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Abstract: Soil quality is vital for ecosystem stability, impacting human, plant, and animal health.
Traditional soil quality assessments are labor-intensive and costly, making them unsuitable for smart
agriculture. To overcome this, Internet of Things (IoT) and artificial intelligence (AI) technologies
are employed for sustainable agriculture, enabling real-time data collection and analysis, trend
identification, and soil health optimization. The Western Greece Soil Information System (WESIS)
offers open-access data and services for soil health and sustainability. It includes modules for soil
quality indicators, sustainable fertilization management zones, soil property distribution, prediction,
mapping, statistical analysis, water management, land use maps, digital soil mapping, and crop
health calculation. Integrating the IoT and AI allows for real-time and remote monitoring of soil
conditions, managing soil interventions adaptively and in a data-driven way, enhancing soil resources’
efficiency and sustainability, and increasing crop yield and quality. AI algorithms assist farmers and
regional stakeholders in optimizing production lines, methodologies, and field practices, reducing
costs and increasing profitability. This promotes a circular economy, a soil- and climate-resilient future,
biodiversity protection targets, and enhanced soil fertility and productivity. The proposed IoT/AI
technical architecture can underpin the development of soil health monitoring platforms, integrating
data from various sources, automating data collection, and providing decision support tools.

Keywords: soil health; soil quality indices; artificial intelligence; soil information system; soil
database; IoT

1. Introduction

A sensitive interface between the atmosphere, biosphere, hydrosphere, and lithosphere
is the soil [1,2], which is recognized as highly critical to human, plant, and animal health.
Soil’s functions for food production and ecosystem services are crucial for the survival of
humanity. Soil health is “the capacity of soils to deliver multiple functional traits required
to maintain ecosystem stability” [3]. The concept of “one health” has been expanded to
include the connection between humans, animals, and ecosystems due to the globalization
of health concerns [4]. Integrating soil within the growing “one health” idea redefines
soil’s significance.

The capacity of living soil to support plant and animal productivity, maintain or
improve water and air quality, and foster plant and animal health within the confines of
a natural or managed ecosystem is known as soil health [5]. The health of the soil as a
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“living thing” is related to human health, and both must be in a condition of well-being
with respect to their physical, chemical, and biological features [6]. Soil quality and security
are two linked ideas that emphasize the role or function of soil in society, ecosystems, and
agriculture [7]. Soil quality is “soil’s ability to sustain biological productivity, maintain envi-
ronmental quality, and promote plant and animal health within ecosystem boundaries” [8].
Soil health and soil quality are often comparable [9]. Soil health is a more practical phrase
for the research and farming communities in terms of today’s comprehensive management
of soils and their assessment. This work presents the concept of soil health because it
directly covers interactions between plant inputs and soil in establishing a healthy envi-
ronment. According to Mankotia et al. [10], the most crucial traits of healthy soils are
a slight slope, adequate depth, sufficient nutrient supply, the biodiversity of organisms,
absence of weeds, resistance to degradation, high water capacity, and drainage of excess
water amounts. There should be some overlap among these traits in healthy soils, as many
represent qualities in soils’ physical, chemical, and biological domains.

Due to inadequate management, soils are under more stress than they can handle,
leading to soil degradation. For soils to no longer be able to supply ecosystem services, soil
degradation must result in a decrease or cessation of soil functions [11]. Soil degradation
needs to be combatted and rehabilitated if the Sustainable Development Goals of the
United Nations are to be achieved. The European Commission (EC) has set many goals in
its Zero Pollution Action Plan, Biodiversity Strategy 2030, Farm to Fork Strategy, European
Climate Law, Soil and Food Health Missions, and Biodiversity Strategy. All of the policies
mentioned earlier and action plans specifically address soil, which is indirectly crucial for
reaching climate neutrality in 2050. During the era of digital disruption, Agriculture 4.0
provides accurate and practical data on natural resources, particularly soil health, which is
essential. The European Commission has recognized that soil resources in many parts of
the world are being overexploited, degraded, and irreversibly lost.

However, for all these initiatives to succeed and for soil degradation mitigation strate-
gies to be implemented correctly and effectively, it is crucial to recognize, evaluate, and
adopt the right soil quality indicators. Currently, such indicators, where used, differ sig-
nificantly in type (physical, chemical, or biological), intensity, sensitivity, and frequency
of collection.

Today, soil quality assessment is generally based on laboratory evaluation, which is
costly, time-consuming, and unsuitable for smart agriculture [12,13]. Moreover, recording
these indicators is not sufficiently standardized or harmonized to be collected in a central-
ized manner. This will allow in-depth and region-wide analyses and proposals of the most
suitable adaptation and mitigation measures.

