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Abstract: This study examines the dynamic relationships between digitalization, environmental tax
revenues, and energy resource capacity within the framework of the Environmental Kuznets Curve
(EKC), focusing on their combined impact on environmental quality. It employs a cross-sectional
augmented autoregressive distributed lag (CS-ARDL) approach, an advanced technique for complex
panel data that is specifically designed to address issues of cross-sectional dependence and slope
heterogeneity inherent in panel data analysis. The research covers 88 countries, including both
low- and middle-income countries (LMICs) and high-income countries (HICs), to understand how
digitalization, as a driving force of the Fourth Industrial Revolution, interacts with environmental
taxation and energy resource management to affect greenhouse gas emissions. The results reveal
distinct effects of environmental taxes and energy capacity on environmental quality, with marked
differences between LMICs and HICs. In HICs, technological progress, especially in information
and communication technology (ICT), is found to contribute significantly to environmental quality.
For LMICs, the effects are less evident, and the findings suggest the need for tailored strategies in
environmental policy and energy management. By providing empirical evidence on the differential
impacts of digitalization and energy policies in different economic contexts, this research enriches the
environmental economics discourse. It highlights the need for policy frameworks tailored to specific
contexts that effectively balance economic growth with sustainable development goals, thereby
providing insightful implications for achieving the Sustainable Development Goals (SDGs).

Keywords: ICT; environmental taxes; energy resource capacity; environmental sustainability;
developing countries; developed countries; CS-ARDL; DCCEMG; AMG

1. Introduction

The current environmental landscape is increasingly characterized by escalating global
greenhouse gas (GHG) emissions, posing serious challenges to both ecological and human
systems. This escalation includes pressing issues such as threats to food security, loss of
biodiversity, and an increase in the frequency and intensity of extreme weather events. In
response to these challenges, initiatives by the international community, most notably the
2015 Paris Agreement and the United Nations Sustainable Development Goals (SDGs),
underscore the urgency of addressing these environmental threats. The Paris Agreement [1],
with its goal of significantly reducing global greenhouse gas emissions, aims to limit global
temperature rise to 2 ◦C, with a more ambitious goal of 1.5 ◦C, in line with the targets
of SDG 13 (Climate Action). This is complemented by other SDGs, particularly SDG 7
(Affordable and Clean Energy) and SDG 12 (Responsible Consumption and Production),
which advocate an integrated approach to environmental protection [2].

Sustainability 2024, 16, 474. https://doi.org/10.3390/su16020474 https://www.mdpi.com/journal/sustainability

https://doi.org/10.3390/su16020474
https://doi.org/10.3390/su16020474
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com
https://orcid.org/0000-0003-1905-2663
https://orcid.org/0000-0001-9812-9504
https://doi.org/10.3390/su16020474
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com/article/10.3390/su16020474?type=check_update&version=1


Sustainability 2024, 16, 474 2 of 23

In the broader field of economic and environmental interactions, the Environmental
Kuznets Curve (EKC) hypothesis, originally proposed by Grossman and Krueger [3], stands
out as a fundamental theoretical construct. It posits an inverted U-shaped relationship
between economic growth and environmental degradation, with a particular emphasis on
greenhouse gas emissions. However, the EKC hypothesis has been criticized for potentially
oversimplifying the complex interplay between economic progress and environmental
impacts. This has led to calls for an expanded model that incorporates a wider range of
socio-economic and technological factors [4].

Digitalization, a defining feature of the fourth industrial revolution [5], brings with it
a range of environmental impacts. These include not only direct effects related to energy
consumption in the production of information and communication technology (ICT) but
also indirect effects resulting from the widespread use of ICT. Specifically, increased energy
efficiency may inadvertently lead to higher overall energy consumption due to rebound
effects [6–9]. As digital technologies increasingly permeate different sectors, their impact
on environmental sustainability, particularly in the context of SDG 9 (Industry, Innovation
and Infrastructure), becomes more pronounced.

