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Abstract: Recently, removing dyes from wastewater by photocatalysis has been extensively studied
by several researchers. However, there exists a research gap in optimizing the photocatalytic process
parameters using artificial intelligence to maintain the associated techno-economic feasibility. Hence,
this investigation attempts to optimize the photocatalytic degradation of methylene blue (MB) dye
using an artificial neural network (ANN) model to minimize the capital and running costs, which
is beneficial for industrial applications. A ZnO/MgO photocatalyst was synthesized, showing an
energy band gap of 2.96 eV, crystallinity index of 71.92%, pore volume of 0.529 cm3/g, surface area of
30.536 m2/g, and multiple surface functional groups. An ANN model, with a 4-8-1 topology, trainlm
training function, and feed-forward back-propagation algorithm, succeeded in predicting the MB
removal efficiency (R2 = 0.946 and mean squared error = 11.2). The ANN-based optimized condition
depicted that over 99% of MB could be removed under C0 = 16.42 mg/L, pH = 9.95, and catalyst
dosage = 905 mg/L within 174 min. This optimum condition corresponded to a treatment cost of USD
8.52/m3 cheaper than the price estimated from the unoptimized photocatalytic system by ≈7%. The
study outputs revealed positive correlations with the sustainable development goals accompanied by
pollution reduction, human health protection, and aquatic species conservation.

Keywords: ANN optimization; dye degradation; nanocomposite characterization; photocatalytic
performance; treatment cost

1. Introduction

Discharging methylene blue (MB)-laden wastewater into the aquatic environment
without proper treatment can impose several negative impacts on the health status of water
bodies [1]. For instance, the MB dye can form a colored layer on the water surface [2],
preventing light penetration into the marine environment that contains plant and aquatic
species [3]. The sunlight absorption and scattering problems could also delay the photosyn-
thetic processes of aquatic plants and reduce the dissolved oxygen availability for marine
life [4]. Moreover, exposure of humans to high concentrations of MB can cause serious
health problems and dangerous injuries, such as increased heart rate, shock, jaundice, tissue
necrosis, vomiting, and cyanosis [5]. As a result of these negative impacts, MB-containing
effluents must be efficiently treated before their release into the environmental dimensions.

MB has a complex and recalcitrant molecular structure, allowing it to persist in the
environment for long periods and hindering its removal from wastewater by conventional
treatment techniques [6]. For instance, the biological degradation of MB requires an
extended retention time and certain enzymatic reactions to ensure the microbial breakdown
scheme. Moreover, removing MB from wastewater by its adsorption into a certain material
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creates secondary pollution via disposal of the exhausted adsorbent [7]. Alternatively,
various researchers have employed advanced oxidation processes (AOPs) to eliminate MB
from aqueous solutions via decomposition and mineralization [3,8,9].

Heterogeneous photocatalysis (semiconductor photocatalysis) is a widely used AOP,
having a great potential to degrade multiple pollutants under low energy conditions
such as visible light and sunlight irradiation [10,11]. In this process, the photocatalyst
material absorbs photon energy equal or greater in magnitude to the energy band gap
of the semiconductor material [12]. This absorbed energy excites an electron (e−) from
the valence to the conduction band of the photocatalyst material across the energy band
gap [13]. This e− excitation scheme leaves a hole (h+) behind in the valence band, where
the electron–hole pairs interact with H2O to form •OH (H2O + h+ → •OH + H+) and O2 to
create •O2

− (O2 + e− → •O2
−) [14]. These generated highly reactive oxygen species (ROS)

participate in a series of REDOX reactions to degrade pollutants (e.g., dyes) into simpler
compounds such as CO2 and H2O [15].

Zinc oxide (ZnO) and magnesium oxide (MgO) are two semiconductors that have
been involved in the photocatalytic degradation of various pollutants. However, these
materials suffer from wide band gap energies, as well as rapid e−—h+ recombination [16].
These drawbacks could be mitigated by combining the ZnO and MgO pure semiconductor
materials to form a ZnO/MgO nanocomposite material, which should be investigated for
MB photocatalytic degradation.

Optimizing the photocatalytic process is an essential step to maintain a feasible (re-
duced cost and time) wastewater treatment scheme [17]. Regression models could be used
to predict the treatment system performance and optimize the operational factors. How-
ever, by increasing the system complexity and non-linearity (by adding more independent
variables), the least squares optimization process could not deliver accurate outputs [3].
Moreover, the regression equations sometimes fail to yield the anticipated preciseness abil-
ity and predictability for describing the interactions among the input/output variables [18].
Alternatively, artificial neural network (ANN) has found successful applications in simulat-
ing the treatment of various wastewater sources using photocatalytic technology. An ANN
is a non-linear prediction model that has a structure consisting of several interconnected
processing elements, known as neurons [19]. The elements of this computational (black
box) model are also recognized as units or nodes, and they are arranged in layers. Each
neuron receives a number of weighted signals from the formerly linked nodes that are
further combined and summed up to derive a certain response. This output represents
either the last projected finding or an input attribute to the consequent phase, according to
the layer ordering in the network topology [20]. A comparison between the product and
the actual (target) values is then employed to adjust the network parameters (e.g., weights
and biases), enhancing the prediction preciseness. The ANN models could be employed to
capture inter-relationships among input and output data pairs that are unclear, nonlinear,
or too hard to designate.

While several studies have focused on removing dyes from wastewater by photo-
catalytic degradation [6,8,21], there is still a research gap in optimizing the associated
operational factors to maintain a techno-economically feasible process. Much effort should
be exerted on employing artificial intelligence techniques to optimize the photocatalytic
degradation process, aiming at minimizing the unit treatment costs. Hence, the current
study focuses on creating and characterizing a smart ZnO/MgO nanocomposite material
for MB photocatalytic degradation, followed by optimizing the photocatalytic process
using ANN. This optimum condition is used to minimize the photocatalytic degradation
price expressed by the capital and operational costs. This study’s outputs could provide
essential steps to find environmental and economic solutions for endorsing photocatalytic
wastewater treatment under sustainable industrial-scale implementations.
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2. Materials and Methods
2.1. Material Preparation

The ZnO and MgO nanoparticles were synthesized using a co-precipitation method,
as previously reported (Figure 1; ref. [22]). The chemicals utilized throughout the study
are tabulated in Supplementary Table S1. ZnSO4·7H2O and MgCl2·6H2O were used as
precursors for ZnO and MgO. The 0.5 M solutions of the precursors were prepared in
separate beakers. Under continuous stirring at 500 rpm, a 1 M solution of NaOH was
added dropwise to each beaker until a white precipitate started to form. NaOH was added
to maintain a pH of 12. Thereafter, stirring proceeded for about 15 min, allowing a complete
precipitate formation. The ZnO and MgO precipitates were separated from the solution by
filtration and washed multiple times with distilled water. The washed precipitates were
then dried overnight at 105 ◦C. The dry material was crushed into fine powders, followed
by calcination in a muffle furnace at 350 ◦C and 800 ◦C to achieve the ZnO and MgO
nanopowders, respectively.
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Figure 1. Synthesized technique of ZnO/MgO nanocomposite used for photodegradation of MB dye.