Numerous metrics are used in soil health monitoring to quantify ecosystem services
and soil function. In-depth field sampling and expensive laboratory analysis are typi-
cally required for soil health measurements, and their assessment is normally dependent
on costly and labor-intensive laboratory evaluation [12,14,15]. The laboratory analysis,
however, cannot dynamically track important biophysical features to aid in management
choices. Additionally, the field soil analyses used to identify soil quality indicators (SQIs)
are frequently expensive, labor-intensive, complicated, and require many chemicals [13,16].
In addition, soil health must be tracked regularly and in multiple locations. Every soil has
its properties at different points in time. So, it is necessary to understand these properties
in advance for better decision-making [17]. Due to scalability challenges, multiple causes
of variability, and high costs, it is essential to design a low-cost monitoring system with
master control over the soil indicators. Monitoring, reporting, and verification systems
in agricultural soils are needed to monitor soil health progress. Soil-based methods for
detecting degradation require a lot of labor and time. Remote methods can significantly
reduce the volume of soil surveys. IoT and AI-based technologies are being used for
sustainable agriculture.

Soil health management could undergo a revolution by integrating artificial intel-
ligence (AI) and the Internet of Things (IoT). By enabling real-time data collection and
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analysis through AI, it becomes easier to identify trends and optimize soil health. However,
no studies in the literature currently explore using AI and IoT in designing and monitor-
ing soil health indicators or proposing effective intervention strategies. AI technologies
can quickly process large amounts of data and provide insights into soil health based on
complex algorithms and machine-learning techniques. Traditional methods, while reliable,
can be more time-consuming and may not be able to process as much data as quickly. Both
methods are important for understanding and improving soil health. AI technologies can
complement traditional methods by providing additional insights and making the process
more efficient. Soil health design is a concept that refers to the creation and application of
practices and technologies that aim to improve soil’s quality and productivity, as well as its
resilience to environmental stresses [18]. Soil health design involves the assessment of soil
properties, such as moisture, temperature, pH, nutrients, organic matter, and biodiversity,
and applying appropriate interventions, such as irrigation, fertilization, crop rotation, and
conservation tillage [18].

The Internet of Things (IoT) and artificial intelligence (AI) are two emerging tech-
nologies that can underpin soil health design by providing data collection, analysis, and
decision support. The IoT connects various devices and sensors to a network, enabling
the exchange of information and control [19]. AI mimics human intelligence and learning,
allowing the processing and interpretation of complex data and the generation of insights
and recommendations [20].

By combining the IoT and AI, soil health design can benefit from the following advantages:

1. Real-time and remote monitoring of soil conditions, such as moisture, temperature,
pH, nutrients, organic matter, and biodiversity [18,19].

2. Data-driven and adaptive management of soil interventions, such as irrigation, fertil-
ization, crop rotation, and conservation tillage [20,21].

3. Increased yield and quality of crops, as well as reduced risks of pests, diseases, and
environmental shocks [20,21].

4. Enhanced efficiency and sustainability of soil resources, such as water, energy, fertil-
izer, and land [21].

Therefore, soil health design underpinned by IoT and AI technologies is promising for
achieving smart and sustainable agriculture.

This study designs the technical architecture of the Internet of Things and artificial in-
telligence (IoT/AI) that can underpin the development of soil health monitoring platforms.
This paper reviews the research on soil health to add to the existing body of knowledge. It
is suggested that an IoT/AI architecture is created to set up a sustainable soil platform that
can be used as a remedy.

2. Materials and Methods
2.1. Conduct an Extensive Mapping of Currently Used and Newly Proposed Soil Health Indicators

The suggested approach for aggregating soil trend knowledge fills in the gaps between
different data silos that contain various raw and processed information sources. The goal is
to design an effective system to collect data and extract knowledge through a network of
stakeholders [22], providing an artifact that can be reused by many actors in environmental
stress, soil management, and agroecosystems without losing its accuracy and predictability.
This tool leverages the harmonization of soil health indicators across multiple regional
areas. It facilitates manual and automatic data collection through a platform for sustainable
soil management, accompanied by IoT sensors and powerful analytics tools.

2.2. Deployment of a Smart Sensing and Monitoring System That Effectively Monitors On-Off
Field Practices

This study aims to quantify supply and demand, crop performance, and environmental
information and improve the efficiency of the supply chain of fertilizers, implements, and
other necessary agrochemical inputs in terms of the distribution speed and coverage. This
work involves developing an IoT sensor that measures the most critical soil elements
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(e.g., apparent electrical conductivity) for crops and other crops to be integrated into the
collaborative resource monitoring framework, leveraging existing data sources and services.
The electronics will be designed for the IoT soil sensor for productivity and environmental
conditions [23], and the mechanical parts will be equipped with an anti-vibration housing
with a physical fit specifically for field applications.

