the illegal urban encroachment on cropland) and 

the impact of global climate change (e.g., the decline of tidal flats due to sea level rise). With regard to 

the above uncertainties, remote sensing can be recognized as a cost-effective tool in the detection and 

description of temporal and spatial process of land cover changes due to its synoptic view and 

continuous coverage of the study area. Specifically, through visual interpretation and image 

classification, remote sensing can provide high quality land cover datasets with good accuracy to 

detect land cover changes due to the above uncertainties. For instance, the illegal use of land can be 

monitored and the coastline changes due to climate change can be mapped through remote sensing to 

aid for the decision making of the regional sustainable development. However, due to the scarcity of 

land use statistics of the Yellow River Delta, the comparison between the research results and 

historical statistical data has not been carried out, which is a drawback of the presented study. 

To better understand the relationship between cropland dynamics and other LULC changes, the 

cropland mutual conversion analysis [14] should be implemented and will be documented in detail in 

the next section. 

4.3. Cropland Mutual Conversion Analysis 

Undeniably, LULC change is a mutual conversion process [14], which means there exists a 

conversion between a certain land cover type and the other land cover types within a certain period. In 

this study, “cropland mutual conversion” mainly refers to two processes, i.e., the conversion of 

cropland into other land cover types and the conversion of other land cover types into cropland. 

Through cropland mutual conversion analysis, better understandings of the changing patterns of 

cropland and the reasons behind these changes emerge. The cropland conversion to other LULC is 

demonstrated in Figure 6. 
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(a) (b)  

Figure 6. (a) Area of cropland converted to other LULC; (b) Percentage of cropland 

converted to other LULC during 1986 to 2015. 

Figure 6a depicts that the period of 1986 to 1995 witnessed a total loss of 275.3 km2 cropland to 

other LULC types, which ranks the first in the past three decades. The next decade of 1995 to 2005 

experienced the least cropland conversion to other LULC types with an area of 130.7 km2. The amount 

of cropland conversion increased again to 243.3 km2 during the last decade. Figure 6b illustrates the 

percentage of other LULC types to which the cropland had been converted. Grassland, bare soil and 

built up areas were the three major land cover types which were converted from croplands during the 

past three decades. Specifically, cropland conversion to grassland was 53.4%, 49.3%, 43.1% in the 

three study periods, respectively. The percentage of cropland converted to bare soil was 20%, 21.2% 

and 26.2% while the percentage of cropland converted to built up area was 6.3%, 14.7% and 12.3% 

during the corresponding periods, respectively. The large conversion of cropland to grassland and bare 

soil indicated the existence of the phenomenon of abandoned cultivation in the Yellow River Delta. 

Besides, the urbanization and industrialization of the delta had extended the built up areas to rural 

regions, which in turn resulted in the loss of cropland simultaneously. 

The conversion of other LULC types into cropland during different periods is depicted in Figure 7. 

From 1986 to 1995, about 263.3 km2 of cropland were reclaimed from other LULC types. The area of 

the newly created cropland was 354.5 km2 and 281.8 km2 for the period of 1995 to 2005 and 2005 to 

2015, respectively. Figure 7b demonstrates that grassland and bare soil were the major contributors for 

the cropland increase. The percentage of grassland converted to cropland was 38.9%, 67.7% and 

40.3% for the three periods, respectively, making grassland the dominant contributor. Meanwhile, the 

percentage of bare soil converted to cropland in the corresponding periods was 47.5%, 14.1% and 

37.7%. The above results indicate that the increase of cropland mainly resulted from the reclamation of 

grassland and bare soil. 

Additionally, many land cover studies assume that once land is converted to built up area or urban, 

it does not get converted back to cropland. However, Figure 7 indicates that there are a number of built 

up areas that changed back into cropland in the Yellow River Delta during the study periods. Actually, 

two reasons may account for this phenomenon. First, due to rapid urbanization, several villages were 

pulled down while high-rise buildings were established in the adjacent areas. After the residents moved 
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to the new buildings, the original villages were transformed into cropland. Second, due to the spectral 

mixture between built up areas and bare soil, some bare soil areas have been misclassified as built up 

areas and those bare soil area might be reclaimed into cropland afterwards. 

(a) (b)  

Figure 7. (a) Area of other LULC converted to cropland; (b) Percentage of other LULC 

converted to cropland during 1986 to 2015. 

In addition, the accuracy of the change maps is dependent on the accuracy of each individual 

classification and is subject to the error propagation over time [30,57]. According to Congalton and 

Green [57], for a map with a chosen accuracy of 90% (10% error) and using a 95% confidence level, 

the minimum number of samples required for the change/no change assessment is 298. Therefore, we 

randomly selected 298 samples each for change and no change classes for the change/no change 

validation for the three periods of this study, respectively. The resulted overall accuracy for the three 

study periods were then listed as follows. 