Furthermore, rethinking the EKC framework requires incorporating aspects such
as energy resource capacity and environmental fiscal policies, especially environmental
taxation. These factors are essential for the achievement of the SDGs, which focus on clean
energy and responsible consumption and play an important role in driving environmental
sustainability outcomes [10]. However, the dynamics between these variables, especially in
relation to technological advances and fiscal mechanisms, remain under-explored in the
existing literature.

This research seeks to extend the EKC hypothesis by incorporating the influences
of digitalization, energy resource capacity, and environmental taxation. Using advanced
econometric techniques tailored for complex panel data, the study aims to construct a robust
empirical model that evaluates the collective impact of these factors on environmental
quality in different economic contexts. Our investigation includes a holistic analysis of the
impact of these factors on environmental quality, their distributional implications across
countries with different income levels, and the formulation of policy frameworks aimed at
reconciling economic growth with environmental sustainability in line with the SDGs.

By providing fresh theoretical insights and empirical evidence, this research is posi-
tioned to make significant contributions to academic discourse and policymaking. The
following sections of the paper elaborate on the theoretical framework, explain the research
methods used, present the empirical findings, and discuss their implications for policy,
with a particular focus on achieving the SDGs. Ultimately, this study responds to the
critical need to reassess existing environmental policy paradigms, especially in light of the
evolving global economic and environmental landscape.

2. Theoretical Background and Literature Review
2.1. Economic Development and Environmental Quality

The principle of sustainable development, institutionalized by the Brundtland Com-
mission in 1987 [11], serves as a basic framework for balancing immediate societal needs
with long-term environmental sustainability. This framework is further complemented
by the EKC, first developed by Grossman and Krueger [3], which describes an inverted
U-shaped relationship between economic growth and environmental degradation. Stern [12]
enriches this model by integrating behavioral aspects, positing that rising income levels gen-
erate increased societal demand for environmental quality, thereby mitigating the negative
environmental consequences of economic growth.

Recent empirical contributions offer nuanced refinements of these basic theories.
Shokoohi et al. [13] validate the EKC framework by adding energy intensity as an influen-
tial variable, particularly in populous Middle Eastern countries. Their results confirm the
critical role of energy intensity in determining environmental quality. Similarly, Kostakis
and Arauzo-Carod [14] extend the range of environmental metrics by focusing on specific
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components of the ecological footprint in economically advanced countries. Agbanyo
et al. [15] used a behavioral economics approach based on the concept of Yin-Yang cog-
nitive harmony to elucidate the complex interplay between economic growth, energy
consumption, and greenhouse gas emissions. Furthermore, Hashmi et al. [16] examined
the EKC hypothesis in the context of climate policy uncertainty, highlighting the role of
sector-specific variables such as ICT and taxation.

The SDGs, announced by the United Nations in 2015 [2], expand the existing frame-
work by integrating additional dimensions such as social equity, institutional governance,
and technological innovation. Within this expanded paradigm, Mpofu [17] explores the
dual utility of green taxes for both fiscal and environmental management. Dam et al. [18]
emphasize the governance dimension by examining the role of institutional quality in
environmental sustainability. Olabi et al. [10] introduce technological innovation as a
critical factor by analyzing the potential of green hydrogen to meet multiple SDGs. Re-
gional studies, such as the work of Adjei et al. [19], examine the environmental impact of
human capital and trade openness in West Africa, advocating for region-specific “green
growth” strategies. Ullah et al. [20] highlight the central role of environmentally oriented
ICT innovations, especially in the economies of the G-7 countries.

Emerging paradigms such as green growth and circular economy are receiving increas-
ing scholarly attention for their potential to decouple economic growth from environmental
degradation. An empirical study by Hailemariam and Erdiaw-Kwasie [21] demonstrates
the effectiveness of circular economy strategies in reducing CO2 emissions in European
countries. Yang et al. [22] extend this discourse by exploring the broader applicability of
circular economy principles to environmental challenges. The Environmental Performance
Index (EPI) used by Stoian et al. [23] remains a valuable empirical tool for quantifying
national environmental performance, showing a positive correlation with GDP per capita,
albeit with significant outliers.

