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Abstract: Increased urbanization and industrialization globally have led to the widespread pollution
of water bodies (e.g., lakes) by heavy metals (HMs) and nutrients. These pollutants accumulate
in water and surface sediments, posing risks to both aquatic organisms and human health. In
November 2022, surface sediment samples from three lakes—Lianhua Lake, Mati Lake, and North
Lake—were collected to assess nutrient (nitrogen and phosphorous) and HM content. Total N (TN),
total P (TP), and HM concentrations were analyzed. The pollution status was evaluated using
comprehensive pollution index (FF) methods and the potential ecological risk index (RI) (Ei

r). The
results were as follows: (1) Variations in nutrient and HM contents were observed among the three
lakes. Lianhua Lake exhibited the highest average TN content (1600 mg/kg), while North Lake had
the highest average TP content (2230 mg/kg). The average concentrations of Cd, Hg, and As in
the surface sediment surpassed the soil background values of Hubei Province, reaching 1.41, 2.74,
and 1.76 times the background values, respectively. Notably, Hg exceeded the standard in Lianhua
Lake by 3.39 times, followed by North Lake (2.52 times) and Mati Lake (2.24 times). (2) The FF
and potential Ei

r revealed that the average RI values for Mati Lake, North Lake, and Lianhua Lake
were 106.88, 126.63, and 162.18, respectively. These indices categorized the ecological risk levels as
moderate, while nutrient salts in the surface water reached a severe pollution level. (3) Correlation
and PCA indicated that Cu, Pb, Cd, and Ni were linked to mineral smelting, aquaculture feed, and
agricultural fertilizers. Hg and nutrient salts originated from atmospheric deposition of surrounding
domestic waste water and traffic exhaust gases. Agricultural activities seemed to contribute to As
concentration in the lakes, while Cr has its main origin in the weathering of the rock matrix.

Keywords: nitrogen; phosphorous; heavy metals; comprehensive pollution index; potential ecological
risk index

1. Introduction

Lake sediments play a crucial role in lake ecosystems, providing essential habitats for
flora and fauna and serving as reservoirs for vital nutrients supporting lake biota. Addi-
tionally, lake sediments act as repositories for pollutants, acting as primary contributors
to endogenous pollution within lakes [1]. Primary pollutants in sediments include heavy
metals (HMs, e.g., Hg and Cd), excess nutrients (such as N and P), and insoluble organic
compounds. HMs, known for their high toxicity, tendency to accumulate, and resistance to
degradation, present unique challenges [2]. Upon entering water bodies, HMs undergo
processes like adsorption, accumulation, and precipitation by suspended solids in the
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water column, becoming enriched in sediments [3]. Changes in water body or sediment
conditions can lead to the re-release of nutrients and HMs, causing secondary pollution [4].
Consequently, the concentration of HMs in sediments serves as a vital indicator for evalu-
ating water body environmental quality. The accelerating processes of urbanization and
industrialization contribute to heightened HM accumulation in sediments due to the dis-
charge of domestic and industrial wastewater into urban water bodies, posing risks to
human health through the food chain [5].

The pollution of water sediments is a global concern, with numerous scholars ana-
lyzing pollution status and water quality changes through sediment studies. In the Tigris
River, Turkey, variations in sediment HM content and pollution levels were assessed to
identify if waste discharged from an upstream Cu mine was the main contributor to water
quality deterioration [6]. The sources of certain HMs in soil and sediment are intricately
linked to urbanization, mineral exploitation, and smelting activities [7]. Studies in the
Nadya mining area in Ukraine revealed a substantial correlation between chemical element
distribution characteristics and anthropogenic loading intensity, categorizing mining as
a hazardous source of environmental pollution. Consequently, mining operations were
found to elevate HM concentrations in surrounding soils [8]. Urbanization’s impact on
environmental pollution was demonstrated through tracking HM levels in the atmosphere
and soil in Croatia. Emissions from urban industrial and transportation sources led to
the detection of toxic elements, including Ni and Pb, in suburban soils in prevalent wind
directions [9].

The distribution of HMs in the sediments of Chao Lake, China, aligns with the traffic
line, attributing the highest pollution contribution to traffic sources. Urbanization has also
been identified as a factor influencing the extent of HM pollution in sediments [10]. Besides
HMs, lakes also face widespread contamination by nutrient salts. Internal pollution in the
sediments of Honghu, China, exhibits severity, with notable spatial and temporal variations
in the release of N and P [11]. In Houguan Lake, China, water body eutrophication
influences the oxidation–reduction potential, exacerbating HM pollution in sediments and
contributing to water pollution [12]. This illustrates the prevalent complex pollution of
sediments by both nutrients and HMs in lakes and other water bodies [13].

Various evaluation methods exist for nutrients in sediments, including assessments of
organic C and organic N and comprehensive pollution index evaluations [14]. Similarly,
diverse evaluation methods are available for HMs, encompassing pollution load, geoac-
cumulation, and potential ecological risk indices (RIs) (Ei

r) [15,16]. Statistical methods,
such as correlation, principal component, and cluster analyses, are primarily employed to
determine the origin of HMs in sediments [17,18].