2.3. Development of an ICT Platform for Collecting Data from Multiple Sources

The aim is to develop an open-access IT platform that acts as a central point for
the automated collection (e.g., through IoT and AI technologies) and further processing
(harmonization, normalization, etc.) of the relevant data (e.g., soil quality indicators, other
agroecological indicators, etc.). The soil health monitoring platform provides a user-friendly
interface, and the users have access to a secure and searchable data repository, which also
offers proper dynamic visualization (e.g., through graphs, heat maps, temporal evolution,
etc.). The information exchange among stakeholders occurs in real-time, facilitating efficient
monitoring and improved decision support (Figure 1). The platform is developed based on
the end-user and security requirements and is further validated during the relevant work
demonstrations [24].
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Figure 1. Proposed system architecture.

2.4. Demonstration of the Woringk Automated Data Collection Process in the Region-Established
Demo Sites

An automated data-gathering method is demonstrated at work at demo locations de-
veloped in the area. The work shows the adaptability and usefulness of the suggested IT sys-
tem and next-generation data-gathering methodologies using IoT technologies as a region-
common strategy for optimizing soil health indicators at specified demonstration locations.
The objective is to influence the production of various crops (olive trees, superfoods, and
vineyards) while assuring participation among policymakers and essential stakeholders.

2.5. Capacity Building and Advancement of the Proficiency of Farmers through
Evidence-Based Cropping

Enhancing farmers’ ability to manage soil is a fundamental work objective and a
crucial aspect of the agricultural domain. Accurate soil information, advanced AI-driven
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agents, and IoT solutions will provide clear, evidence-based insights for farmers on their
crop status and production level, structuring the extracted knowledge with advanced data
management and representation methodologies. The work also focuses on bridging the
knowledge gaps among various soil-related sectors. In particular, it considers differences
among diverse agricultural environments, cultural limitations, and environmental and soil
health indicators to expand stakeholders’ knowledge capacity further.

2.6. Ensure Comprehensive Communication, Scientific Dissemination, and Brokerage of Knowledge

The aim is to ensure comprehensive communication, scientific dissemination, and
knowledge brokerage to the public through scientific papers and publicly using our means
of communication, such as social media, blogs, websites, etc. This work ensures the foreseen
framework’s efficiency, effectiveness, robustness, and inclusiveness and thoroughly assesses
its associated mechanisms and methodologies by seeking collaborations with projects under
the same regional area. Dedicated activities from all the participating organizations ensure
the maximization of the outreach of the results.

2.7. Development Approach

The development approach includes activities divided among (i) indicator and stake-
holder mapping, (ii) stakeholder engagement, (iii) technology design and integration, and
(iv) pilot demonstrations that dedicated teams of experts must carry out to enable a fast
trickle-down development methodology [25], as shown in Figure 2.
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2.7.1. Mapping of Indicators and Stakeholder Engagement

The demand for current, updatable soil information that can assist in decisions at
various scales is rising, along with the sustainable use of soil resources. To provide soil
data with higher spatial resolution, better mapping accuracy, and quantified uncertainty
estimates, digital soil mapping has become more and more popular.

Satellite remote sensing has an unlimited scope as it is being used for land resource
mapping, soil health mapping, and crop yield estimation. This work capitalizes on the
Living Labs methodology [26] to proceed with the actual mapping of the relevant indica-
tors through (i) a literature review of the existing soil resources and (ii) empirical research
by conducting interviews and focus group discussions with key stakeholders (farmers,
scientists, public bodies, and civil society), as well as through the deployment of online
questionnaires that will be sent to form user-driven ecosystems. A multifaceted stake-
holder engagement strategy is also developed, with knowledge-sharing actions aimed at
contributing to scientific knowledge about soil stress monitoring and soil health indicators,
communication actions, and dissemination actions.
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2.7.2. Pilot Demonstration of High-Tech Indicator Collection

