
Sustainability 2011, 3, 396-409; doi:10.3390/su3020396 

 

sustainability 
ISSN 2071-1050 

www.mdpi.com/journal/sustainability 

Article 

Optimization of a Groundwater Monitoring Network for a 

Sustainable Development of the Maheshwaram Catchment, 

India 

Aadil Nabi 
1
, Adrian H. Gallardo 

2,
* and Shakeel Ahmed 

1
  

1
 National Geophysical Research Institute, Indo-French Centre for Groundwater Research,  

Uppal Road, 500-007, Hyderabad, India; E-Mails: aadilbhat@gmail.com (A.N.); 

shakeelifcgr@gmail.com (S.A.) 
2 

AHS (Australia Hydrogeology Solutions), 2/106 Shepperton Rd, Burswood 6100, Western 

Australia, Australia 

* Author to whom correspondence should be addressed: E-Mail: adgallardo@yahoo.co.jp;  

Tel.: +61-8-6161-0086; Fax: +61-8-6161-0086. 

Received: 1 November 2010; in revised form: 20 January 2011 / Accepted: 28 January 2011 / 

Published: 15 February 2011 

 

Abstract: Groundwater is one of the most valuable resources for drinking water and 

irrigation in the Maheshwaram Catchment, Central India, where most of the local 

population depends on it for agricultural activities. An increasing demand for irrigation and 

the growing concern about potential water contamination makes imperative the 

implementation of a systematic groundwater-quality monitoring program in the region. 

Nonetheless, limited funding and resources emphasize the need to achieve a representative 

but cost-effective sampling strategy. In this context, field observations were combined with 

a geostatistical analysis to define an optimized monitoring network able to provide 

sufficient and non-redundant information on key hydrochemical parameters. A factor 

analysis was used to evaluate the interrelationship among variables, and permitted to 

reduce the original dataset into a new configuration of monitoring points still able to 

capture the spatial variability in the groundwater quality of the basin. The approach is 

useful to maximize data collection and contributes to better manage the allocation of 

resources under budget constrains.  
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1. Introduction  

Industrial production and agriculture are major threats to water resources in the semi arid regions of 

India. In recent years groundwater provided water to irrigate approximately 27 million hectares  

(60% of the country’s irrigated land) against 21 million hectares supplied by surface water [1]. 

Between 1970 and 1994, the extent of groundwater-irrigated land in India increased by 105%, whilst 

land irrigated by surface waters showed an increase of only 28% [2]. At many localities, groundwater 

constitutes the only supply for drinking purposes. The dramatic increase in groundwater usage clearly 

shows that competition for water is on the rise. Furthermore, climate change and population growth in 

years to come are expected to place additional pressure on the groundwater system. Planning and an 

adequate management of the resources are crucial not only to meet the demand, but also to protect the 

water quality of stressed regions.  

The first step of any sustainable management is to understand the underlying physical processes and 

to derive the corresponding mathematical formulations [3]. In the Maheshwaram Catchment, there is a 

large number of irrigation bores useful for monitoring purposes. However, constrains on budget, 

equipment, and human resources mean that only on a limited number of these bores can be used for 

investigation. Selecting the location of the points to be monitored involves practical and technical 

considerations but to a certain extent, the process is subjected to bias and uncertainty. In this regard, 

geostatistical predictions are being increasingly used to address the imperfect knowledge of attributes 

that fluctuate over large areas [4]. The accuracy of the data retrieved and the subsequent predictions 

are especially dependant on a reliable optimization of the monitoring network. The information 

generated by such an optimal monitoring network should provide sufficient and non-redundant 

information to fully understand the spatial phenomena of the monitored variables. Several statistical 

methods can be applied to approach the problem. According to [5], these methods can be classified as 

simulations, variance-based techniques, and probability. Essentially, the difference among them lies in 

the formulation of the objective function to be optimized. The variance reduction method is widely 

accepted as a reliable tool in optimization problems [2]. In addition, it usually requires less iterations 

to obtain the same accuracy on the estimates. The technique utilizes a unique property of geostatistical 

estimation by which the variance of the estimation error depends only on the structure of the selected 

parameter and not on the measured values at additional points. This enables one to select a new 

observation point and analyze its effect prior to making a measurement [6]. Due to these advantages, 

the variance reduction technique was selected for the present exercise. The uncertainty associated with 

a given monitoring network may be determined by the variance of estimation obtained by kriging 

interpolation. In a certain area, the uncertainty for a distribution of monitoring wells is associated to 

that particular location. Changes in the number or location of wells will be directly reflected in the 

level of accuracy of the estimations. Thus, the variance of the error must be sought to be used as an 

objective function. 