To synthesize the ZnO/MgO nanocomposite, an amount of already synthesized MgO
was dispersed into a solution of ZnSO4·7H2O (100 mL) and mixed continuously for 5 min.
Thereafter, a solution of 1 M NaOH was supplemented to the suspension dropwise until
the final pH condition reached 12. The formed precipitate was then processed in the same
way as ZnO, yielding the ZnO/MgO nanocomposite.

2.2. Experimental Setup and Design

The test was conducted in a rectangular reactor with a 1 m3 internal volume. The
reactor had two metal halide lamps (light intensity 25,000 lx, 400 W), emitting 510 nm
UV-vis light. In each experimental run, 100 mL of dye solution was inserted into a 250 mL
beaker. A 2 mL sample was withdrawn, transferred through a 0.22 µm nylon syringe filter,
and analyzed to obtain the MB concentration. The dye solution’s pH was adjusted to the
desired level using either H2SO4 or NaOH. The required amount of photocatalyst material
was then supplemented to the aqueous medium. The beakers were inserted into the reactor
and maintained under the dark condition (with mixing) to reach adsorption–desorption
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equilibrium. Once the equilibrium was observed, another 2 mL sample was withdrawn,
and the lamps were turned on and the photocatalytic reaction proceeded for the required
period of time. After finishing each experimental run, 2 mL of the sample was again
collected and filtered to discard the catalyst material before analysis.

Experimental design and parameter optimization were conducted using Design Expert
Trial version 9 software, where a Box–Behnken design (BBD) represented the influence
of four independent variables (i.e., catalyst dose, dye level, pH, and duration) on the MB
removal efficiency (R%) as the response. Three levels of the input variables (−1, 0, +1)
with four factors (Table 1) were used to generate the BBD matrix, giving a total of 29
experimental runs. The assigned ranges were selected based on primary results for MB
photocatalytic degradation (see Supplementary Figure S1).

Table 1. Independent variable ranges used in the Box–Behnken design (BBD) experimental de-
sign to optimize methylene blue (MB) photocatalytic degradation by the as-prepared ZnO/MgO
nanocomposite.

Variable Name Symbol Unit

Low Mid High

Coded

−1 0 1

Real Value

Dye level A ppm 10 55 100
Catalyst dose B mg/L 100 550 1000
Medium pH C - 3 6.5 10

Period D min 60 120 180

After finishing the experimental runs, the photocatalysts were subjected to distilled
water several times (washing) and then dried at 105 ◦C overnight to determine the regener-
ation and recyclability performance [23].

2.3. Analytical Analysis

The MB dye concentrations were detected using a UV spectrophotometer (Jasco V-630
spectrophotometer, Tokyo, Japan) adjusted at a wavelength of 664 nm. The medium pH
was monitored using a pH meter (Model Lutron YK-2001 PH). X-ray diffraction (XRD)
analysis (Shimadzu XRD-6100, Kyoto, Japan) with a Cu-Kα radiation beam (λ = 0.154 nm)
was carried out to obtain the crystallographic data of the synthesized photocatalysts before
and after MB photodegradation. Fourier transform infrared spectroscopy (FTIR 8400s,
Shimadzu, Kyoto, Japan) was applied to observe the photocatalyst’s surface functional
groups. The nanocrystalline nature, elemental composition, and surface morphology of
the synthesized photocatalysts were given by a transmission electron microscope (TEM)
equipped with energy dispersive X-ray spectrometer (EDS) (JEOL, JEM-2100F, Tokyo,
Japan) and a scanning electron microscope (SEM) (JEOL, JSM-6360LA, Tokyo, Japan).
The Brunauer–Emmett–Teller (BET) N2 adsorption–desorption method was employed to
identify the photocatalyst surface area and associated pore size and volume. The catalyst’s
optical band gap energy was determined using UV-Vis diffuse reflectance spectrum (UV-Vis
DRS, Jasco v-570 spectrometer, Tokyo, Japan) analysis.

2.4. Mathematical and Computational Models
2.4.1. Quadratic Regression Equation

A second-order polynomial model (Equation (1)) was employed to study the correla-
tion between the four variables and the MB R%:

y = βo + ∑n
i=1 βixi + ∑n−1

i=1 ∑n
j=i+1 βijxixj + ∑n

i=1 βiixi
2 (1)
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where y is the response (dye removal efficiency, R%); n represents the number of indepen-
dent (input) parameters; βo is the model intercept; βi, βij, and βii represent the first-order
(linear) constant, squared, and interaction effects, respectively; and x is the associated
independent variables

The model adequacy and significance were assessed via an analysis of variables
(ANOVA). Moreover, the impact of each of the four independent variables on the generated
model outputs was also assessed using ANOVA under a significance level of 0.05. The ade-
quacy of the generated model (goodness-of-fit) was further validated using the coefficient
of determination (R2) value.

2.4.2. Artificial Neural Network (ANN) Schematic Description

In this investigation, a feed-forward ANN model was applied to estimate and forecast
the MB R% using four inputs of photocatalysis experimental factors, i.e., initial MB concen-
tration (C0), catalyst dosage, pH, and time (Figure 2). Feed-forward was chosen due to its
simplicity and widely known network type able to calculate the response directly through
single propagation (a forward path) [19]. Furthermore, back-propagation is recognized
as a well-organized and promising supervised learning algorithm applied to optimize
the network weights. Multiple epoch numbers (iterations) are run to minimize the mean
squared error (MSE) between the predicted output and desired vector, further adapting
the network architecture. The number of observations (records) used to simulate the ANN
model was distributed as 70% (training), 15% (verification), and 15% (testing). MSE was
used as the objective function (i.e., the stopping criteria) to describe the magnitude of the
gradient of performance for validation. The ANN-related calculations were carried out
using MATLAB (R2015a) software.
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Figure 2. Schematic flowchart of ANN feed−forward back−propagation used to predict methylene
blue (MB) removal efficiency under a photocatalytic degradation process.