This will be achieved by collecting and processing the platform data from multiple
functional traits, namely, (i) soil chemical properties such as the total organic carbon
(TOC), total nitrogen (TN), pH, apparent electrical conductivity (ECa), exchangeable bases
(K, Na, Ca, Mg), and soluble phosphorus (P), decrement of optimal SOC, exceedance of
critical levels of mineral nitrogen, N limitation based on exceedance of the C/N ratio,
decrement of optimal phosphorus, P limitation based on exceedance of the Zn/P ratio,
critical pH levels, etc.; (ii) soil physical properties such as least limiting water range,
infiltration rate, leaching potential, erosion potential, soil texture, soil depth, topsoil depth,
soil bulk density, total available water, soil moisture at saturation, field capacity, wilting
point; and (iii) soil biological properties and processes, continuously monitoring soil health
and quality to test the viability and validity of such technical implementation. The pilot
demonstration must be focused on small farms. Moreover, in particular pilots, different
actions must be taken, such as (i) collecting and compiling data on soil health based
on multiple functional traits and (ii) carrying out multiple regression analyses via the
platform capable of delivering an accurate picture of soil health; (iii) providing suggestions
about efficient crop and soil management to the farmers aimed at improving soil health;
(iv) implementing the suggestions in the use cases and continuous monitoring of changes
in soil health; (v) continuously monitoring the effects of the implementation on soil health
based on the indicators; (vi) evaluating the results of the monitoring and highlighting any
deficiencies in the indicators’ system; and (vii) applying any necessary changes to the data
collection methods to the indicators’ system.

3. Results
3.1. Work Integration and Technical Approach

The integration starts with installing the central IoT module, aerial yield-monitoring
units, and charging stations. These two elements, plus the permanent soil monitoring
sensors, should be installed in cropping soils, providing constant local and connected data
streams of information on soil health. Using their smartphones, tablets, or web-based
applications, the farmers can keep track of their data and automatically upload it into a
centralized and smart sharing network. Benefits: In the coming months and years, soil
quality improvement has a promising outlook. Such a development will impact agricultural
land longevity and ease devising crop strategies. Furthermore, adopting natural soil and
crop health methods is anticipated to reduce the use of fertilizers, pesticides, and other
chemicals in farming practices.

Enhanced digital soil mapping tools can provide a cost-effective means of geographical
determination [27] to achieve sustainable soil management. This work introduces physical
IoT hardware installations that collect in situ data from soil quality indicators that describe
soil function, provide information from individual farms, and upload it to a connected and
distributed network. This work proposes an open IT platform, under Creative Commons
(CC) licenses, that acts as a centralized collection point for soil information based on the
selected harmonized soil quality indicators. The IT platform allows various stakeholders to
collect and exchange data while the system applies advanced data manipulation algorithms
for data selection, normalization, and harmonization. The platform will provide a blueprint
for a permanent IT infrastructure for farmers, soil experts, entrepreneurs, and policy au-
thorities that will interface with currently employed systems and provide a solution where
such systems still need to be implemented. A permanent connection to EU-wide databases
is sought, especially with the JRC’s Soil Atlas database for the country, for constant updates.
The proposed system obtains data from freely accessible national infrastructures, which it
then integrates and utilizes to garner interest from producer associations and individual
producers (Figure 3). This research seeks the possibility of interfacing the proposed plat-
form with other infrastructures that could contribute to data provision. A vital paradigm
of accessible data download platforms in Greece is Openhi.net https://system.openhi.net/
(accessed on 11 April 2024), which provides geographic information that complies with

https://system.openhi.net/
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the Inspire Directive [28]. The system offers Web Map Services (WMS) and Web Feature
Services (WFS) according to the Open Geospatial Consortium (OGC). It provides pro-
grammatic access to data of the telemetric stations and their associated time series via an
API https://enhydris.readthedocs.io/en/latest/dev/webservice-api.html (accessed on 11
April 2024) [29,30] and free soil data series from numerous telemetric stations in the Epirus
region [31].
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3.2. The IoT System for Data Collection and Analytics

The soil property sensors and aerial yield-monitoring units measure the farming
element properties constantly. All the data extracted from the field are transmitted and
communicated through a central IoT module. Large amounts of data are collected from
various farms, typically spanning 2–5 acres in land area, to create shared repositories, which
may serve as a first step in providing analysis and predictions within a collective intelligence
system. Since soil health seems to be so essential and is becoming better understood in
terms of the success of specific crops and agricultural methods in general [32,33], the work
would integrate not only existing and readily used soil sensors but also a new soil-sensor
technology [34] aimed at measuring increased amounts of soil property data, potentially
including increased numbers of the generally accepted essential [35] factors in soil for plant
growth [36]. Soil moisture is another important factor for crop growth, and modern satellite
technology allows its monitoring on a large scale and at regular intervals, allowing farmers
to manage their water resources better [37]. In the case of aerial drone data for farming
assessment, images covering diverse ranges of visible and NIR spectra should provide the
necessary information to evaluate changes in crop growth, yield [38], and soil quality [39].

https://enhydris.readthedocs.io/en/latest/dev/webservice-api.html
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Table 1 contains some examples from the literature that suggest estimating soil quality
indicators using remote sensing, collected or in situ data, and different data models.