This paper describes the use of geostatistical techniques on groundwater-quality data in the 

Maheshwaram Catchment, India, in order to determine an optimal monitoring network for the area. 

The approach is essentially supported by a principal component analysis (PCA) along with kriging 

interpolation. Findings from the study are useful to reduce the existing dataset whilst retaining the 

relationships originally present. More importantly, the optimized network constitutes a cost-effective 



Sustainability 2011, 3              

 

 

398 

alternative to design future sampling programs, and allows for a better management of the available 

resources under budgetary constrains.  

2. Theoretical Considerations 

The principal component analysis (PCA) is a procedure for finding hypothetical variables which 

account for the majority of the variance in a multi-dimensional dataset [7]. This can be achieved by 

transforming the variables under study into a new set of variables, the principal components (PCs). 

Thus, the goal when using PCA analysis is to determine a few linear combinations of the original 

variables that can be used to summarize the dataset without losing much information [8]. The 

mathematics behind the procedure is explained in most statistic textbooks and will not be presented 

here. However, it is worthy to note that the analysis calculates new variables from the original 

variables in an attempt to detect similarities among the original data. The method allows for the 

identification of homogeneous subgroups that better describe the system behavior [9].  

Quantification of the spatio-temporal variability of a dataset can be achieved by the use of 

variograms. A generalized formula to calculate a variogram from a set of scattered data can be written 

as follows [10]: 
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where Zxi is a multivariate random variable, d and θ correspond to the initially selected lag and 

direction of the variogram, and ∆d and ∆θ are the tolerance on the lag and direction respectively. The 

components d and θ are the actual lag and direction for the corresponding calculated variogram. Nd is 

attributed to the number of pairs for a particular lag and direction. Equation (3) avoids the rounding off 

error of pre-decided lags (only multiples of the initial lag are taken in conventional cases) and the 

direction. If the data is collected on a regular grid, and ∆d is assumed to be zero, Equations (1) and (3) 

will be simplified only for θ.  

On the other hand, kriging is a method for linear optimum unbiased interpolation with a minimum 

mean interpolation error [11]. Kriging is only a technique among many others for interpolation of a 

variable. However, it presents a number of advantages since it considers: (i) the number and spatial 

configuration of observation points; (ii) the position of the data points; (iii) the distance between the 

data points with respect to the area of interest; and (iv) the spatial continuity of the interpolated 

variable [12]. These advantages and its wide application in hydrogeological problems led us to select 

this method for the present study.  
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In short, kriging is a method of weighted averaging of the observed values of a property Z within a 

neighborhood V, from measured values z(xi) of the property at ‘n’ sites, x
i 
= 1,2,3, ..., n. Estimates can 

be made over a block B by:  

z * (B) = 
n

i 1
 )( ii xz  (4)  

where λ
i 
correspond to the weights associated with the sampling points. To ensure that the estimates 

are unbiased the sum of the weights λ
i 
must be 1. Therefore,  

n

i 1
 1i  (5)  

The estimation variance for z (x
0
) is given by:  
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In this case, γ (xi, xj) is the semi-variance between the i
th

 and the j
th

 sampling points; 


  (x
i 
, B) is the 

average semi-variance between the block B and the i
th

 sampling point; and 


  (B,B) is the average 

semi-variance within the block B (i.e., the block variance). The estimation variance is minimized 

consistent with Equation (5) when:  
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A Lagrange multiplier, µ, is introduced to achieve minimization. The weights are found by solving 

these kriging equations, and then they are inserted into Equation (7). The kriging estimation variance is 

estimated from the solution by:  
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The estimation variance for simple kriging equations as described above depends on the configuration 

of the observations in relation to the point or block to be estimated, but not on the observed values 

themselves. This can be exploited in designing sampling schemes for spatially heterogeneous variables, 

as a measure to determine the distance between sampling locations and in the area of optimization of 

monitoring networks.  