3. Results and Discussion
3.1. Photocatalyst Characterization

The XRD, FTIR, SEM/EDS, TEM, BET, and UV-vis DRS characterization techniques
were applied to the synthesized ZnO and MgO nanopowders, and the results were com-
pared to those obtained from the ZnO/MgO nanocomposite.
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3.1.1. XRD Characterization

Figure 3a shows the XRD diffraction profile of pure ZnO, defining peaks at 2θ of 31.6◦,
34.3◦, 36.1◦, 47.5◦, 56.5◦, 62.7◦, 66.2◦, 67.8◦, and 68.9◦. These peaks could correspond to the
crystal plane values of hexagonal pure ZnO (JCPDS ref. code 01-079-0207) given by (100),
(002), (101), (102), (110), (103), (200), (112), and (201). These XRD peaks complied with those
obtained for zinc oxide hollow spheres [24]. The XRD pattern (Figure 3a) also showed
characteristic peaks of the cubic structure of pure MgO (JCPDS Ref code 01-074-1225).
These peaks were observed at 2θ of 36.8◦, 42.8◦, 62.2◦, 74.5◦, and 78.5◦, corresponding to
the crystal plane values of pure cubic MgO given by (111), (200), (220), (311), and (222),
respectively. The diffraction pattern generated complied with those obtained for periclase
MgO in an AC-ZnO/MgO nanocomposite [9].

The diffraction pattern of the ZnO/MgO nanocomposite (Figure 3b) showed a com-
bination of the characteristic peaks of hexagonal ZnO and cubic MgO structures. These
peaks were denoted by 2θ at 31.8◦, 34.1◦, 36.1◦, 37.8◦, 42.6◦, 47.5◦, 56.4◦, 62.1◦, and 68.0◦.
This combination of peaks was indicative of a synergistic effect between ZnO and MgO to
obtain the nanocomposite. The presence of extra peaks at 20.2◦, 50.7◦, and 58.5◦ could be
due to some of the MgO being converted into Mg(OH)2 as a result of moisture adsorption
during the synthesis process. These extra peaks corresponded to the (001), (102), and (110)
crystal planes of Mg(OH)2 nanosheets [25].

The CIs of nanoparticles were calculated by Equation (2):

CI% =
Ac

At

′ 100 (2)

where Ac is the area under the crystalline peaks of the XRD pattern and At is the total area
under the entire XRD pattern of a respective material

The CIs of ZnO and MgO were 67.04% and 60.83%, respectively. The core–shell
nanocomposite had a higher CI of 71.92%. The crystalline size (D) of the synthesized
catalyst materials was also calculated following the Debye–Scherrer equation (Equation (3)):

D =
Kλ

βcosθ
(3)

where K is the Scherrer constant representing the shape factor (assumed as 0.9), λ is the
X-ray beam wavelength (1.541874 Å), β is the full-width half-maximum value of a peak,
and θ is the diffraction angle of each peak.

The crystalline size of ZnO was 22.99 nm, complying within the 11.84–24.82 nm range for
ZnO synthesized under different pH conditions [26]. The estimated crystalline size of MgO
(32.72 nm) obeyed that of MgO synthesized using a 1 M solution of precipitator [27]. Finally,
the crystalline size was reduced to 17.24 nm for the synthesized nanocomposite material.

3.1.2. FTIR Characterization

The FTIR peaks observed at 3440.10 cm−1 in the three materials (Figure 3c) could
correspond to the O–H stretching mode of the hydroxyl functional group [28]. The
H–O–H stretching of H2O could reflect the high affinity of MgO to adsorb water molecules.
The peaks detected at 1643.65 cm−1 and 1135.76 cm−1 were attributed to the O–H stretch
vibration [29]. A peak at 1430.05 cm−1 was also noticed, indicating the bending vibrations
of H2O adsorbed onto the catalyst material surface [30]. The peaks in the region below
700 cm−1 could identify the metal–oxygen bonds [31], e.g., the peaks at 681.21 cm−1 and
591.67 cm−1 represented the Mg–O bond, and the peak at 424.57 cm−1 denoted the Zn–O
bond. The presence of these peaks further verified the successful combination of ZnO
and MgO.
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Figure 3. Characterization of synthesized nanocomposites. (a) XRD peaks of ZnO and MgO, (b) XRD
peaks of ZnO/MgO, (c) FTIR spectra, (d) SEM of ZnO, (e) SEM of MgO, (f) SEM of ZnO/MgO,
(g) TEM of ZnO, (h) TEM of MgO, and (i) TEM of ZnO/MgO.
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3.1.3. SEM/EDS Characterization

The SEM micrograph of pure ZnO (Figure 3d) showed a spongy appearance of ag-
glomerated particles. This result was similar to that obtained for ZnO synthesized via
the precipitation technique [32]. The SEM micrograph of pure MgO displayed flat plate-
like structures (Figure 3e) of varying sizes. A similar structure was obtained for MgO
by employing the co-precipitation method [33]. The SEM micrograph of the ZnO/MgO
nanocomposite (Figure 3f) showed a rough external surface that appeared to be a coating
of ZnO over MgO. This surface roughness might be due to the gathering and building
up of numerous small clusters of ZnO that coated the MgO core nanoparticles. The EDS
results showed that Zn had the highest percentage weight followed by Mg and O. This
result further verified the successful synthesis of the nanocomposite material, where the
ZnO nanoparticles were deposited on MgO (the support material).

3.1.4. TEM Characterization

The TEM image showed that the ZnO particles were irregularly shaped and mildly
varied in size (Figure 3g). The agglomeration of ZnO could occur due to the exclusion
of capping agents during the particle synthesis process. The TEM image of MgO de-
picted the existence of roughly circular plate-like structures of a relatively uniform size
(Figure 3h). Finally, the TEM image of the ZnO/MgO nanocomposite showed a mixed
matrix of the plate-like MgO particles surrounded by the spongy appearance of the ZnO
particles (Figure 3i). This result further confirmed that the ZnO/MgO nanocomposite was
successfully synthesized, complying with the SEM observations. The particle sizes were
measured using Image J free version 1.53t software, revealing 62.96 nm for ZnO, 77.27 nm
for MgO, and 114.5 nm for ZnO/MgO.