Table 1. Types of models for collecting data to estimate soil quality indicators.

Type of Model Output Reference

GIS model builder Uses geostatistical methods to
map soil quality indicators [40]

Machine learning model Uses remote-sensing data to
estimate soil quality indicators [41]

Long short-term memory (LSTM)
model

Uses in situ data to estimate soil
moisture dynamics [42]

Optimized process-based models
Predicts current and future soil

organic carbon stocks at
high resolution

[43]

Long-term consistent artificial
intelligence model

Uses remote-sensing data to
estimate soil moisture [44]

3.2.1. Current Trends for Soil Databases

Soil Information Systems (SISs) and soil databases are crucial global tools for col-
lecting, analyzing, and sharing soil data for understanding and managing the world’s
soil resources [45]. These systems are essential for addressing international, national, and
field-scale challenges. They provide high-quality soil information and data regarding
comparability and spatial coverage. SISs have revolutionized how we understand and
manage our soils, contributing significantly to sustainable agriculture and environmental
conservation [46]. Some examples are the following [47–53]:

1. The Harmonized World Soil Database (HWSD) is a significant global soil database. It
is a 30-s raster database with over 15,000 different soil mapping units. The HWSD com-
bines regional and national soil information updates worldwide with the information
contained within the 1:5,000,000 scale FAO-UNESCO Soil Map of the World.

2. The ISRIC—World Soil Information, which manages several unique collections world-
wide. It is intensely interested in soil classification and actively supports the World Ref-
erence Base for Soil Resources (WRB). The ISRIC’s central database, WoSIS, contains
soil class and property information from more than 190,000 soil profiles worldwide.

3. The Global Soil Information System (GLOSIS): The GLOSIS is an open-access spatial
data infrastructure that combines soil information collected by national institutions
and other data-holding entities. It provides a decentralized global soil data platform
that is nationally/regionally federated and globally harmonized. This spatial data
infrastructure system combines soil information collected by national institutions and
other data-holding entities. It allows national institutes to compile and share their
soil data and enables end-users to perform comparative studies on transboundary
environmental issues.

4. The Australian Soil Resource Information System (ASRIS): The ASRIS consistently
provides online access to the best publicly available information on soil and land
resources across Australia.

These databases provide invaluable data for researchers, policymakers, and anyone
interested in soil health and sustainability. They offer a comprehensive view of global soil
properties, aiding in everything from agricultural planning to climate change modeling.
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3.2.2. The Western Greece Soil Information System (WESIS) and the Pilot Areas
Data Collection Architecture

The system has multiple inputs, a database architecture where the data are stored,
and various modern ML and AI techniques for data analysis (Figure 4). The model for
gathering soil data is tested using widely used soil indicators in actual environments.
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All the data sources are integrated into a central database. The proposed database
architecture for the data collection consists of a central database that stores all the input
collected data, which is the system’s core. It is a relational database management system
(RDBMS) like PostgreSQL or MySQL or a NoSQL database like MongoDB, depending on
the nature and volume of the data. The central database consists of tables (in RDBMS) or
collections (in NoSQL databases) used to store different data sources:
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1. Soil Analysis Data Table: Stores field and laboratory soil analysis data. Each record
corresponds to a specific soil sample and includes attributes such as location, soil type,
and various soil properties.

2. Soil Monitoring Stations Table: Stores data from soil monitoring stations. Each
record corresponds to a specific station, including the location, sensor readings, and
timestamp attributes.

3. Satellite Data Table: Stores satellite data. Each record corresponds to a specific
satellite reading and includes attributes such as the location, timestamp, and various
spectral data.

4. Soil Mapping Data Table: Stores soil mapping and land use data. Each record
corresponds to a specific location, including the soil type and land use attributes.

5. Agrometeorological Stations Table: Stores data from agrometeorological stations.
Each record corresponds to a specific station, including the location, weather condi-
tions, and timestamp attributes.

6. Open-Access Databases Table: Stores open-source data from open-access databases
or through interconnection with other databases.

7. Reflectance Spectroscopy Data Table: Stores reflectance spectroscopy data. Each
record corresponds to a specific reading, including the location, mineralogical compo-
sition, and timestamp attributes.

8. Proximal Soil Sense Data Table: Stores proximal soil sense data. Each record cor-
responds to a specific sensor reading, including the location, sensor readings, and
timestamp attributes.

ETL (extract, transform, load) processes integrate data from different sources into the
central database. This procedure involves extracting data from the source, transforming it
into a suitable format, and loading it into the central database. The database management
system ensures the data’s integrity, security, and availability—the process of data cleaning,
transformation, and standardization is applied to ensure consistency. It also provides
functionalities for querying the data and performing various types of analyses.