Table 6 indicates that the overall accuracy of change/no change validation is 73.24%, 78.62% and 

80.61%, respectively, for the three study periods, which justifies a high change detection accuracy. The 

period of 2005 to 2015 has the highest change detection accuracy while the period of 1986 to 1995 has 

the lowest accuracy. 

Table 6. Overall accuracy of change/no change validation. 

 From 1986 to 1995 From 1995 to 2005 From 2005 to 2015 

OA 73.24% 78.62% 80.61% 

4.4. Results of Accuracy Assessment 

To quantitatively assess the accuracy of the proposed approach in this study, confusion matrix was 

utilized to calculate the overall classification accuracy and Kappa index, which are shown in Table 7. 

Table 7. Classification accuracy of the Yellow River Delta from 1986 to 2015. 

 1986 1995 2005 2015 

OA 85.37% 90.80% 90.34% 91.26% 
Kappa 0.8328 0.8948 0.8895 0.9000 
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It can be observed that the proposed methodology showed good performance with an average 

classification accuracy of 89.44% and an average Kappa index of 0.8793. This is mainly due to the 

adoption of multi-temporal dataset and a series of spectral and textural features, through which can 

increase the separability between different land cover types [30–33]. Additionally, the robustness and 

effectiveness of random forest classifier [49,50,52,53] also contributes to the high accuracy here. 

In addition, only the reference data in 2015 were based on field survey. Reference data of other 

times were indirectly selected from the LULC maps of the previous studies and Google Earth history 

image, which may cause some uncertainties in the results of the accuracy assessments. However, the 

adoption of reference data from previous studies can be acceptable in LUCC study [5,14] since it is 

sometimes very difficult to get complete history ground truth data. Table 7 also indicates that the land 

cover classification accuracy for 1986 was notably lower than other periods. Three reasons would 

account for this issue. First, only two images were employed for the classification of 1986 while three 

images were employed for the other dates. This led to a decrease of eighteen feature bands and would 

lead to the lower between-class separability when compared to other dates. Second, the accuracy 

assessment data for 1986 was sparser since the training-calibration dataset was primarily developed for 

the year 2015. Third, as can be seen form Figure 4, the land cover configuration for 1986 compromised 

the inter-class distinction which increased the difficulty of differentiating each land cover category with 

high accuracy. 

The confusion matrix of the year 2015 is presented in Table 8 to better understand the commissions 

and omissions of different land cover types. It indicates that the classification errors mainly occurred 

between shrubs and bare soil, and between built up areas and bare soil. For the former case, the shrubs 

of the Yellow River Delta, mainly tamarisks, were sparsely distributed in the coastal wetlands 

surrounded by saline land [25], which caused the spectral mixture between shrubs and bare soil. For 

the latter case, many villages were also sparsely distributed among saline land and showed similar 

spectral signature to that of bare soil [25], which accounted for the classification errors. 

Table 8. Confusion matrix of the classification result of the year 2015. 

Class 
Validation data 

Crop-land Forest Grass Shrub Built up Tidal flat Bare soil Water UA (%) 

Cropland 94 1 4 0 1 0 2 0 92.16 

Forest 0 95 0 0 0 0 0 0 100.00 

Grass 6 4 94 9 2 1 0 6 77.05 

Shrub 0 0 2 80 0 0 0 0 97.56 

Built up 0 0 0 0 70 0 1 0 98.59 

Tidal flat 0 0 0 0 0 99 4 0 96.12 

Bare soil 0 0 0 11 27 0 93 0 70.99 

Water 0 0 0 0 0 0 0 94 100.00 

PA (%) 94.00 95.00 94.00 80.00 70.00 99.00 93.00 94.00  

OA (%) 89.88 OA-adj 91.26%  Kappa 0.8843 K-adj 0.9000  

Notes: OA-adj, adjusted OA based on the sampling frequency; K-adj, adjusted Kappa index.  

One of the major objectives of this study was to investigate whether the incorporation of  

multi-temporal Earth Observation data can increase the LULC classification accuracy of the Yellow 
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River Delta. Here we take the year 2015 as an example. The single-date image classifications were 

performed in the same manner as the multi-temporal classification, also using the random forest classifier 

containing 200 decision trees. The accuracy comparison between multi-temporal and single-date 

classification was illustrated in Table 9. 

Table 9. Comparison of the accuracy between multi-temporal and single-date classification. 