3.1.5. BET Characterization

The BET analysis exhibited the material N2 adsorption–desorption isotherms, com-
plying with the existence of mesoporous surfaces (see Supplementary Figure S2a–c). The
isotherm shapes of MgO and ZnO fit the type IVb isotherm, whereas the ZnO/MgO
nanocomposite shape matched the type IVa isotherm. This finding revealed the presence
of a type H3 hysteresis loop, probably depicting the existence of ≥4 nm diameter pores.
Further, the BET analysis indicated a substantial decrease in the MgO surface area from
80.756 to 30.536 m2/g after combination with ZnO (Table 2). This finding could be ascribed
to the formation of more pores on the ZnO/MgO surface, where interparticle spaces were
formed due to the growth of ZnO particles on the MgO surface, as previously reported [34].
This result was further confirmed by the significant increase in the pore diameter from 4.942
nm for MgO to 26.617 nm for ZnO/MgO (Table 2). The pore volumes were also measured;
it was observed that the ZnO/MgO nanocomposite possessed the largest pore volume of
0.529 cm3/g.

Table 2. Summary of BET analysis results for ZnO, MgO, and ZnO/MgO catalyst materials.

Catalyst Material BET Pore Diameter
(nm)

BET Surface Area
(m2/g)

BET Pore Volume
(cm3/g)

ZnO 7.752 11.183 0.021
MgO 4.942 80.756 0.109

ZnO/MgO 26.617 30.536 0.529

3.1.6. UV-Vis DRS Characterization

Figure 4a–c shows the indirect Tauc plots and absorbance curves of the synthesized
nanomaterial. The indirect Tauc plots were generated by Equation (4) [35]:

(F(R)hv)n = A
(
hv− Eg

)
(4)
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where F(R) is the Kubelka–Munk function, A is a proportionality constant, hν is the incident
photon energy, n = 1

2 , and Eg is the band-gap energy
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The linear section of the Tauc plot was extrapolated, cutting the x-axis at the energy
band gap value. The UV-vis DRS results showed that the optical band gap energies of ZnO,
MgO, and ZnO/MgO nanomaterials were 3.10, 3.87, and 2.96 eV, respectively. This implies
that the energy band gap was successfully reduced following the combination of ZnO and
MgO. This reduced energy band gap of the nanocomposite could facilitate photocatalytic
activity under UV light with a wavelength of ≈419 nm, obeying the visible light range.

3.2. Regression Model Application for Predicting MB Removal

The second-order polynomial regression model, governing the R% due to the interac-
tions of the four independent variables, was generated (Equation (5)):

R% = 56.342 − 1.084A− 0.02466B + 4.978C− 0.473D− 6.1× 10−5 AB− 0.1019AC + 4.35× 10−4 AD
+3.843× 10−3BC + 4.402× 10−6BD + 0.0465CD + 9.744× 10−3 A2 + 9.362× 10−6B2

−0.2177C2 + 8.92× 10−4D2
(5)

where R% is the MB removal efficiency (%); and the variables A, B, C, and D represent the
dye level (ppm), catalyst dosage (mg/L), solution pH, and period (min), respectively.

An ANOVA test was performed to assess the accuracy and adequacy of the model
generated (Table 3). The quadratic model exhibited an F-value and a p-value of 70.33 and
<0.0001, respectively. The derived F-value was greater than the recognized F-value of 2.352
(at 95% significance) [18], signifying the model’s appropriateness to forecast the R% obser-
vations. Moreover, these statistical results verified that the model was significant, where the
p-value was below the alpha significance level. The model’s prediction accuracy was also
demonstrated by the predicted and adjusted R2 values (0.9195 and 0.9720, respectively).
These R2 values were relatively high and the difference between them was less than 0.2,
denoting that the data and the model were appropriately chosen and suitable for estimating
the R% values [17]. Moreover, the R2 value of the model was relatively high, presenting
a value of 0.9860. Based on these statistical indicators, the generated quadratic equation
could give acceptable predictions of the R% values, i.e., the predicted removal efficiencies
were in agreement with the actual measurements (see Supplementary Figure S3). The
significance of the variables was also analyzed, giving a p-value for each of A, B, C, and D
below 0.05.

3.3. Artificial Neural Network (ANN) Application for Predicting MB Removal
3.3.1. Determining the Optimum ANN Architecture

The neurons’ number in the hidden layer (N) was altered to examine the ANN pre-
diction performance, evaluating the R2 values and MSE of each ANN architecture (see
Supplementary Table S2). It was noticed that increasing N enhanced the model prediction
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criterion during and after training. As such, the deficient N caused premature convergence
or early termination of the training algorithm, hindering the network learning capability.
The N = 8 established the best-hidden neuron arrangement, giving the smallest MSE of 11.20
and the highest R2 of 0.9464 (see Supplementary Table S2). However, a further increase in N
raised the model MSE, resulting in poor network generalization. An excessive N prolonged
the calculation period (causing extra fitted functions due to the complex structure), and the
training phase became probably accompanied by local minima or over-fitting. Over-fit (or
over-learn) represented the network condition that maintained a smaller MSE (e.g., better
R2) for the training procedure, but the test procedure suffered from lower R2 performances.
This optimum N was accompanied by choosing Levenberg–Marquardt (trainlm) as the
training function. As such, the Levenberg–Marquardt algorithm was highly efficient in
simulating complex relationships among input variables within reasonable computation
times. Moreover, this learning function is suitable for training moderate-sized feed-forward
ANN models and solving nonlinear least squares problems. Hence, a three-layer feed-
forward back-propagation ANN, with a “trainlm” training function and a “4–8–1” topology
to forecast the MB R(%), was selected.

Table 3. Analysis of variables (ANOVA) for prediction of photocatalytic methylene blue (MB) removal
by ZnO/MgO nanocomposite using four independent variables, namely initial MB concentration (A),
catalyst dosage (B), aqueous solution pH (C), and time (D). The model accuracy is given by R2 0.9860;
adjusted R2 0.9720; predicted R2 0.9195; Adeq precision 31.8040.