The integrated data are then analyzed using various modern ML and AI techniques
in soil science to derive insights into the soil properties and conditions. These techniques
include regression, classification, clustering, dimensionality reduction, ensemble methods,
neural nets, deep learning, transfer learning, reinforcement learning, natural language
processing, word embedding, and predictive analytics. Table 2 presents some examples of
modern ML and AI techniques in soil science.

Table 2. Modern ML and AI techniques in soil science.

Type of Technique Highlights Reference

Regression PLSR-combined multivariate models were
proposed for accurate SOC estimation. [54]

Classification

Soil recovered from a questioned item with
an unknown history can be compared with
known locations such as crime scenes and

alibi locations.

[55]

Clustering
Soil classes from topsoil properties were

more related to land use than soil
map classifications.

[56]

Dimensionality reduction

Assess the predictive performance of
two-dimensionality reduction statistical
models that are not widespread in the

proximal soil-sensing community.

[57]
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Table 2. Cont.

Type of Technique Highlights Reference

Ensemble methods Explore the possible application of ensemble
machine learning algorithms for soil erosion. [58]

Neural nets

Presents the possibility of using data-mining
tools—artificial neural networks—in the

prediction of hydrometer reading in
grain analysis.

[59]

Deep learning

Developed and evaluated convolutional
neural networks (CNNs), a type of

deep-learning algorithm, as a new way to
predict soil properties from raw soil spectra.

[60]

Transfer learning
A method capable of transferring knowledge

from a continental calibration model to
generate a localized model.

[61]

Reinforcement learning
A prediction model based on the improved
deep Q network proposed for the prediction

of soil heavy metal content.
[62]

Natural language processing Apply natural language processing (NLP) to
geoscientific text data. [63]

Word embedding
Three-dimensional lithological maps were

obtained using word embeddings on
lithological descriptions.

[64]

Predictive analytics

The similarity between the locations in the
individual predictive soil mapping (iPSM) is

calculated based on the environment
covariates corresponding to each location.

[65]

The results of the data analysis are visualized using various graphical tools for straight-
forward interpretation. Reports are generated based on these visualizations. The insights
derived from the data analysis are used to support decision-making in areas such as crop
selection, irrigation management, and fertilizer application. This architecture allows for a
comprehensive understanding of the soil conditions, leading to more effective agricultural
practices and a paradigm of the AIoT (Artificial Intelligence of Things) [66] for sustainable
soil management and applied soil science.

The Western Greece Soil Information System (WESIS) is designed to provide invalu-
able open-access data and services for researchers, policymakers, and anyone interested in
precision farming, smart agriculture, soil health, and sustainability. It offers a comprehen-
sive view of the soil properties in the Western Greece region, aiding in everything from
agricultural planning, land use planning, and soil classification to climate change modeling.
It is fully supported by the Western Greece Soil Laboratory (http://www.edafologiko.gr
(accessed on 11 April 2024)), a regional infrastructure as a service connected with farmers,
farmers’ associations, farmers’ cooperatives, stakeholders in the agrifood sector, and pol-
icymakers under the scientific supervision of the Soil Science Laboratory (SSLab) of the
University of Patras under a funding agreement between the following nonprofit organiza-
tions: (i) Region of Western Greece, (ii) University of Patras and (iii) Municipality of Ilida.
The proposed Western Greece Soil Information System (WESIS) is a comprehensive Soil
Information System (SIS) with several output modules that will provide services to the
stakeholders (end-users). Here is a brief description of its designed output modules:

1. Soil Quality Indicators: This module uses various indicators, including the pH,
organic matter content, and nutrient availability, to evaluate the health and quality
of soil.

http://www.edafologiko.gr
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2. Soil Management Zones for Sustainable Fertilization: This module identifies dif-
ferent zones within a field or region that can be used for targeted and sustainable
fertilization practices.

3. Soil Properties Distribution and Variability: This module maps the distribution of
various soil properties and their variability across a given area.

4. Soil Properties Prediction: This module uses machine-learning algorithms and his-
torical data to predict future soil properties.

5. Soil Properties Mapping, Spatially, and Time Distributed: This module creates
detailed maps of the soil properties over time and space.

6. Soil Properties Statistical and Geostatistical Analysis: This module analyzes the soil
properties to identify trends, correlations, and other significant patterns.

7. Soil Water Management: This module provides information on the soil water-holding
capacity and infiltration rates and guides irrigation management.

8. Land Use and Land Utilization Maps: This module generates maps showing current
land use patterns and potential land utilization.

9. Digital Soil Mapping: This module uses remote sensing and GIS technologies to
create digital maps of soil characteristics.