3. Study Area 

The Maheshwaram catchment is located approximately 30 km south of Hyderabad, in the Ranga 

Reddy district of Andra Pradesh, India (Figure 1). The area is a typical granitic terrain extending over 

an area of about 60 km
2
.  

The topography is flat to gently undulating, with elevations between 590 and 670 m above mean sea 

level. The climate is classified as semi-arid, with a mean annual precipitation in the order of 750 mm, 

mainly falling during the monsoon season between June and September. There are no perennial 

streams. On a regional scale, groundwater flows from SW to NE. 



Sustainability 2011, 3              

 

 

400 

Figure 1. Location of the study area. 

 

 

Geologically, the area is dominated by Archean granites of medium to coarse grain, commonly 

intruded by quartz and dolerite dykes over several generations. Rocks have undergone a variable 

degree of weathering, usually with a thickness of 15 m to 20 m. An underlying fractured zone extends 

up to 50 m below ground level (mbgl) (Figure 2). Crystalline basement aquifers can be divided in 

several compartments that together constitute the aquifer but which are characterized by distinct 

hydrogeological properties [13,14]. In the area of study, these compartments can be described as:  

(i) the upper zone which consists of weathered and decayed rocks of clayey-sandy composition. Their 

hydraulic conductivity is usually low, but ther water-retention capacity can be significant; (ii) the 

intermediate fissured zone (FZ) characterized by horizontal fractures that diminish in density with 

depth, and an important number of vertical fractures and fissures that act as preferential pathways. This 

zone is characterized by higher values of hydraulic conductivity; (iii) the underlying unaltered rock, 

usually of low permeability and limited storage capacity. 

4. Methods 

A PCA analysis was carried out on groundwater-quality data from 61 bores scattered throughout the 

Maheshwaram catchment (Figure 3). Data collection involved both field and laboratory work. 

Standard parameters such as electrical conductivity (EC), and pH were measured in situ. Samples were 

taken following parameters stabilization. Water was filtered in the field and stored in previously-rinsed 

500 ml bottles for chemical tests. A subset of samples was acidified with HNO3
–
 for cation analyses. 

Anions such as SO4
2–

, Cl
–
, NO3

2–
, F

–
, and PO4

2–
 were analyzed using a Dionex DX-2500 ion 

chromatograph. Cations (Ca
2+

, Mg
2+

, Cu
+
, Fe

2+
, K

+
) were determined by atomic absorption 

spectrometry at the NGRI facilities in Hyderabad. Bicarbonate (HCO3
–
) was estimated by titration, 

whilst TDS and total hardness were measured with manual meters. 
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Figure 2. Schematic cross section of the Maheshwaram Catchment. 

 

Figure 3. Distribution of monitoring wells. 
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5. Results and Discussion  

A correlation matrix was used to apply a PCA analysis of water quality data. Following the 

methodology of [15], components with an eigenvalue less than 1 were eliminated. Thus, only the first 

three components were extracted for the analysis. The initial factors solution was then rotated by the 

variamax rotation technique [16], in order to obtain new variables (i.e., principal components or 

principal axes). As indicated by their cumulative percentage of variance, the three extracted 

components accounted for 62% of the entire dataset variance (Appendix I).  

The first factor explained 37% of the total variance. It was characterized by very high loadings of 

TDS and EC, high loadings of SO4
2–

 and Cl
–
, and somewhat moderate Na

+
 and total hardness. These 

results suggest that the above mentioned ions are the main solutes in groundwater, and are thus, 

responsible for the elevated dissolved solids and conductivity values present in the system. Leakage of 

agricultural products would dominate the input of these chemicals into groundwater.  

In contrast, the combination of factors 2 and 3 contribute to nearly 25% of the total variance.  