2.2. Environmental Taxation, Fiscal Mechanisms, and Environmental Quality

The discourse on environmental taxation and fiscal mechanisms as instruments for
environmental quality is rich in both theoretical frameworks and empirical studies. Starting
with principles such as Pigou’s “polluter pays principle” [24] and the Coase theorem [25],
the debate extends to the multipurpose functionality of environmental taxes, particularly
through the lens of the double dividend hypothesis. As first outlined by Pearce [26] and
further refined by Lans Bovenberg and Smulders [27], Lans Bovenberg and de Mooij [28],
Fullerton and Metcalf [29], and Schöb [30], this hypothesis advocates the use of tax revenues
to neutralize other distortionary taxes, thereby improving both environmental and eco-
nomic outcomes. Empirical validation has been provided by studies including Alola and
Nwulu [31], Wolde-Rufael and Mulat-weldemeskel [32], and Li et al. [33], which confirm
the effectiveness of these fiscal mechanisms but make clear that success depends on specific
regional or sectoral conditions.

The intersection of environmental taxation and technological innovation is another
area that has received considerable academic attention. Empirical evidence on the positive
impact of higher environmental taxes on the adoption of green technologies is provided
by Karmaker et al. [34] and Guo et al. [35]. These studies pay particular attention to
how resource-rich cities transition to cleaner technologies under the influence of targeted
taxation. However, the effectiveness of environmental regulations in promoting innovation
is debated, with contributions based on the Porter hypothesis [36] suggesting that such
regulations may induce enough innovation to outweigh compliance costs. Zhong et al. [37]
add nuance to this discourse by showing that the impact is sector-specific and depends on
the level of pollution. Rubashkina et al. [38] further extend the debate by cautioning that
while taxes may facilitate incremental changes in green technology, they do not necessarily
guarantee transformative changes in productivity or sustainability.

An assessment of the regional effectiveness of environmental taxes shows mixed
results. For example, the study by Alola and Nwulu [31] on the Nordic countries presents
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energy taxation as an effective tool for reducing emissions and saving energy but also
notes that this success is not uniform across the region, being most effective in Finland and
Sweden. Furthermore, Wolde-Rufael and Mulat-weldemeskel [32] confirm the effectiveness
of environmental taxes in reducing CO2 emissions in a European context. On the other
hand, market-based approaches such as energy-consumption right trading (ECRT) have
shown promising results in China, especially among high-carbon emitting and non-state-
owned enterprises [39]. The picture becomes even more complex when considering the
experience of African economies. Degirmenci and Aydin [40] warn that the application
of the double dividend hypothesis may be less straightforward in such contexts, pointing
to cases where environmental taxes have exacerbated problems of unemployment and
environmental degradation.

Another dimension of the discourse concerns the challenges of implementing environ-
mental taxes, particularly in developing countries. Timilsina et al. [41] offer a computational
general equilibrium analysis of the potential benefits of carbon taxation in developing coun-
tries such as Côte d’Ivoire. Mpofu [17] discusses the uphill battle faced by developing
countries hampered by immature regulatory frameworks and economic vulnerabilities.
In contrast, Rafique et al. [42] find that developed countries have a better apparatus for
implementing and enforcing environmental taxes due to their advanced regulatory and
economic structures. In addition, some empirical research argues for adaptively structured
environmental taxes that can be tailored to the specific characteristics of a region or sector.
In this regard, Ahmad and Satrovic [43], Liu et al. [44], and Shayanmehr et al. [45] present
models in which tax structures are not uniform but differentiated based on a variety of
local factors, potentially increasing their effectiveness.

Despite the promise of environmental taxes, their use has been criticized. Some
studies highlight the inconsistent and sometimes counterproductive results of such taxes.
Doğan et al. [46], King et al. [47], and Özmen et al. [48] provide empirical counterevidence
that challenges the assumption that environmental taxes automatically lead to positive
outcomes. Similarly, Tan et al. [49] provide an overview of the implementation of environ-
mental taxes and suggest that the effectiveness of such measures depends on a variety of
factors, including legislation, institutional design, and public awareness. These contribu-
tions call for a more complex approach to tax design that considers regional and sectoral
conditions, as well as the possibility of unintended consequences, such as the increase in
emissions or energy intensity identified by Hájek et al. [50] and Silajdzic and Mehic [51].