Yangxin County, situated in southeastern Hubei Province, China, lies in the middle
reaches of the Yangtze River, bordered to the east by the Yangtze River and featuring
numerous shallow-water lakes. The region has witnessed significant mineral resource
developments and metal smelting activities [19]. While prior research by Rong [20] and
Zhao [21] has delved into the sediments of Wanghu Lake in Yangxin County, studies of
the pollution of surface sediments in typical lakes in this area remain limited. This study
investigated nutrient salts and HMs in the surface sediments of three representative lakes
in Yangxin County—Lianhua Lake, Mati Lake, and North Lake. The aim of this study was
to offer a theoretical reference for pollution control and the treatment of lakes in this region,
as well as in the middle and lower reaches of the Yangtze River, by analyzing pollution
distribution characteristics and evaluating ecological risk.

2. Materials and Methods
2.1. Study Area

Situated in the southeast of Hubei Province, in the middle reaches of the Yangtze
River (114◦43′~115◦30′ E, 29◦30′~30◦09′ N), Yangxin County features numerous shallow
lakes (Figure 1). Considering geographical location, nature, type, and importance, Lianhua
Lake, Mati Lake and North Lake were chosen as representative lakes for this study. The
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region experiences a subtropical monsoon climate, characterized by cold winters and hot
summers. with an average annual temperature of 16.8 ◦C. The central urban area has a
population of 204,800.
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Figure 1. Map of the study area. Considering geographical location, nature, type, and importance,
Lianhua Lake, Mati Lake and North Lake were chosen as representative lakes for this study.

Lianhua Lake: Located in the heart of Yangxin County, Lianhua Lake is significantly
impacted by human activities. As the largest urban lake in the county, it has a water
surface area of 3.15 km2, with an average depth of 3.2 m. The lake’s water flows into
the Fu River. Rainwater discharge inlets are predominantly found on the west side, with
sewage discharge inlets and combined sewer overflow outlets on the western side set to be
redirected by 2021.

Mati Lake: Situated in the northwestern suburbs of the old Yangxin County, Mati Lake
covers an approximate water area of 0.7 km2. It can be divided into upper and lower lakes
through connecting channels and sluice gates. Despite its relatively small size, its proximity
to an old urban area has subjected it to prolonged human influence.

North Lake: Found to the southwest of Mati Lake, North Lake spans an area of about
3.4 km2 with an average water depth of 3.85 m. This rural lake, surrounded by a sparse
population, witnessed aquaculture activities until 2017. All three lakes have storage and
irrigation functions, while Lianhua Lake and Mati Lake have also function as landscape
entertainment, while North Lake serves a fish breeding purpose [22].

2.2. Sampling and Analytical Methods

Considering the size and morphological characteristics of the three lakes, a total of
19, 17, and 15 sampling sites were chosen in Lianhua Lake, Mati Lake, and North Lake,
respectively (Figure 1). Sediment samples were collected in November 2020. Surface
sediment samples (0–15 cm in depth) were collected by employing a Peterson grab sampler
and carefully stored in clean polyethylene bags, refrigerated, and transported to the labora-
tory. Subsequently, the samples underwent manual filtration, drying, and grinding for the
determination of nutrient salts and HMs.
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Sediment total N (TN) was analyzed through semi-microanalysis using the Fully
Automatic Autoanalyzer SKD-1000 from Shanghai Puou Instrument Co., Ltd. (Shang-
hai, China) [23]. Total P (TP) was determined by utilizing molybdenum antimony spec-
trophotometry with a UV-Vis spectrophotometer from Shanghai Yuanxi Instrument Co.,
Ltd. (Shanghai, China) [24]. Sediment Hg and As were determined through microwave
digestion/atomic fluorescence spectrometry using an SH-AFS2200 fluorescence spectropho-
tometer from Qingdao Juchuang Huaye Instrument Co., Ltd. (Qingdao, China) [25]. The
HMs Cr, Pb, Cd, Cu, Ni, and Zn were analyzed with aqua regia extraction inductively cou-
pled plasma mass spectrometry using an inductively coupled plasma mass spectrometer
from Jiangsu Tianrui Instrument Co., Ltd. (Kunshan, China) [26]. Parallel samples were
prepared for each sampling site, ensuring an analysis error of less than 5%. The final result
represented the average value of the parallel samples.