Accuracy Muti-temporal  Single-date  

 2015 2015-03-01 2015-05-04 2015-06-05 
OA 91.26% 78.84% 77.45% 76.84% 

Kappa 0.9000 0.7581 0.7423 0.7353 
 2005 2005-04-22 2005-05-24 2005-10-15 

OA 90.34% 69.02% 71.11% 67.12% 
Kappa 0.8895 0.6460 0.6698 0.6242 

 1995 1995-03-26 1995-09-18 1995-10-04 
OA 90.80% 75.91% 79.88% 77.34% 

Kappa 0.8948 0.7247 0.7700 0.7410 
 1986 1986-04-18 1986-06-05  

OA 85.37% 77.56% 78.93%  
Kappa 0.8328 0.7435 0.7592  

Table 9 indicates that the inclusion of multi-temporal remote sensing data can increase the 

classification accuracy significantly for all the four years involved. An average OA increase of 

17.44%, 30.77%, 16.84% and 9.11% was observed for the years 2015, 2005, 1995 and 1986, 

respectively, which verified that there was an accuracy gap between multi-temporal and single-date 

classification in all the four time steps. This is in accordance with several previous studies [30–33] and 

it is mainly due to the fact that the incorporation of multi-temporal Earth Observation data can take 

into consideration the phenological information [30], which accounts for the increase of between-class 

separability. For instance, the addition of the spring imagery can help differentiate between the winter 

wheat and other vegetation, since winter wheat was at its growth peak while other plants just begin to 

turn green [29]. In addition, the summer and autumn imagery can better separate the bare soil from 

those vegetated areas. 

4.5. Comparison with Other Machine Learning Classifiers 

In order to further justify the performance of random forest classifier, it should be compared to 

other machine learning methods such as support vector machine (SVM) and decision tree (DT) 

algorithm. Additional comparison experiments were done based on both SVM and DT to classify the 

multi-temporal remote sensing data of the years 2015, 2005, 1995 and 1986. The same training and 

validating data were used during all the classifications of RF, SVM and DT to ensure comparability. 

Specifically, radius basis function (RBF) was utilized as the kernel function of SVM and the DT 

involved was the classification and regression tree (CART) algorithm. Both the SVM and DT 

classifications were carried out using the Supervised Classification tool of ENVI 5.1. The accuracy 

comparison results are listed in Table 10. 
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Table 10. Accuracy comparison of RF to SVM and DT. 

 
RF SVM DT 

OA Kappa OA Kappa OA Kappa 

2015 91.26% 0.9000 85.68% 0.8363 82.90% 0.8045 
2005 90.34% 0.8895 88.87% 0.8727 85.67% 0.8362 
1995 90.80% 0.8948 86.15% 0.8417 84.21% 0.8195 
1986 85.37% 0.8328 82.93% 0.8049 82.65% 0.8017 

Notes: RF, random forest; SVM, support vector machine; DT, decision tree. 

Table 10 indicates that the random forest classifier outperforms both SVM and DT. Specifically, the 

OA of RF is slightly higher than that of SVM with an increase of 1.47% to 5.58%. One possible reason 

is that RF is more robust than SVM in handling high dimensional datasets with some redundancies. 

The datasets used in this study have a large number of input features due to the layer stacking of  

multi-temporal images (i.e., 57 input bands for 2015, 54 for 2005 and 1995, and 36 for 1986), and 

undeniably, some of the input features have some redundancies. However, RF is based on the boosting 

strategy, which is more robust than SVM in dealing with the collinearity of the training data. 

Meanwhile, the OA of RF surpasses that of DT by an increase of 2.72% to 8.36%. This is 

predictable mainly because RF is the ensemble of CART classifiers and the boosting strategy can 

improve the accuracy of RF when compared to a single decision tree. In addition, over-fitting of the 

training data is less an issue for RF than that of DT, which also makes the former outperform the latter. 

4.6. Driving Forces and Implications 

The research of the driving forces behind the LUCC [21,22] has been recognized as very important 

for interpreting the reasons and rationales and providing policy-relevant information. In general, the 

driving forces mainly consist of two interrelated parts, i.e., natural and anthropogenic factors [21,22]. 

At the regional scale, anthropogenic factors are considered to be more important in characterizing the 

reasons behind the LULC changes [22]. In this section, we analyzed the driving forces of the cropland 

changes to provide decision support for the sustainability of the Yellow River Delta. 

The development of oil related industries has resulted in the extension of built up areas [5,21,22,34]. 