Factor 2 is characterized by high pH, alkalinity, and F
-
 loadings, whilst factor 3 is dominated by Ca

2+
, 

Fe
2+

, Mg
2+

, and moderate K
+
 and hardness. It is hypothesized that these elements are derived from 

natural processes rather than anthropogenic activities.  

The three principal components of the PCA (PC1, PC2, PC3) were used to establish three new 

variables (X1, X2, X3), which project the ‘n’ observations onto the first three principal components. 

These new variables constituted the basis for optimizing the monitoring network with a reduced 

number of interrelated variables. The spatial variability of these new variables over the Maheshwaram 

watershed was defined by calculating their experimental and theoretical variograms (Appendix II). 

Before the implementation of any simulation or optimization mathematical model, consistency with 

the original data must be verified [17]. Thus, a cross validation test was carried out to ensure that the 

variogram represents the true variability of the parameter and is able to reproduce the measured values:  

min)()
1

( 2*  ii zz
N

 (10)  

1/])()
1

[( 22*  ii zz
N

 (11)  

where, z is the observed value for the parameter under study, z* is the estimated value of that 

parameter, and σ is the standard deviation of the estimation error.  

The cross validation was performed by masking a specified value from the dataset and then 

estimating it from the remaining values and by the variograms. Results must satisfy Equation (11) 

otherwise, the variogram outcomes cannot be considered plausible. Having established the adequacy of 

the variograms, the kriging procedure was employed to estimate the standard error across the area of 

investigation. The watershed was divided into a uniform grid of 883 cells of 250 m by side and a  

cut-off value of 0.5 was established for the first variable. In contrast, values of 0.7 and 1 were 

considered for the second and third variable respectively. Points were individually removed to see their 

effect on the error function. Points that resulted into an increase of the estimation error if removed 

were kept in the monitoring network. In contrast, boreholes that did not affect the error value were 

permanently eliminated. This procedure was repeated for each one of the three variables, to finally 
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derive an optimized monitoring network through combination of points. A spatial distribution of 

redundant wells is depicted in Figure 4. The original dataset and the optimized monitoring network 

produced similar solutions, which lead to the conclusion that a reduction in the number of observation 

points does not compromise the quality and resolution of the collected samples if the network 

distribution is properly designed (Table 1).  

As a last validation, the final monitoring network was examined against each one of the 15 initial 

variables. The verification procedure does not aim to prove the correctness of the model but to ensure 

the absence of systematic errors [11,18]. This was carried out by making variographic analysis of all 

the initial parameters. Cross validation tests were performed and then followed by the ordinary kriging 

estimation of each variable using original observation points and optimized monitoring points. 

Estimations were carried out on 250 m grids for both the original and final monitoring network. 

Subsequently, the mean standard deviation of the estimation error was calculated. Results of the 

analysis confirm the redundancy of 13 points for each of the individual initial parameters (Table 2).  

Figure 4. Optimized monitoring network. 
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Table 1. Optimal solution for the monitoring network at the Maheshwaram Catchment. 

 Factor 1  Factor 2  Factor 3  

Monitoring Wells* HP 1, HP 2, HP 3, M1, 

M4, M9, M21, M22, 

M23, M24, M34, M40, 

M52, M55, M56, M58  

HP 1, HP2, HP 3, M1, 

M9, M21, M22, M24, 

M34, M40, M52, M55, 

M58  

HP 1, HP 2, HP 3, M1, 

M5, M6, M7, M9, M21, 

M22, M23, M24, M28, 

M34, M40, M52, M55, 

M58  

MSD of Kriging estimation error 

(initial monitoring network)  

1.15  0.91  1.08  

Sum of squared difference (initial 

monitoring network)  

13.6  0.25  1.76  

MSD of Kriging estimation error 

(after optimization)  

1.16  0.91  1.08  

Sum of squared difference (after 

optimization)  

13.8  0.25  1.8  

*Redundant monitoring wells in bold italics; MSD: mean standard deviation. 

Table 2. Statistics comparison for the original and optimized monitoring networks. 