Source Sum of Squares df Mean Square F-Value p-Value Significance

Model 17,842.80 14 1274.49 70.33 <0.0001 significant
A 10,467.64 1 10,467.64 577.61 <0.0001 significant
B 147.40 1 147.40 8.13 0.0128 significant
C 2640.01 1 2640.01 145.68 <0.0001 significant
D 208.60 1 208.60 11.51 0.0044 significant

AB 6.11 1 6.11 0.3371 0.5707 insignificant
AC 1030.82 1 1030.82 56.88 <0.0001 significant
AD 5.52 1 5.52 0.3043 0.5899 insignificant
BC 146.57 1 146.57 8.09 0.0130 significant
BD 0.0565 1 0.0565 0.0031 0.9563 insignificant
CD 381.66 1 381.66 21.06 0.0004 significant
A2 2525.61 1 2525.61 139.36 <0.0001 significant
B2 23.31 1 23.31 1.29 0.2758 insignificant
C2 46.14 1 46.14 2.55 0.1329 insignificant
D2 66.90 1 66.90 3.69 0.0753 significant

3.3.2. Training and Validation Performances

The MSE values were plotted against the epoch numbers (Figure 5a). In this diagram,
the simulation procedure was completed by either achieving the highest number of train-
ing trials (e.g., training termination after six epochs) or reaching the smallest MSE (e.g.,
MSE = 10−6 as a performance goal), whichever initially ensued [36]. The training phase
MSE (performance function) considerably dropped with iteration counts, reflecting the
network’s capability to modify its weights and biases until reaching the third epoch. After
that point, the training curve MSE remained approximately unchanged, depicting the ANN
model’s ability to learn the relationships between the input and output data pairs. The
validation set showed a different behavior, where its MSE curve increased until the first
epoch and then remained almost constant. For instance, the best validation profile was
monitored at epoch 0 with an MSE of 11.2, after which the ANN model initiated to overfit
the data and lose its generalization power (Figure 5b). The MSE of the testing step increased,
approximately similar to that of validation, employing that the learning step generated
excess parameters. Hence, the zero epoch was used to terminate the training process,
ensuring that the network model could precisely forecast R% using unseen input data.
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Figure 5. ANN (4-8-1) model employed to predict methylene blue (MB) removal efficiency using four
inputs, namely MB concentration, catalyst dosage, pH, and time. (a) Training state, (b) validation
performance, (c) regression data, and (d) sensitivity analysis.

3.3.3. Optimum Weights and Biases

At epoch = 0, the ANN model was well-learned and the network parameters (i.e.,
weights and biases) were adequately adapted (see Supplementary Table S3). The values
of the linking weights (W8×4 and W1×8) and bias levels (B8×1 and B1×1) were determined
based on the trainlm optimization algorithm. The layer outputs used to predict R% that
matched the target (the best cross-validation performance) were calculated as follows:

Each parameter (independent variables) in the four-dimension input layer (P4×1
vector) was multiplied by its corresponding record in the weight matrix, W8×4, and then
cumulated. Then, an eight-dimension bias, B8×1, was included, and a hyperbolic tangent
sigmoid “tansig” activation function was used to transform the net input into a response
signal (z8×1) (Equation (6)):

z8×1 = tansig
(
∑(W8×4·P4×1) + B8×1

)
(6)
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The products of the eight-dimension middle layer, z8×1, were weighted and integrated
into the matrix, W1×8, and, further, a one-dimension bias (B1×1) was included. The last
output was introduced to a linear “purelin” activation function, yielding the last layer
correlation (Equation (7)):

y1×1 = tansig
(
∑(W1×8·z8×1) + B1×1

)
(7)

3.3.4. Regression Plot

Figure 5c displays the schemes of the simulated MB (R%) by ANN against their
associated experimental data, along with R2 values of training, validation, and testing. In
each regression sub-plot, the solid line denotes the best match of the ANN model. The
dashed line represents the model outputs that fit precisely the actual observations (i.e.,
the theoretical fitting condition with R2 = 1.000). An overall R2 of 0.946 designated that
the developed ANN (4–8–1) model could explain up to ≈95% of the variability in the MB
removal data.

3.3.5. Relative Importance

The obtained weights and biases (see Supplementary Table S3) were involved in
computing the relative importance (RI) of the experimental parameters, following Garson’s
formula [37]. Figure 5d shows that the RI for the dye concentration reached its maximum
value at 33%, followed by irradiation time (28%), catalyst dosage (27%), and finally the
medium pH (12%). Moreover, the RI values depicted that the investigated independent
variables were important for improving the MB photocatalytic degradation performance.

3.4. Photocatalysis Operating Factors Optimization

The created ANN model was considered as the fitness function and combined with a
genetic algorithm (GA) to optimize the photocatalytic experimental factors. The assigned
GA had 100 iteration numbers, 10 population size, 0.4 crossover probability, and 0.2 mu-
tation probability, and was required to maintain R(%) greater than 90%. This procedure
depicted that, at C0 = 16.42 mg/L and pH = 9.95, the catalyst dosage and time could be
905 mg/L and 174 min, respectively. These values were estimated as 907.35 mg/L and
178 min, respectively, using the quadratic model optimization procedure (see Supplemen-
tary Figure S4). Operating the photocatalytic reactor under the ANN-based optimized
factors maintained a shorter reaction time and a lower oxidant level compared with the
quadratic model-based optimized factors.

According to the verification experiment conducted under the optimum condition, the
absolute relative deviation between the ANN model outputs and experimental data was
1.70%, which was smaller than 4.54% for the quadratic model prediction performance. A
better predictive accuracy of ANN could be assigned to its universal ability to capture and
approximate the non-linearity of the photocatalytic system, whereas the regression model
is only limited to second-order polynomial.

3.5. Effect of Independent Variables on MB Degradation

The MB removal efficiencies (R%) were highly influenced by varying the independent
variables within the experimental range (Figure 6):

3.5.1. Effect of Initial MB Concentration

Increasing the C0 within the 10–100 mg/L range was noticed to reduce the R% ob-
servations (Figure 6). This decrease in R% could be because of the blocking of active sites
available on the nanomaterial surface by a surplus of MB molecules [21]. This pattern
was associated with an ineffective photon–catalyst interaction, where a portion of photon
energy could be absorbed by the MB molecules rather than by the catalyst phase. This
action reduced ROS generation (higher MB:ROS ratios); i.e., there would be an insufficient
ROS amount to degrade the MB in the aqueous solution. Another reason for R% reduction
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at higher C0 could be the hindering of light penetration through the dye solution and to
the photocatalyst surface [12].
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3.5.2. Effect of Catalyst Dose

The analysis showed that the MB R% was gradually improved by increasing the pho-
tocatalyst dosage within the 100–1000 mg/L range (Figure 6). This enhanced performance
could be ascribed to an increase in the active site amounts when a high catalyst dosage
was introduced to the medium [38]. These active locations could absorb more photons for
maintaining the photocatalytic reactions. Increasing the available active sites facilitated the
active site–photon interactions, yielding surplus ROS to degrade the MB dye [21].
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3.5.3. Effect of pH