10. Calculation and Visualization of Crop Health: This module calculates and visu-
alizes crop health across a field or region by integrating soil data with crop health
indicators [67–76].

The system presented here tackles challenges at the global, national, regional, and
field scales. It has been designed to provide high-quality, comparable soil information
and data with extensive spatial coverage. The Western Greece Soil Information System
(WESIS) has revolutionized our understanding and management of soil in the Region
of Western Greece (RWG), making significant contributions to sustainable agriculture
and environmental conservation. The proposed system provides a comprehensive view
of the soil landscape, assisting with sustainable agricultural practices, environmental
conservation efforts, and land management decisions. The Western Greece Soil Information
System (WESIS) involves several techniques that must be implemented and calibrated
correctly. Pilot sites have been selected to test these techniques. These areas are primarily
agricultural land, with olive orchards being the predominant crop (Table 3). The farmers
in these areas use precision agriculture techniques such as precision spraying, precision
irrigation management, precision soil sampling, soil spectroscopic data, and remote-sensing
radiometric data to optimize their yields.

Table 3. Pilot sites for the Western Greece Soil Information System (WESIS).

Pilot Site Latitude
(N)

Longitude
(E)

Elevation
(m)

Topographic
Position Land Cover

PS1 (KRESTENA) 37.578398 21.628043 68 Backslope Permanent crops: olives
PS2 (MONOPATI) 37.791540 21.396800 128 Summit Permanent crops: olives
PS3 (KOURTESI) 2 37.917350 21.427361 170 Summit Grassland
PS4 (KOURTESI) 2 37.936906 21.423722 150 Shoulder Grassland
PS5 (KOURTESI) 2 37.915822 21.376136 119 Shoulder Permanent crops: olives
PS6 (KOURTESI) 2 37.928314 21.360783 110 Shoulder Permanent crops: citrus
PS7 (KOURTESI) 2 37.935028 21.339644 75 Backslope Grassland
PS8 (KOURTESI) 2 37.932861 21.332328 66 Backslope Grassland
PS9 (KOURTESI) 2 37.946287 21.300262 10 Footslope Cropland: Vegetables

PS10 (VRANA) 37.875056 21.164477 108 Summit Permanent crops: olives
PS11 (LARISSOS) 38.062153 21.437840 45 Footslope Permanent crops: vines
PS12 (TEIMES) 1 38.366898 21.477109 −1 Footslope Grassland
PS13 (OLENEIA) 38.496050 21.289844 95 Footslope Permanent crops: olives
PS14 (RIGANI) 38.591585 21.236081 39 Footslope Permanent crops: olives
PS15 (ARTA) 39.123261 20.947266 6 Backslope Grassland

1 Polder area; 2 Soil profile.
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4. Discussion
4.1. Information Architecture

The future work will include an IT platform that gathers and hosts the data, stan-
dardizes and normalizes it, and stores it in a database for future analysis or commercial
exploitation. More pilot cases will demonstrate the automation of the data collection pro-
cess and form the basis for future system modifications. The expected impact is to provide
regional stakeholders with a standard methodology (indicators), an online repository for
data streamlining and storage (an IT platform), and an automated data gathering solution
(demonstrators), leading to a unified and comprehensive solution within the country area.

4.2. Contribution to the JRC or Other Regions

The creation of an indicator-based methodology for data manipulation and harmo-
nization (in terms of geography, location, time, frequency, units, accuracy, etc.) ultimately
provides a high-quality dataset that JRC’s Soil Atlas [77] or other global databases [78] will
utilize for the country region, and it will be used by different private and public databases
that require access to soil-related information.

By precisely measuring the inputs and outputs of the soil, as well as the biological,
chemical, and physical transformation and transport processes, we can close the knowledge
gap and fill in the blanks regarding the state of the soil. Interpretations frequently rely on
highly speculative predictions, and current assessments across the continent are hardly
comparable and require harmonization. The EU Commission and all the EU Member States
have committed to “achieve a land degradation neutral world by 2030” [79]. Three sub-
indicators comprise the “Land Degradation Neutrality” indicator: land productivity, land
cover change, and land carbon stocks (above- and below-soil). As a result, the technique for
estimating the degree of soil deterioration by coupling critical thresholds and existing soil
(functional) conditions represents a significant advancement over previous risk assessment
schemes. The risk assessment methodologies used to define the degree of soil degradation
and its consequences vary significantly among countries. Risk-based limit values are
necessary to assess the soil quality or the effects of pertinent soil risks on the ecosystem,
including human health. Given the stated soil hazards, there is currently no agreement
at the EU level on uniform critical limits. Healthy soils are thought to function to their
full potential.