 Original monitoring network Optimized monitoring network 

Parameter  Mean standard 

deviation of kriging 

estimation error 

Sum of squared 

difference 

Mean standard 

deviation of kriging 

estimation error 

Sum of 

squared 

difference 

Calcium 0.7 48 0.7 48 

pH  0.1 3 0.1 3 

EC  2 0 2 0 

Sulfate  27 13 27 13 

Alkalinity  99 542 99 541 

Chlorine 57 734 57 730 

Nitrate 0 0.2 0 0.2 

Carbonate 89 203 89 201 

Fluorine 0.8 21 0.8 22 

Magnesium 19 259 19 263 

Copper  0.7 86 0.7 88 

Iron 3 1.5 3 1.5 

Phosphate 2 34 2 35 

TDS 76 108 76 107 

Hardness  14 86 13.5 88 

6. Summary and Conclusions  

Identification of aquifer parameters by direct observations is a challenging task. The distribution of 

measurement points depends on a number of factors such as aquifer characteristics, terrain conditions, 
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and availability of resources. Heterogeneous conditions usually require a dense monitoring network, 

which in most cases is not economically feasible. As a consequence, complex groundwater systems 

must be analyzed from only a handful of observations. It is clear that the accuracy of the inferences 

made is strongly linked to the arrangement of the observation points. A correct well distribution needs 

to capture a representative set of aquifer properties that can be extrapolated to unsampled locations. 

Experience and technical knowledge play a major role in the process, but to a certain extent, selecting 

the wells location is inherently subjective. Therefore, the last years have witnessed an increase in the 

use of geostatistical techniques to quantitatively evaluate and optimize observation networks. In this 

context, a PCA analysis was applied to water-quality data of the Maheshwaram catchment, India, to 

optimize the groundwater monitoring network in the region. Kriging interpolation provided an insight 

into the uncertainty of the distribution. Results indicated that 13 out of a total of 61 bores are 

redundant and therefore, should be disregarded in future sampling rounds. A comparison between the 

interpolation error of the original dataset and the optimized distribution showed a negligible difference. 

This indicates that a reduction in the number of monitoring wells will not incur in a considerable loss 

of detail for data collected in the future. In view of this, it is concluded that an efficient sampling 

network should not be defined solely on intuition or qualitative assessments as they can be misleading. 

Through a simple exercise, the present study demonstrated that an adequate configuration of 

observation points is still able to accurately capture the spatial variability of groundwater 

characteristics, while maximizing the use of the allocated resources. The continuous development of 

more user-friendly software and the reduction in computational efforts suggest that the use of 

geostatistical tools will increase in the future, allowing hydrogeologists to better reach an appropriate 

trade-off between density of data and the investment demanded to collect it.  
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Appendix 

Appendix I. Factor scores and variance for the analyzed wells. 

Well 

ID.  

Well 

Name 

X (m) Y (m)  PCA 1 

(Factor 

score)  

PCA 2  

(Factor 

score) 

PCA 3  

(Factor 

score)  

1  HP 1  226,921  1,896,226  1.0 0.2 0.3 

2  HP 2  227,388  1,896,187  5.1 –0.4 0.8 

3  HP 3  229,864  1,895,542  5.7 –0.4 1.4 

4  M1  226,911  1,896,852  3.1 –0.8 1.4 

5  M2  226,765  1,897,468  2.2 –0.1 –1.4 

6  M3  225,827  1,894,760  –1.6 –2.0 –0.9 

7  M4  225,460  1,893,324  –2.8 –1.1 –1.1 

8  M5  226,105  1,894,492  –1.8 –0.9 –0.8 
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Appendix I. Cont. 

Well 

ID.  