The results revealed an improved photocatalytic performance by increasing the solu-
tion pH within the 3–10 range (Figure 6). Varying the medium pH directly influenced the
photocatalyst surface charge and the associated attraction and repulsion forces between
the catalyst and the dye. The catalyst surface could acquire more negative charges as the
medium pH became greater than the point of zero charge (pH pzc). Accordingly, as the
medium pH became closer to the pH pzc of ≈10.24, the negatively charged sites tended
to form strong attraction forces with the cationic MB molecules. When the catalyst was
supplemented with the MB solution, it was recognized that the pH would increase to
values greater than the initial pH. Increased attraction of the MB onto the photocatalyst
surface resulted in better MB–ROS interactions and higher MB degradation efficiencies.
Moreover, higher pH values implied the presence of more OH− present in the solution,
resulting in the formation of more •OH radicals to degrade MB [2]. The medium pH could
also affect the MB dye dissociation pathway. For instance, the MB dye tended to be ionized
and possessed a predominantly cationic species (positive charge) at a solution pH over 3.8
(i.e., the MB dissociation constant, pKa) [39].

3.5.4. Effect of Irradiation Time

The proportional relationship between the irradiation time (60–180 min; Figure 6)
and MB R% could be denoted by the prolonged interactions between the dye molecules
and the ROS available on the photocatalyst surface [40]. The adsorption of MB onto the
material surface could be designated as a function of time until active sites’ occupation and
saturation, restricting the diffusion mobility of photocatalytic electrons [6].

3.6. Recyclability of the Photocatalyst Material

A recyclability test was performed to investigate the photocatalytic performance of
the as-prepared materials for multiple regeneration and reuse cycles (see Supplementary
Figure S5). After six successive cycles, the ZnO/MgO nanocomposite exhibited a minor
drop in MB removal of about 6.14% compared with 10.56% for ZnO and 13.39% for MgO.
It was supposed that ZnO/MgO exhibited higher stability and regeneration capacity than
ZnO and MgO individually. However, this photocatalytic efficiency became insufficient in
increasing the number of cycles above six. This reduction in performance could be ascribed
to the photocatalyst mass loss after repeated use and/or the blocking of active sites by dye
traces. This stability was better than B–N–TiO2/EP photocatalyst material, which showed
a reduction in performance >10% for dye degradation after five cycles [41].

3.7. Photocatalytic Degradation Rates and Suggested Degradation Mechanisms

The data in Figure 7a denoted that the MB photocatalytic degradation data fit the
pseudo-first order kinetic model [42] with a high R2 range of 0.957–0.992. The study also
depicted that the degradation rate constant was 0.025 min−1 for ZnO/MgO. This rate
constant was considerably greater than that observed for ZnO (0.003 min−1) and MgO
(0.0014 min−1). In particular, this degradation kinetic investigation verified the superiority
of the ZnO/MgO nanocomposite for the photocatalytic degradation of MB.

Figure 7b shows the photocatalytic degradation mechanism related to the ZnO/MgO
nanocomposite. The conduction and valence band energies of ZnO and MgO were calcu-
lated using the equations given by Equations (8) and (9) [43]:

ECB = X− E− 0.5Eg (8)

EVB = ECB + Eg (9)

where ECB = conduction band energy; EVB = valence band energy; X = electronegativity
value; E = electron energy on the hydrogen scale; Eg = band gap energy.
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Figure 7. Photocatalytic degradation of MB dye. (a) Pseudo−first order fitting and (b) suggested
degradation mechanisms.

The ECB and EVB of ZnO were determined as −0.265 eV and +2.845 eV, respectively,
whereas the ECB and EVB of MgO were calculated as −4.335 eV and −0.465 eV, respectively.
The CB and VB values were then used to derive the proposed MB degradation mechanism
(Figure 7b). When the ZnO/MgO nanocomposite was exposed to light irradiation, the
photocatalytic reaction governed by Equation (10) would occur to generate e− and h+:

ZnO/MgO + hv→ e−(CB) + h+(VB) (10)

where e−(CB) = electrons in the conduction band; h+(VB) = the electron vacancy in the
valence band.

The VB electrons would absorb photon energy and jump into the CBs. The band energy
of the ZnO CB possessed a more positive potential than the VB of MgO. Consequently,
the photogenerated e− in the CB of MgO would have a stronger affinity to migrate and
accumulate in the CB of ZnO instead of recombining with the holes in the MgO VB.
Simultaneously, the h+ left in the VB of ZnO would migrate and accumulate in the more
negative VB of MgO. This charge transfer tended to reduce the e−/h+ recombination,
resulting in enhanced photocatalytic activity of the ZnO/MgO nanocomposite.

Following the charge transfer process, the e− and h+ accumulated in the ZnO CB
and MgO VB, respectively, would be free to interact with molecules in the surrounding
MB solution. Electrons would reduce molecular oxygen (O2) to create superoxide radicals
(O2
•−), following Equation (11):

O2 + eCB → O2
•− (11)

This reduction of O2 could occur because the CB of ZnO possessed a sufficient re-
duction energy potential (more positive) to facilitate its conversion into O2

•−, requiring
a reduction energy potential of −0.33 eV [44]. Simultaneously, the h+ accumulated in
the MgO VB would oxidize H2O molecules present in the MB solution to form hydroxyl
radicals (•OH), following Equation (12):

hVB + H2O→ •OH + H+ (12)

This reaction could occur because the VB of MgO possessed a sufficient oxidation
potential (more negative) to facilitate the conversion of H2O to •OH, which required a
reduction potential of about +1.9 eV [45]. The ROS generated (O2

•− and •OH) would
easily interact with MB molecules (Equation (13)), breaking it down into less toxic and
simpler intermediates and eventually CO2 and H2O. Moreover, the photogenerated h+
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and e− accumulated on MgO VB and ZnO CB, respectively, could directly interact with
MB molecules:

(hVB, •OH, eCB, O2
•−) + MB→ Degradation intermediates + CO2 + H2O (13)

3.8. Photocatalytic Degradation of MB Reported in the Literature

The effectiveness of the ZnO/MgO nanomaterial was compared with other ZnO- and
MgO-based photocatalyst materials for MB dye removal (Table 4). Other photocatalysts
have exhibited greater degradation performances at lower MB levels [24,31,46,47] and/or
longer degradation times [48]. Most studies integrated ZnO and MgO into a third material,
resulting in ternary photocatalysts [9,48] for improved performance. In our investigation,
the photocatalyst material comprised ZnO and MgO, and the operational factors were
optimized to obtain high degradation efficiencies for relatively higher dye concentrations.
The results obtained in our study showed that the synthesized nanocomposite material
could be successfully utilized for MB degradation.