2.3. Data Processing and Analysis

Data preprocessing was carried out using Excel 2010 (Microsoft Corp., Redmond,
WA, USA), and Origin 2021 (Origin Labs Inc., Northampton, MA, USA) was employed for
correlation analysis and assessing the significance of the differences. Before the difference
analysis, the normality and homogeneity of variance were tested using the Shapiro–Wilk
and Levene methods, respectively (p > 0.05). Following analysis of variance, multiple
comparisons were conducted using the Scheffé method, with the significance level set at
p < 0.05. Pearson’s correlation analysis and principal component analysis (PCA) were per-
formed to explore the relationship between nutrients and HMs. Both the Bartlett sphericity
test and the Kaiser–Meyer–Olkin measure value were calculated to verify the suitability
of data for PCA. To enhance the interpretability of the principal components, the varimax
normalization algorithm was applied to rotate the components, and rotated data analysis
was selected. These analyses were performed using SPSS 26.0 (IBM, Armonk, NY, USA).
ArcGIS (Environmental Systems Research Institute, Inc., Redlands, CA, USA) was used to
plot sampling points, and the spatial distribution characteristics of sediment nutrient salts
and comprehensive potential Ei

r for HMs were analyzed using inverse distance weighting
interpolation (IDW).

2.4. Environmental Risk Assessment Methods
2.4.1. Nutrient Pollution Evaluation Method

The assessment of nutrient salt pollution in the surface sediments of the lakes in
Yangxin County utilized the single-factor pollution index and comprehensive pollution
index methods [27]. The formulae applied were defined as follows:

Sj = Cj/Cs (1)

FF =

√
F2 + F2

Max
2

(2)

where Sj is the single pollutant pollution index of the jth pollutant, Cj is the measured
content of the jth pollutant, Cs is the environmental quality standard value of the pollutant,
and FF is the comprehensive pollution index of nutrient salts. TN and TP pose the lowest
ecological risks to sediments at 550 and 600 mg/kg, respectively, following the guidelines
issued by the Ministry of Environment and Energy of Ontario, Canada [28]. F represents the
average value of the pollution indices, (average values of STN and STP), and FMax represents
the maximum single-pollutant pollution index (maximum values of STN and STP). The
relationship between the FF value and the pollution evaluation grade is outlined in Table 1.
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Table 1. Classification of comprehensive pollution degree in sediments.

Rank
Division STN STP FF Evaluation Level

I STN < 1.0 STP < 0.5 FF < 1.0 Clean
II 1.0 ≤ STN < 1.5 0.5 ≤ STP < 1.0 1.0 ≤ FF < 1.5 Light pollution
III 1.5 ≤ STN < 2.0 1.0 ≤ STP < 1.5 1.5 ≤ FF < 2.0 Moderate pollution
IV STN ≥ 2.0 STP ≥ 1.5 FF ≥ 2.0 Heavy pollution

2.4.2. HM Pollution Evaluation Method

In 1980, Swedish scholar Hakanson introduced the potential Ei
r method [29] to assess

the potential ecological harm caused by HMs, considering their biological, toxicological, and
sedimentary characteristics. This approach reflects the comprehensive impact of multiple
HM pollutants and the potential influence of sedimentary HMs on the environment [30].

The calculation formula for the single-factor pollution parameter Ci
r was defined as

follows:
Ci

f = Ci
s/Ci

n (3)

The formula for the single-factor potential ecological risk coefficient (E i
r

)
was defined

as follows:
Ei

r = Ti
r × Ci

f (4)

The potential Ei
r was calculated using the following formula:

RI =∑i
r Ei

r (5)

In these formulas, Ci
s is the measured concentration value of HM i in the sediment

(mg/kg). Ci
n is the reference value of HM i in the background sediment (mg/kg). Ti

r is the
ecotoxicity response coefficient of HM i, and RI is the comprehensive Ei

r of n types of HMs
in the sediment, representing the sum of the Ei

r values [31,32]. The background values and
toxicity response coefficients of the soils in Hubei Province are detailed in Table 2 [33].

Table 2. Background values and toxicity response coefficients of soils in Hubei province.

Element Cd Hg As Pb Cr Cu Ni Zn

Toxicity response coefficient 2 30 10 5 30 5 5 1
Soil background value 0.17 0.08 26.7 12.3 86 30.7 37.3 83.6

Hakanson’s classification criteria, originally based on the toxicity coefficients of Poly-
chlorinated Biphenyls (PCB), Hg, Cd, Pb, As, Cr, Cu, and Zn, were adjusted to accommodate
the eight pollutants considered in the present study, ensuring accurate potential ecological
risk evaluation results [34]. The modified classification boundaries are detailed in Table 3.

Table 3. A comparison of Hakanson’s classification standards and the improved classification
standards in this study.

Evaluation
Level

Hakanson’s Classification
Standards

Improved Classification
Standards in This Study

Ei
r RI Ei

r RI

I, Low Ei
r < 40 RI < 150 Ei

r < 30 RI < 100
II, Moderate 40 ≤ Ei

r < 80 150 ≤ RI < 300 30 ≤ Ei
r < 60 100 ≤ RI < 200

III, High 80 ≤ Ei
r < 160 300 ≤ RI < 600 60 ≤ Ei

r < 120 200 ≤ RI < 300
IV, Very high 160 ≤ Ei

r < 320 RI ≥ 600 120 ≤ Ei
r < 240 RI ≥ 300

V, Extreme Ei
r ≥ 320 Ei

r ≥ 240
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3. Results
3.1. Distribution Characteristics of Nutrient Salts in Surface Sediments

The TN content in the sediments of the three lakes ranged from 220 to 3670 mg/kg,
averaging 2270 mg/kg. North Lake had a slightly higher average TN content (2520 mg/kg)
compared to Lianhua Lake (2100 mg/kg) and Mati Lake (2230 mg/kg). Variations in TN
content were observed among samples from each lake, with Mati Lake showing the largest
coefficient of variation (CV) at 32.17%, ranging from 220 to 3120 mg/kg. Lianhua Lake
displayed a TN content ranging from 1210 to 3670 mg/kg, with a CV of 30.41%, and North
Lake exhibited a range from 1820 to 3220 mg/kg, with a CV of 19.66%.