Well 

Name 

X (m) Y (m) PCA 1 

(Factor 

score) 

PCA 2 

(Factor 

score) 

PCA 3 

(Factor 

score) 

9 M6 226,874 1,895,733 –1.1 –2.3 0.9 

10 M7 227,251 1,895,390 –2.7 –1.3 –0.9 

11 M8 226,660 1,893,964 –0.5 –0.5 –1.0 

12 M9 226,496 1,892,123 –2.3 –1.7 –0.2 

13 M10 227,047 1,892,984 –0.3 –1.9 0.0 

14 M11 230,314 1,896,576 –1.0 –0.8 –0.4 

15 M12 230,160 1,897,614 –2.4 –1.1 –1.3 

16 M13 230,630 1,898,639 1.3 –1.0 1.2 

17 M14 231,303 1,898,873 –1.6 –0.3 –0.6 

18 M15 230,515 1,901,515 1.7 –1.0 1.0 

19 M16 230,414 1,900,510 1.4 –1.8 1.8 

20 M17 230,508 1,900,238 2.7 –2.0 0.4 

21 M18 229,139 1,900,865 5.2 –0.6 0.2 

22 M19 228,642 1,900,175 –0.4 –0.1 –1.4 

23 M20 229,501 1,899,740 6.2 –0.4 –1.1 

24 M21 228,834 1,897,029 –1.7 –0.1 –0.3 

25 

26 

M22 

M23 

229,046 

229,414 

1,897,172 

1,897,746 

–0.5 

–0.4 

–1.4 

0.8 

–0.4 

–1.0 

27 M24 229,746 1,897,708 –0.7 1.3 –0.6 

28 M25 228,326 1,896,654 –2.1 –0.5 –0.1 

29 M26 228,236 1,895,845 –1.3 –0.7 0.7 

30 M27 227,911 1,894,728 –2.0 1.1 –1.2 

31 M28 228,047 1,895,147 –2.0 –0.3 –0.4 

32 M29 229,555 1,895,656 1.9 –1.3 1.9 

33 M30 229,091 1,894,708 –2.1 –1.6 –1.2 

34 M31 230,273 1,895,759 –0.9 0.4 0.0 

35 M32 230,312 1,894,948 0.1 –0.1 0.3 

36 M33 231,081 1,895,465 –2.1 –0.5 –0.4 

37 M34 231,468 1,895,357 –1.9 –0.3 –0.8 

38 M35 229,173 1,898,469 1.8 3.4 –1.3 

39 M36 228,017 1,897,499 –0.5 0.9 0.9 

40 M37 227,399 1,896,792 3.0 0.4 1.7 

41 M38 225,187 1,897,739 0.4 1.9 –1.2 

42 M39 224,162 1,898,042 –1.5 –0.7 –1.0 

43 M40 223,825 1,897,850 –0.8 3.8 –1.5 

44 M41 227,234 1,893,877 –2.1 0.0 –0.6 

45 M42 223,735 1,894,985 –2.1 –0.5 –0.8 

46 M43 225,032 1,896,169 0.2 3.6 –0.1 

47 M44 224,970 1,895,521 0.1 1.0 –0.4 

48 M45 226,030 1,895,921 –0.7 0.4 0.0 

49 M46 228,238 1,898,651 –1.0 –1.1 –1.4 

50 M47 227,314 1,898,104 0.9 –0.2 –1.1 
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Appendix I. Cont. 

Well 

ID.  

Well 

Name 

X (m) Y (m) PCA 1 

(Factor 

score) 

PCA 2 

(Factor 

score) 

PCA 3 

(Factor 

score) 

51 M48 227,419 1,898,970 0.5 1.2 –1.7 

52 M49 227,268 1,899,912 –0.3 –0.2 –0.7 

53 M50 226,648 1,899,907 –0.4 1.6 0.0 

54 M51 226,343 1,898,521 4.8 1.7 0.3 

55 M52 225,309 1,898,269 0.2 0.3 –0.1 

56 M53 224,835 1,898,616 –1.2 –0.2 0.2 

57 M54 224,595 1,896,473 –0.3 4.0 –1.0 

58 M55 225,215 1,898,604 –0.3 1.3 0.1 

59 M56 228,698 1,893,874 –1.2 0.4 –0.6 

60 M57 231,438 1,896,956 –0.9 2.4 0.2 

61 M58 231,593 1,897,979 0.13 0.05 –0.38 

Percentage of variance 37.4 15.5 9.5 

Appendix II. Variographic analysis of the factor scores. 

 

Variogram of factor score PCA1. 

 

Variogram of factor score PCA2. 
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Appendix II. Cont. 

 

Variogram of factor score PCA3. 
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