Table 4. Comparison of the performance of the ZnO/MgO nanocomposite with other photocatalysts
toward methylene blue (MB) removal.

Photocatalyst
Experimental Condition

Removal
Efficiency (%) Ref.MB Conc.

(mg/L)
Catalyst

Dose (mg/L) pH Time (min)

ZnO/MgO nanocomposite 16.42 907.35 9.95 178 99.99 This study
ZnO/MgO/AC nanoparticle 3.2 1000 7 20 100 Karimi et al. [9]

Novel tri-phase
CuO–MgO–ZnO
nanocomposite

5 400 7 100 88.5 Munawar et al. [31]

ZnO/MgO nanocomposites 10 40 7 120 89.5 Panchal et al. [47]
Hollow MgO-ZnO

microspheres 5 300 7 150 100 Vishwanathan et al. [24]

Ternary MgO/ZnO/In2O3 10 500 7 300 98 Xiang et al. [48]
CdO–ZnO–MgO
nanocomposite 1 25 7 120 91 Revathi and Karthik [46]

3.9. Economic Feasibility of the ZnO/MgO Nanocomposite Photocatalysis System

A cost-benefit analysis was performed to evaluate the economic feasibility of applying
the ZnO/MgO nanocomposite for treating dye-polluted water. The optimum conditions
obtained from the optimization of independent variables were utilized to design the
photocatalytic system used in the analysis. The photocatalytic system was designed to
treat a daily influent volume of 10 m3. This flow rate is suitable for a compact-sized
wastewater treatment facility with simple equipment. The breakdown of the economic
analysis comprised estimates of the capital/investment costs and operational/running
costs (Table 5). These calculations were derived using a precision of±20% [49], because cost
estimation from the real-world application of photocatalysis could vary among countries
based on the fluctuations in the currency exchange rates, assumptions applied, feed-in
tariffs, and electricity demand. The preciseness and uncertainty of this economic estimation
were also assessed by developing sensitivity analysis, varying the photocatalytic reactor
cost, chemical prices, and electrical and water consumption costs between −30% and
30% [50] (see Supplementary Figure S6).

3.9.1. Capital Costs

The one-time expenses incurred to implement the photocatalysis system were rep-
resented by the capital costs. About 11.69% of these capital costs accounted for the pho-
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tocatalytic reactor and tank installations, where the volume (Vc) could be estimated by
Equation (14) [20]:

Vc =
Q
D
× tt

tw
(14)

where Q represents the average volume of wastewater treated annually (m3/yr), D is the
number of working days per year (assuming 300 days per year), tt is the optimum reaction
time (e.g., 90 min), and tw is the number of plant operation hours per day (e.g., 1440 min/d
represents a 24 h daily plant operation time).

The obtained tank volume was then applied to calculate the construction cost by
Equation (15) [51]:

CC = Vc × CP (15)

where Cp represents the price per m3 of a photoreactor unit derived from subcontractor
and supplier quotes.

The cost of water collection tanks was also added to the initial investment. Moreover,
the prices of mechanical equipment, comprising UV lamps (light source), a stirrer motor,
pumps, and a rotary calcination furnace for catalyst synthesis, were also included, as
previously reported [52].

Table 5. Cost estimates for the photocatalytic degradation of MB dye-laden wastewater (10 m3/day)
using the ZnO/MgO nanocomposite under unoptimized and ANN-optimized conditions (using a
precision of ±20%).

Item Cost Justification

Unoptimized ANN-Optimized

Photocatalysis installation (PI) USD 15,500 USD 14,060

Reactors (USD 1680 × 2 = USD 3360), UV lamps
(USD 1150 × 2 = USD 2300), stirrer motors

(USD 590 × 2 = USD 1180), pumps
(USD 2010 × 2 = USD 4020), and rotary

calcination furnace (USD 3200).
Optimized reaction time reduced the reactor

volume by ~6%
Piping, valves, and wiring USD 4650 USD 4218 0.3 PI

Site work USD 1550 USD 1406 0.1 PI
Subtotal (1) USD 21,700 USD 19,684 1.4 PI = Q

Contractor O&P USD 3255 USD 2953 0.15 Q
Subtotal (2) USD 24,955 USD 22,637 1.15 Q = R

Engineering fees USD 3743 USD 3395 0.15 R
Subtotal (3) USD 28,698 USD 26,032 1.15 R = S

Contingency fees USD 5740 USD 5206 0.2 S
Subtotal (4) USD 34,438 USD 31,239 1.2 S = T

Others USD 6888 USD 6248 0.2 T
Total capital cost USD 41,325 USD 37,486 1.2 T

Annual capital cost USD 8265/yr USD 7497/yr USD 37,486/project lifetime (5 yr)
Interest rate consideration USD 10,056/yr USD 9122/yr USD 7497/yr × (1 + i)n

Unit capital cost USD 3.35/m3 USD 3.04/m3 USD 9122/yr ÷ (10 m3/d × 300 d/yr)
Chemical costs USD 90/month USD 75/month 15 kg/month × USD 5/kg

Electrical consumption costs USD 1157/month USD 1105/month 8500 kWh/month × USD 0.13/kWh
Water consumption USD 42/month USD 40/month 168 m3/month × USD 0.24/m3

Labor cost USD 120/month USD 120/month
Land rental costs USD 42/month USD 38/month 5% of total capital cost

Repair and maintenance costs USD 126/month USD 114/month 15% of total capital cost
Others USD 168/month USD 152/month 20% of total capital cost

Total operating cost USD 1744/month USD 1644/month Sum of total operating items
Unit total operating cost USD 5.81/m3 USD 5.48/m3 USD 1644/month ÷ (10 m3/d × 30 d/month)

Unit total cost USD 9.17/m3 USD 8.52/m3 Unit capital cost + Unit total operating cost

3.9.2. Operational Costs

The daily expenses incurred to run the photocatalysis system were represented by the
operational costs. These costs included several items related to consumables, electricity
consumption, salaries and wages, overheads, and plant maintenance [53]. The costs of
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chemicals needed to synthesize and apply the ZnO/MgO nanocomposite were estimated
by Equation (16):

Costchemicals = Ci × Pi (16)

where Costchemicals is the monthly cost of chemicals incurred (USD/month), Ci is the
quantity of chemicals supplied (kg/month), and Pi is the chemical price per unit weight
(USD/kg)

The electricity utilization costs comprised the power consumption to operate an
electronic overhead stirrer (69 W), pumps (55 W), and UV lamps (46 W) [54]. This amount
of energy was used to estimate the electrical energy per order (EEO) by Equation (17) [55]:

EEO =
38.4× P

V × k
(17)

where P is the power of all electrical equipment (using 170 W), V is the volume of treated
water per day (L), and k is the reaction rate constant (ln (C/Co)).