The average TP content decreased as follows: Lianhua Lake (1600 mg/kg) > Mati
Lake (1430 mg/kg) > North Lake (1360 mg/kg). TP contents in different samples from the
lakes ranged from 820 to 1940 mg/kg, averaging 1470 mg/kg. A significant difference in
TP content was noted between Lianhua Lake and North Lake (p < 0.05). Lianhua Lake’s TP
content ranged from 1090 to 1940 mg/kg (CV: 16%), while that of North Lake ranged from
1820 to 3220 mg/kg (CV: 23.58%). No significant differences were observed between Mati
and Lianhua lakes (p < 0.05), with Mati Lake’s TP content ranging from 990 to 1770 mg/kg
(CV: 16.84%). From a spatial distribution perspective (Figure 2), the southeastern part of
Lianhua Lake exhibited lower TN contents, while higher contents of TP were predominant
in the northeast. In Mati Lake, a high TN content was predominant in the northern part,
whereas the TP content was more scattered across the sampling sites. In North Lake, high
contents of both TN and TP were found in the northern and southern parts.
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3.2. Distribution of HMs Characteristics in Surface Sediments

Lianhua Lake exhibited the highest average contents of Hg, As, and Zn in surface
sediments, with the Zn concentration being approximately 1.5 times higher than the one
registered for North Lake (Table 4). North Lake had the highest average Cr concentration,
and the average concentrations of other HM elements were relatively similar in the three
systems.

Table 4. HM contents in surface sediments in Lianhua Lake, Mati Lake and North Lake. Values
correspond to the average concentration ± standard deviation (SD) (mg/kg).

Cd Hg As Pb Cr Cu Ni Zn

Lianhua Lake 0.23 ± 0.19 0.27 ± 0.14 80.53 ± 55.82 8.21 ± 3.81 39.78 ± 11.52 26.41 ± 15.48 30.10 ± 8.49 107.37 ± 178.35
Mati Lake 0.22 ± 0.17 0.18 ± 0.08 20.74 ± 10.77 8.76 ± 3.46 43.88 ± 11.42 29.44 ± 14.17 35.23 ± 8.55 74.24 ± 23.94

North Lake 0.27 ± 0.22 0.20 ± 0.06 34.46 ± 46.58 8.8 ± 4.51 64.6 ± 102.04 30.31 ± 17.88 31.53 ± 9.81 69.06 ± 25.10

Notes: The unit for HM content is mg/kg.

The coefficients of variation for the eight HMs in the three lakes ranged from 24% to
166%. Zn in Lianhua Lake had the highest CV at 166%, followed by Cd with 84%. Mati Lake
also showed a relatively high CV for Cd at 77%. As and Cr in North Lake had coefficients
of variation of 135% and 157%, respectively, indicating significant differences in the spatial
distributions of the various HMs in the three lakes.

Comparing the HM concentrations in the surface sediments of the study area to the
background values of the soil in Hubei Province, the average concentrations of Cd, Hg,
and As were 1.4, 2.7, and 1.8 times higher, respectively. Lianhua Lake exhibited higher Hg
contamination, with an exceedance factor of 3.4. North Lake and Mati Lake also had high
levels of Hg contamination, with exceedance factors of 2.5 and 2.2, respectively. suggesting
that Hg is the most significant HM for the pollution in the surface sediments of the study
area.

3.3. Environmental Quality Evaluation of Surface Sediments
3.3.1. Evaluation of Nutrient (TN and TP) Pollution

In accordance with the environmental quality evaluation criteria for sediments estab-
lished by the Ontario Ministry of the Environment, Canada, the lowest observable effect
levels for TP and TN were set at 600 and 550 mg/kg, respectively. These levels represent
the tolerance concentrations for most benthic organisms [35]. Severe effect levels (SELs)
for TP and TN were established at 2000 and 4800 mg/kg, respectively, indicating higher
nutrient contents that could harm benthic organisms at higher levels. A comparison of
nutrient content in the sediments of Lianhua, Mati, and North lakes with these standards
revealed that all sampling sites exhibited concentrations of TN and TP below the lowest
level of ecological toxicity. Furthermore, these concentrations were lower than those of the
SELs. Consequently, sedimentary nutrient salts in Lianhua, Mati, and North lakes pose
relatively low ecological risks.