Evidence-based services focus on optimizing existing production lines, methodologies,
and field practices. Dedicated AI algorithms provide helpful information and assist farmers
in gauging the success of implementing soil resource management activities, significantly
reducing production and operational costs and increasing profitability. AI should improve
the response time for crisis mitigation and soil management by providing access to large
amounts of shared data and weather cohorts, resource pricing, market trends, the supply
chain, and farming-practice variations for soil health, coupled with robust classification
and prediction techniques [80,81]. Farmers and stakeholders can act proactively rather
than react to climate events, market changes, or health crises. Through visual support
within the IoT module, automated services support informed decision-making based on
personalized fields and real-world data on mitigation strategies for high-risk events. Small-
scale farmers adopting appropriate technologies for soil health will further expand the
quality of their products and access new markets, thus significantly upgrading profit rates
and environmental protection.

4.3. Enabling the Assessment Practices

Sustainability in agricultural systems is promoted through a circular economy, soil,
and a climate-resilient future. Sustainable soil management and the ecological restoration
of degraded land are critical if biodiversity protection targets are to be achieved, helping to
create favorable conditions for the maintenance and improvement of the global soil resource
to produce food, fiber, and freshwater, contribute to energy and climate sustainability, and
maintain biodiversity and the overall protection of the ecosystem. Ensuring soil fertility
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and productivity, reducing soil degradation, implementing efficient nutrient management,
and enhancing soil carbon sequestration to offset climate change are critical points for a
potentially positive effect on the agroecosystem. Such a transition is facilitated by allowing
an in-depth understanding and real-time monitoring of existing systems’ capacity to reduce
food inefficiencies.

4.4. Mitigating Soil Degradation

The focus is on how data and information on agroecosystems can be integrated
and regularly updated to provide a clear picture of the production line. By encouraging
improved farm management and using the appropriate amount of inputs at the proper
time and location, digitalization seeks to maximize soil fertility and minimize degradation.
Sustainable intensification (SI), irrigated agriculture management, conservation agriculture,
minimized losses from the soil, and increased biodiversity while establishing a positive soil
carbon budget are vital factors to sustain soil quality for mitigating soil degradation [82].

5. Conclusions

Soil health is crucial for human, plant, and animal health, as it plays a significant role in
providing food production and ecosystem services necessary for the survival of humanity. It
is recognized as a sensitive interface between the atmosphere, biosphere, hydrosphere, and
lithosphere. The concept of “one health”, which focuses on the interaction between humans,
animals, and ecosystems, has expanded to include soil, highlighting its significance. Soil
health encompasses the capacity of living soil to support plant and animal productivity,
maintain water and air quality, and foster overall ecosystem health. Soil degradation,
caused by misuse and poor management, is a growing concern and threatens soil’s ability
to provide ecosystem services. We must combat soil degradation to address environmental
issues and meet the Sustainable Development Goals.

The European Commission has set meaningful goals and strategies to address soil
health and pollution, emphasizing the role of soil in reaching climate neutrality. However,
there is a need for standardized soil stress indicators to implement soil degradation miti-
gation strategies effectively. Current soil quality assessment methods rely on laboratory
evaluations and are costly, time-consuming, and unsuitable for smart agriculture. There
is a demand for low-cost, automated, and real-time soil health monitoring systems that
can provide accurate and practical data on soil conditions. The combination of IoT and AI
technologies has the potential to revolutionize soil health monitoring by enabling real-time
data collection, analysis, and decision support. The IoT can provide remote and continuous
monitoring of soil conditions, while AI can process complex data and generate insights for
optimal soil management. Soil health design, supported by IoT and AI technologies, aims
to improve soil quality, productivity, and resilience to environmental stresses. It involves
assessing soil properties and implementing appropriate interventions for sustainable agri-
culture. The proposed IoT/AI technical architecture can underpin the development of
soil health monitoring platforms, integrating data from various sources, automating data
collection, and providing decision support tools. This architecture can contribute to the
advancement of sustainable soil management practices. The methodology for implement-
ing the IoT/AI-based soil health monitoring system includes extensive mapping of soil
health indicators, deployment of smart sensing and monitoring systems, development
of an ICT platform for data collection and processing, pilot demonstrations, stakeholder
engagement, capacity building for farmers, and comprehensive communication and dis-
semination of knowledge. Using IoT and AI technologies in soil health monitoring can
enhance agriculture’s efficiency, sustainability, and productivity while reducing risks and
optimizing resource utilization. It offers a promising approach to achieving smart and
sustainable agriculture. Integrating IoT and AI technology can revolutionize agriculture
through sustainable soil management.
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