The consumption per m3 (EEO) was used to estimate the annual consumption for the
plant receiving 10 m3/day. The annual consumption in KWh and the electricity feed-in
tariff (USD 0.13/kWh) were then used to estimate the electricity consumption cost per year.

The costs of water required for photocatalyst synthesis and regeneration were also con-
sidered. This estimate was derived from the lab-scale preparation procedures, where ≈1 L
of water was required to synthesize and regenerate 1 g of the ZnO/MgO nanocomposite.
The water tariff was set at USD 0.24/m3.

The costs associated with the repair and maintenance of the treatment system were
estimated at 1.5% of all capital costs [51]. An employee salary rate of USD 120/month was
utilized to determine the labor costs associated with water sampling (three samples/week),
cleaning and repair of equipment, and operation of the photocatalysis system. Statutory
obligations (taxes) were also considered as 1% of the total capital costs. These operational
prices resulted in a total running treatment cost of USD 5.48/m3.

3.10. Meeting the Sustainability Dimensions from the Photocatalytic Degradation of Dyes

The current study’s outputs maintain several benefits that could fulfill the sustainabil-
ity dimensions. For example, removing dye pollutants (e.g., MB) from the textile industrial
effluents before final disposal tends to protect the aquatic environment. This aim has a
positive correlation with SDG14 “Life Below Water” by protecting and conserving the
aquatic species from marine pollution because dyes negatively affect the fish organs, such
as the liver and gills, and reduce sunlight penetration and the related photosynthetic activ-
ities [6]. Moreover, this treatment facility could meet the targets of SDG3 “Good Health
and Well-being” because textile dyes can enter the food chain through biomagnification
and biotransformation [2]. Also, the study demonstrates that ANN is an innovative tool
that could optimize the photocatalytic treatment facility and reduce the operational costs,
meeting SDG9 “Industry, Innovation, and Infrastructure”. Furthermore, using sunlight
as an irradiation source (cleaner energy) and reusing the synthesized ZnO/MgO photo-
catalyst under six consecutive cycles complies with the targets of SDG12 “Responsible
Consumption and Production”. This SDG could also be improved by conducting essential
research on the management and/or disposal of exhausted ZnO/MgO photocatalysts.
For Instance, Razzaghian Ghadikolaee et al. [56] found that the photocatalyst material
after exhaustion could be managed by using it as an attractive additive to maintain better
3D-printed concrete properties.

Despite the aforementioned benefits provided by photocatalytic dye degradation,
some aspects related to the synthesis of the catalyst materials and their disposal after reuse
should be addressed for enhancing the process’s sustainability. Regarding the manufactur-
ing methods, plant extracts [57] and microorganisms [58] have attracted much attention as
reducing agents in the photocatalyst green synthesis process. Applying these eco-friendly
and cleaner techniques to synthesize the ZnO/MgO could reduce the chemical costs and
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minimize exposure to possible material toxicity. Where the recyclability of the spent catalyst
material is concerned, the ZnO/MgO nanocomposite should be tested for applications
as an additive in the construction industry, following previous research [56]. This benefit
would avoid the unrestricted disposal of solid waste to the terrestrial and inland freshwater
ecosystems and the related services, meeting the targets of SDG15 “Life on Land”. Assum-
ing that the nanocomposite can neither be applied in construction nor in soil amendment,
the spent ZnO and MgO can be treated by thorough washing to remove any adsorbed
pollutants before disposal into well-designed and properly operated landfills.

4. Conclusions

This study succeeded in providing a promising artificial neural network (ANN) model
that could cost-effectively optimize the photocatalytic dye degradation system. Operat-
ing the photocatalytic degradation process under the determined optimum conditions
enhanced the methylene blue (MB) removal efficiency by ≈12%, while the treatment cost
was reduced by about 7% compared with the unoptimized condition. The study outcomes
also included the successful synthesis of a ZnO/MgO photocatalyst that had a narrower
optical band gap and better surface morphology, functional groups, and crystal structure
than ZnO and MgO individually. Hence, the proposed artificial intelligence technique can
be beneficial for generating more accurate predictions of the photodegradation process in
wastewater treatment while maintaining better operational conditions that provide higher
economic benefits. Further studies are required to determine the degradation pathway and
by-products generated, identify the ROS responsible for the photocatalytic degradation
process, use green routes for ZnO/MgO synthesis, and enlarge the data set size for a more
accurate ANN training process.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/su16020529/s1, Figure S1. Initial photocatalysis experiments
under light irradiation; Figure S2. N2 adsorption–desorption isotherms of (a) ZnO, (b) MgO, and
(c) ZnO/MgO; Figure S3. Plot of actual versus predicted MB removal efficiencies; Figure S4. Opti-
mization of photocatalysis independent variables using the response surface methodology (RSM)
based on the quadratic regression model; Figure S5. Recyclability of the photocatalyst material;
Figure S6. Effect of variation from −30% to 30% on the total treatment cost; Table S1. Chemicals and
reagents used for experimental procedures. All chemicals were utilized in the experiments without
further purification; Table S2. Selection of best number of neurons in the hidden layer (N) and transfer
function based on the smallest MSE of different ANN models for predicting MB removal efficien-
cies. Here, trainoss: one step secant; traincgb: conjugate gradient with Powell–Beale restart; trainbfg:
Broyden–Fletcher– Goldfarb–Shanno (BFGS) quasi-Newton; trainlm: Levenberg–Marquardt; trainscg:
scaled conjugate gradient; traincgf : Fletcher–Powell conjugate gradient; traingd: gradient descent
back-propagation; Table S3. Optimum weights and biases of the feed-forward back-propagation
ANN (4–8–1) with trainlm training function used to predict the MB R(%). Reference [59] is cited in
the supplementary materials.
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