The single pollution index of STN in the three lakes predominantly fell into categories
III and IV (Figure 3). The percentage of severe TN pollution in North Lake (73.33%) was
slightly higher than the ones registered in both the Mati Lake (70.29%) and Lianhua Lake
(47.37%). In all three lakes, the TP content in the surface sediments surpassed that of TN.
The single pollution index STP was categorized as IV, indicating 100% severe TP pollution
across all sampling sites.
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Figure 3. Evaluation of the single pollution index of sedimentary nutrient salts. Evaluation of
variations in STP, STN, and FF among lakes. The graphical representation of changes in the proportion
of pollution levels intuitively reflects the overall pollution status of each lake. TN TP pollution
deserves more attention compared to TP TN pollution. Abbreviations: L, Lianhua Lake; M, Mati
Lake; N, North Lake; STN, single pollution index of TN in the sediments of lakes; STP, single pollution
index of TP; FF, comprehensive pollution index of nutrients.

The distribution of FF followed this order: Lianhua Lake (3.41) > Mati Lake (3.17) > North
Lake (3.12). Pollution was most severe in Mati Lake and Lianhua Lake, with all sampling
sites designated as category IV. North Lake exhibited relatively lower pollution compared
to the other systems, with the highest level being category III. The specific pollution indices
of nutrient salts in the sediments of the three lakes are detailed in Table 5.

Table 5. Grading of comprehensive pollution index of nutrient salts in surface sediments.

Degree of Pollution Classification

Lianhua Lake Mati Lake North Lake

STN 2.10 2.34 2.52
STP 3.81 3.41 3.24
FF 3.41 3.17 3.12

Pollution grade
(based on the grades

in Table 1)
Severe pollution Severe pollution Severe pollution

3.3.2. Evaluation of Heavy Metal Pollution in Sediments

Table 6 illustrates that Hg had a relatively high ecological risk in Lianhua Lake, Mati
271 Lake, and North Lake, with ecological contribution rates of 63.3%, 62.9%, and 58.9%,
respectively. The Ei

r value for As in the sediments of Lianhua Lake was 30.16, indicating
a moderate ecological risk. The individual Ei

r values of the HMs in the three lakes were
generally consistent, with the most significant pollution arising from Hg, followed by As.
Other elements in each lakes exhibited low individual Ei

r, emphasizing that Hg and As
are the primary contributors to ecological hazards in the surface sediments in the studied
lakes.
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Table 6. Potential ecological risk parameters of HMs in the sediments of Lianhua Lake, Mati Lake,
and North Lake.

Lake
Ei

r
RI

Cd Hg As Pb Cr Cu Ni Zn

Lianhua Lake 2.51 102.67 30.16 3.34 13.88 4.30 4.04 1.28 162.18
Mati Lake 2.51 67.32 7.77 3.56 15.31 4.79 4.72 0.89 106.87

North Lake 2.97 74.65 12.91 3.58 22.53 4.94 4.23 0.83 126.62

In the North Lake, 100% of the sampling points exhibited medium and high 279 eco-
logical risk levels for Hg, while 6.6% of the sampling sites had a higher ecological risk
level for As. For Mati Lake, 94.1% of the sampling sites demonstrated medium and high
ecological risk levels for Hg, with approximately 52.9% at the higher ecological risk level
and approximately 11.8% at the high ecological risk level. In Lianhua Lake, Hg was present
at 100% of the sampling points at high and above ecological risk levels. Among these,
approximately 68.4% were at the high ecological risk level, approximately 26.3% were at the
higher ecological risk level, and approximately 5.3% were at the extremely high ecological
risk level. The proportions of the single-factor potential ecological risk coefficients of metals
in the sediments of the three lakes are presented in Figure 4.
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The distribution of the RI of HMs in the surface sediments of the Yangxin County lakes
is depicted in Figure 5. The comprehensive RI of the Mati Lake sediments was the lowest at
54.78, whereas that of North Lake sediments was the highest, reaching a maximum value
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of 266.58. Lianhua Lake and North Lake had 5.2% and 6.2% of the sampling points at
higher ecological risk levels, respectively, while the remaining points were categorized as
medium and below. The average RI values for Mati Lake, North Lake, and Lianhua Lake
were 106.88, 126.63, and 162.18, respectively, indicating moderate ecological risk levels.
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3.4. Relation between Nutrient Salts and HM

Pearson’s correlation analysis of the three lakes revealed variations in the correlations
between nutrients and HMs (Figure 6) [36]. In Lianhua Lake, there were highly significant
correlations between Hg, Cd, TN, and TP, suggesting a potential common nutrient source
for Hg and Cd in the sediment. In Mati Lake, the strongest correlation was observed
between Ni and Cr (p < 0.01, r = 0.940), followed by significant correlations between Zn
and Cd and Pb, Cr, Ni, and Cu (Figure 6). The North Lake sediments exhibited the highest
correlations between Cd and Pb (p < 0.01, r = 0.968) and Cu and Zn (p < 0.01, r = 0.969).
Additionally, a relatively strong correlation was observed between Ni and Zn, Cu, Pb, and
Cd. Notably, the correlation between TN and TP was not significant, suggesting distinct
sources for N and P.