It is observed that built up areas increased from 52.1 km2 in 1986 to 221.3 km2 in 2015 with a growth 

rate of 5.83 km2/year. Meanwhile, the area of cropland converted into built up areas was 17.4 km2, 

19.2 km2 and 29.9 km2 for the three study periods, which verifies that the urban sprawl is one of the 

driving forces behind the losses of croplands. Moreover, the fact that large croplands being occupied 

by the oil fields, chemistry factories and residential areas would induce the reclamation of grassland 

and bare soil to maintain the stable food production and food security. However, the oil related 

industries have caused several environmental problems, including the oil leakage, the point pollution 

due to poor or non-treated sewage, to name a few, which could impair the soil fertility of the 

croplands. In order to protect the Yellow River Delta’s fragile environment from further destruction, 

strict measures should be taken by the local government. For instance, relative laws and regulations of 

wetland management should be improved and perfected [22]. Regular monitoring of oil leakage and 

industrial sewage should be done to protect the aquatic ecosystem. In addition, the irrational economic 

activities (e.g., establishing oil well in the nature reserves) should be stopped. 
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The development of both agriculture technology and food marketing in China [34] has spurred the 

local people and several companies to reclaim large amounts of uncultivated land into farmland to 

increase their profit. It is observed that grassland and bare soil are the two major contributors to the 

increase of cropland in the Yellow River Delta during the past three decades. However, the cropland 

mutual conversion analysis also revealed that there existed the phenomenon of abandoned cultivation 

due to the decline of soil fertility and soil salinization. The frequent transformation between cropland, 

grassland and bare soil is the major pattern of LULC changes in the Yellow River Delta. To maintain the 

sustainable development of croplands, future concerns should be laid on the improvement of cropland’s 

soil quality instead of reclaiming the uncultivated lands to help protect the fragile local ecosystem. 

In addition, the fact that the Yellow River is the main contributor to the fresh water of the delta [5,34] 

means that the reclamation of cultivated lands will decrease the flux of the Yellow River, which in turn 

will affect the natural evolution of the entire delta’s ecosystem. The usage of chemical fertilizer and 

pesticides can also lead to the degradation of soil fertility and non-point pollution to the water resource. 

Due to the fact that the value of wetlands has been recognized recently in China, two nature 

reserves have been established according to the Ramsar Convention on Wetlands [26,27]. Farming is 

prohibited in those reserves for ecological restoration. Meanwhile, wetland tourism has been more and 

more popular in recent years, which can compensate the economic loss due to the prohibition of 

agricultural activities and can improve the sustainability of the entire Yellow River Delta. 

Above all, a sustainable perspective should be taken into account seriously for the coordinated 

development of agriculture, industry and tourism. The improvement of soil quality is important to 

avoid the phenomenon of abandoned cultivation and the reclamation of grassland and bare soil. The 

usage of agriculture chemicals should also be controlled to mitigate the degeneration of croplands. In 

the meantime, pollution from the oil related industry should be eradicated.  

5. Conclusions 

This paper is aimed at monitoring the cropland dynamics of the Yellow River Delta using  

multi-temporal Landsat data for the last three decades. Results indicated that the proposed methodology 

showed good performance in producing the LULC maps of the Yellow River Delta. The inclusion of 

multi-temporal data has improved the classification accuracy significantly with an overall accuracy 

increase of 18.54% and a Kappa increase of 0.1572. The adoption of the random forest classifier has 

yielded good performance with an average accuracy of 89.44% and an average Kappa of 0.8793. 

Spatial-temporal analysis demonstrated that the Yellow River Delta experienced severe cropland 

changes during the past three decades. The cropland area increased from 467.6 km2 in 1986 to 718.5 km2 

in 2015 with an average growth rate of 8.65 km2/year. In addition, the period of 1995 to 2005 

witnessed the highest rate of cropland increase (22.38 km2/year) while the period of 1986 to 1995 and 

2005 to 2015 experienced rather little change. Due to technical progress and business stimulus, large 

amount of grassland and bare soil have been reclaimed as cultivated land, resulting in the steady 

increase of cropland area. Meanwhile, the losses of cropland were mainly from abandoned cultivation 

due to the decline of soil fertility. As well, the urban sprawl caused by the fast development of oil 

related industry has also occupied certain amount of cropland. Based on these facts, we suggest that 

decision makers should adopt a sustainable perspective in the future to keep the balance between food 
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security, industrial development and ecosystem protection. Relative laws and regulations for wetland 

management should be improved and the monitoring of oil leakage and industrial sewage should be 

done regularly. All the irrational economic activities should be ceased at the same time. 

Above all, this paper discussed the cropland dynamics of the Yellow River Delta based on Earth 

Observation data and provided some policy-relevant information for decision makers. Future studies 

should focus on the dynamics of the overall LUCC of the Yellow River Delta and research into the 

quantitative relationship between the landscape changing patterns and the socio-economic indicators to 

achieve a further understanding for the sustainability of the Yellow River Delta. 
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