The findings indicate the complex relationships between nutrient salts and HMs
in the sediments of the three lakes, highlighting the importance of understanding their
interactions for effective environmental management.

Both the Bartlett sphericity test (0.00 < 0.05) and the Kaiser–Meyer–Olkin measure
value > 0.5 indicated that nutrients and HMs were suitable for PCA.

In Lianhua Lake, the two first axes explained 64.0% of the total variance. Additionally,
there was a significant correlation (p < 0.01) between Cu, Pb, and Cr, indicating similar
spatial patterns. High concentrations of HMs in Lianhua Lake were mainly distributed in
the southern and northwestern parts of the lake. In Mati Lake and North Lake, Zn had a
higher loading in PC1, suggesting a relatively consistent source of HMs in these three lakes,
potentially originating from natural sources or similar anthropogenic activities like mining
and traffic emissions.
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4. Discussion
4.1. Analysis of Nutrient Salt and HM Distribution Characteristics

This study indicated that a portion of the N and P present in the surface sediments in
the Lianhua Lake, Mati Lake and North Lake is potentially derived from external inputs,
while the other portion originates from aquatic organisms [6]. Lianhua Lake had the
highest comprehensive nutrient pollution index, followed by Mati Lake, which may be
related to the locations of the lakes. Lianhua Lake is located in a newly developed urban
area in Yangxin County. In recent years, with the migration of the population and the
development of buildings, point source pollution from production and domestic emissions
has increased. Although wastewater treatment plants have been constructed near urban
areas, the incomplete coverage of wastewater treatment network has resulted in an inability
to intercept all domestic wastewater [22]. Additionally, in the coastal areas of the lakes
in Yangxin County, there are large areas where combined sewer systems are used for
wastewater discharge. There are 15 inlets directly discharged into Lianhua Lake and
11 inlets directly discharged into Mati Lake, all of which inevitably affect water quality.

Mati Lake is located in the old urban area of Yangxin County, where the surrounding
non-point source pollution is severe. In addition to the direct discharge of domestic sewage
into the lake along its shore, there are significant instances of garbage dumping and feedlot
farming that contribute to non-point source pollution. Moreover, the vegetation along the
shore is relatively uniform, leading to a fragile ecosystem where natural restoration from
environmental pollution is challenging to achieve.
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Although North Lake is located on the outskirts of the city, with no large residential
areas nearby and only some farmland distributed around it, there used to be privately
contracted fish farming activities before 2018, involving the use of high-density organic
fertilizers. Research has shown that in aquaculture, fish and other organisms can only
absorb 30% of the P in their feed, whereas the rest remains in the water or sediment in
free or particulate forms [37]. The high TN content in the eastern part of North Lake may
be related to coastal fish farming using fencing. This was similar to the findings of Yang
et al. [38].

Excessive nutrient levels in the water of the lakes are closely associated with aquatic
plants. The periodic decay and decomposition of aquatic plants increase the accumulation
of nutrients in the sediment, leading to endogenous nutrient contribution to the water
body. When aquatic plants die, their remains settle on the bottom of the lake. During the
decomposition process, organic matter breaks down into dissolved nutrients such as N and
P, which are then released into the water [39].

The high TN and TP contents in the northern part of Lianhua Lake were largely due
to the proximity of the lakeside boardwalk to the park. To enhance the scenic beauty of
the lake for tourism purposes, park managers plant aquatic plants, such as lotuses and
water lilies, thereby increasing the richness of the lake’s landscape. Similar observations
have been made in Taihu Lake in China, where the withering of large aquatic plants was
observed to impact the increase in nutrients in the water [40]. Additionally, researchers
have found that the root systems of aquatic plants regulate the secretion of oxygen and other
substances that influence the transport and transformation of P [41]. Therefore, aquatic
plants should be harvested before they wither and decay to reduce the accumulation of
plant residues in sediments.

The sources of HMs in lakes, in general, include background HMs from the watershed
matrix and anthropogenic pollution emissions, with the latter being the primary source [42].
Owing to the inherent characteristics of HMs, which are persistent and difficult to degrade,
they tend to accumulate easily in the aquatic sediments, leading to water, sediment, and
living organism contamination [43]. The accumulation of HMs is related to local economic
development, pollution emissions, and the status of underground resource reserves [44].

The Ei
r results for the HMs in the studied lakes were generally consistent, with the Hg

pollution being the most severe, followed by As. This indicates that the high risk of HMs in
the watershed was mainly related to Hg and As.

Yangxin County is an important area for mineral resource development in China,
and over the past 20 years, there have been a large number of mineral developments and
associated transportation activities. Hg originates mainly from the combustion of petroleum
products and pesticides, accumulating in sediments through atmospheric deposition and
the surface runoff of industrial and transportation waste gases and wastewater [30]. The
areas surrounding Lianhua Lake and Mati Lake, characterized by the busiest traffic routes
in the urban area of Yangxin County, have witnessed long-term emissions of vehicle exhaust
gases settling into lake water through atmospheric deposition [31]. The distribution of roads
was closely related to the distribution of Pb, Cu, and Cr in the sediments of Lianhua Lake,
confirming that Pb originates mainly from vehicle exhaust emissions and metal smelting
emissions, while Cu and Cr are indicative pollutants from fossil fuel combustion [45].

In the northern part of North Lake, pollution mainly originates from agricultural
cultivation and aquaculture. Fertilizers often contain HMs, such as Hg, Cd, As, and Pb [46].
These HMs seep into the lake through surface and underground runoff, causing non-point
source pollution. Some studies have indicated that the migration capabilities of different
HMs are variable. HMs with higher migration capabilities can enter rivers and lakes with
surface water flow, whereas those with lower migration capabilities can transfer only small
amounts of elements to water or sediment [47]. Pollution in North Lake mainly occurs at
the center of the lake, displaying a decreasing trend from the center towards the periphery.
Similar trends were observed in Lianhua and Mati lakes. This may be related to the low
migration capability of As, as it tends to accumulate in the central areas of lakes and
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gradually diminishes towards the outskirts [48,49]. However, the migration of HMs is
closely related to the environmental pH, microbial activity, and redox reactions [13].

Aquaculture activities in North Lake, Lianhua Lake, and Mati Lake are essential
economic sources for the residents [22]. Feed used in aquaculture contains HMs such as
Cd, Cu, and Zn. A large amount of untreated feed is directly released into the water and
sediments, and through absorption and excretion by aquatic organisms, these HMs are
deposited directly or indirectly into the water, leading to their accumulation [47]. Due to
the relatively few inflowing rivers in North Lake and the stable sedimentary environment
within it, HMs tend to accumulate in the central part of the lakes.

4.2. Analysis of Pollution Sources

The correlations obtained via PCA (Figure 7) for the three lakes confirmed that Cu, Pb,
Cd, and Ni undergo similar geochemical processes and multiple elements contribute to the
pollution of the same environment. Except for Cd, the concentrations of the other HMs did
not exceed the background values of the soil HMs in Hubei Province [15].
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Yangxin County has a long history of Cu mining, with remnants of human excavations
of Cu mines dating back to the Warring States period still preserved today. In 2020, a Cu
smelting plant with a capacity of 400,000 t was established in Yangxin County, making
Cu the primary element for mineral development in this area [35]. Studies have shown
that fishmeal fertilizers used in fish feed contain large amounts of Cd elements [50]. Some
researchers believe that Cd is associated with the use of fertilizers in agricultural produc-
tion [49]. Agricultural activities are important sources of Pb, Ni, and Zn [40]. Agricultural
land is still distributed in the northern part of North Lake; therefore, it is believed that the
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primary sources of the first principal component in these three lakes are anthropogenic
activities, such as mining and metallurgical industries; aquaculture feed; and agricultural
fertilizers.

In Lianhua and Mati lakes, Hg and TN displayed high positive loadings on the second
principal component, signifying a significant correlation, suggesting a common pollution
source. The spatial distribution of Hg in the study area exhibited a clear decrease: a north-
to-south concentration decrease in North Lake, higher concentrations in the east compared
to the west in Mati Lake, and higher concentrations in the west than the east in Lianhua
Lake. This pattern aligns precisely with the distribution of inlets from harbors and channels
around the county seat. Research indicates that Hg, commonly found in fossil fuels, is
significantly influenced by non-point source pollution [51], correlating with TN, another
parameter affected by non-point source pollution. Considering the layout of surrounding
industries, transportation routes, and older communities, it can be inferred that Hg and
nutrients in the sediment originate from the atmospheric deposition of wastewater and
traffic exhaust from the surrounding areas as they had relatively high positive loading,
with no significant correlation with other elements (see PCA, Figure 7). Research indicates
that As is primarily found in agricultural run-off and industrial effluents. Cr exhibited a
relatively high positive loading in North Lake, with no significant correlation with other
HMs, differing from Lianhua Lake and Mati Lake. Research also suggests that in the
Pearl River Delta region of China, Cr in the soil primarily originates from the weathering
of parent rock materials [52]; similar results have been obtained in other countries [53].
Therefore, it can be inferred that Cr in North Lake mainly originated from the soil parent
material.

4.3. Comparison of Pollution in Surface Sediments of Different Areas

The sediments of typical lakes in Yangxin County exhibit a relatively high nutrient
salt content. The average TP and TN contents in the sediments of the three typical lakes in
Yangxin County were higher than those in the middle and lower reaches of the Yangtze
River (Table 7), including Dongting Lake, Taihu Lake, Chizhou Lake, Hongze Lake, and
Changtan Reservoir in Zhejiang (Table 8). They also exceeded levels in northern lakes such
as Qinghai Lake and Shandong Swan Lake and the Tianjin Haihe River but were lower
than those in Mulan Lake in Inner Mongolia, Tianmu Lake in Jiangsu, Dianchi Lake in
Yunnan, and Wanghu Lake in the same region.

Table 7. A comparison of nutrient salt contents in surface sediments from different lakes and
reservoirs.

Study Area TN (mg/kg) TP (mg/kg) Source

Lianhua Lake 2100 1600 Current study
Mati Lake 2230 1430 Current study

North Lake 2520 1360 Current study
Dongting Lake 1029 697 [50]

Taihu Lake 1010 501 [40]
Chaohu Lake 1088 585 [54]
Hongze Lake 1020 580 [55]

Wuliangsuhai Lake 7910 1890 [56]
Qinghai Lake 1800 471 [57]

Swan Lake 850 350 [58]
Haihe River 1012 874 [59]
Tianmu Lake 2598 323 [60]

Changtan Lake 1740 490 [61]
Dianchi Lake 4910 2160 [52]
Wanghu Lake 3122 913 [20]
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Table 8. Average HM contents in surface sediments of typical polluted lakes.

Study Area Cd Hg As Pb Cr Cu Ni Zn Source

Lianhua Lake 0.23 0.27 80.54 8.21 39.79 26.41 30.11 107.37 Current study
North Lake 0.27 0.20 34.46 8.80 64.60 30.31 31.53 69.07 Current study
Mati Lake 0.23 0.18 20.74 8.76 43.88 29.44 35.24 74.24 Current study
Cihu Lake 2.48 - - 177.26 66.39 127.86 33.34 383.42 [31]
Daye Lake 77.13 - - 134.22 - 650.13 78.46 - [45]

Wanghu Lake 0.7 - - 37.1 119.6 62.6 - 165.2 [20]
Qingshan Lake - - - 82.48 59.17 201.16 46.26 300.18 [62]
Dongting Lake 2.88 - 16.58 31.14 93.47 30.57 34.47 121.01 [50]
Daming Lake 0.24 - 5.18 42.89 62.06 46.73 19.37 138.71 [63]
Tangxun Lake 0.66 0.17 12.88 41.6 85.28 51.28 40.49 145.01 [64]
Hongze Lake 0.23 - 16.55 27.2 66.78 25.35 33.89 74.77 [55]
Poyang Lake 0.7 - - 49.39 132.49 44.89 - 142.79 [65]

Yangcheng Lake 0.45 0.09 15.85 34.02 101.28 66.54 68.72 187.33 [37]
Taihu Lake 0.07 0.09 9.01 34.16 93.69 31.32 - 101.93 [40]

Wuliangsuha Lake 0.43 0.02 3.64 5.86 43.11 53.74 46.33 94.69 [56]

Compared with other lakes in China, the three lakes in Yangxin County exhibited
higher concentrations of Hg and As; higher average concentrations of Cd, Cr, Cu, Zn, and
Ni; and lower concentrations of Pb. The As content in Lianhua Lake was eight times that of
Taihu Lake, and the Hg content was three times that of Taihu Lake.

HM pollution in water bodies is a significant environmental issue [66]. Due to their
inherent biotoxicity, they can directly harm the cells and tissues of living organisms, im-
pacting growth and reproduction, ultimately leading to a decrease in population and the
decline of ecosystems [67]. As humans occupy the top of the food chain, toxins accumulate
layer by layer along the food chain. The occurrence of Minamata disease in Japan illustrates
this phenomenon, where local residents consume seafood contaminated with Hg and Cd,
marking one of the earliest instances of disease-causing environmental pollution. Therefore,
HM pollution of aquatic environments cannot be overlooked.

5. Conclusions

The comprehensive pollution index of nutrients (FF) in all three lakes reached severe
pollution levels. The potential Ei

r of the three lakes indicated moderate pollution, with
Hg showing the highest pollution level, followed by As and Cd. However, due to the
numerous assessment indicators, a detailed analysis of the sources of each pollutant was not
sufficiently conducted, like Ni and Zn. As a follow-up to the present study, it is proposed
in the future to characterize the main sources of pollution in the area surrounding the lakes
and assess the main chemical elements present in the water and sediments.

Geographical location significantly influenced HM pollution, with Lianhua Lake and
Mati Lake, which were closer to towns, exhibiting more severe pollution, particularly
with higher levels of elements such as Pb, Cu, and Hg. This could be attributed to traffic
pollution, domestic sewage, and pesticide residues. In North Lake, the high nutrient
content was mainly distributed in the northern and southern parts, corresponding to
coastal aquaculture and crop cultivation activities. The stable sedimentary environment of
North Lake led to concentrated HM pollution in the central part.

Based on the research results, the following recommendations are proposed for the
sustainable development of lake water resources in the area:

1. Optimize sewage discharge pipelines in county towns, strengthen the construction of
sewage treatment plants, and ensure that domestic sewage and industrial wastewater
meet standards before discharge;

2. Implement regular clean-up of garbage and large aquatic plant residues in the water
bodies;
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3. Enforce strict control over the scale of aquaculture in the lake area and scientifically
plan aquaculture density;

4. Prioritize ecological restoration efforts by constructing artificial wetlands in lake areas
and planting adaptable aquatic plants with purification capabilities.
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