In light of this rich and complex literature, a nuanced, multidimensional strategy
becomes essential for the effective implementation of environmental tax systems. These
systems should be carefully designed to account for a wide range of factors, from levels of
economic development and institutional integrity to sector-specific nuances and techno-
logical capabilities. This strategy must also consider the significant role of multinational
corporations (MNCs) in both the economic and environmental spheres. The analysis of
Vecellio Segate [52] highlights the contribution of MNCs to environmental degradation
through their global operations and tax avoidance strategies. This finding calls for a new ap-
proach to measuring environmental externalities, one that transcends national boundaries
and focuses on the transnational impacts of corporate activities. In addition, Weisbach’s [53]
review examines the international system for taxing corporate profits, particularly in the
context of corporate tax planning strategies such as the OECD’s Base Erosion and Profit
Shifting (BEPS) 2.0. This review underscores the urgency of comprehensive reforms aimed
at curbing base erosion and profit-shifting practices by MNCs. These reforms, which have
become increasingly prominent in international tax policy debates, represent a critical step
towards a fairer and more effective global tax framework that is consistent with broader
goals of environmental and economic justice.

Empirical evidence suggests that fiscal measures targeting environmental quality are
not isolated but are influenced by a complex interplay of economic, institutional, and
industrial factors. It is, therefore, imperative that environmental tax policies evolve in
response to the diverse and interconnected nature of the global economic activities of
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MNCs. A comprehensive and integrated policy approach is paramount to ensure that
environmental taxes are appropriately targeted to make a meaningful contribution to
sustainability and the pursuit of global economic justice.

2.3. Energy Resource Capacity and Environmental Quality

The relationship between energy resource capacity and environmental quality has
become a highly nuanced and complex issue involving perspectives from both developed
and developing countries. While the consumption of fossil fuels remains a significant
contributor to environmental degradation, the adoption of renewable energy forms a
counterpoint to this trend. Focusing on low-income countries, Ehigiamusoe and Dogan [54]
show that the effectiveness of renewable energy in mitigating emissions depends on the
level of real income. In the context of developed East Asian economies, Li et al. [55] find that
the adoption of green energy significantly reduces carbon dioxide emissions, particularly
in China and Japan. Sun et al. [56] provide evidence from the BRICS countries, a group that
includes both developed and developing countries. Their results suggest that renewable
energy and economic complexity interact to mitigate emissions, especially at high levels of
emissions. Thus, the role of energy resource capacity in environmental quality manifests
itself differently in developed and developing countries, influenced by factors related to
income levels and economic complexity.

Beyond the focus on renewable energy sources in different regions, it is equally im-
portant to examine the role of energy efficiency in determining energy resource capacity
and environmental quality. The complexity of this relationship requires a multidimen-
sional analytical approach. For example, Lei et al. [57], focusing on Asian economies, and
Berner et al. [7], emphasizing the European context, have pointed to the positive impact of
energy efficiency in reducing GHG emissions. Conversely, Saunders [58], whose research
focuses on the United States, introduced the concept of the “rebound effect”, suggesting
that improvements in energy efficiency may paradoxically lead to an increase in overall
energy consumption. Amjadi et al. [6], who study countries in the Middle East, provide
further support for this effect, adding a layer of complexity to the energy efficiency debate.
In addition, Khan et al. [59], using data from Morocco, highlight the role of governance
mechanisms in influencing the relationship between energy efficiency and carbon emis-
sions. Omondi et al. [9], focusing on the African country of Kenya, present economy-wide
analyses showing partial rebound effects in energy and carbon savings despite efficiency
initiatives. Adding another dimension to this complex discourse, Jahanger et al. [8] provide
insights into the top ten manufacturing countries and find that energy efficiency and re-
newable energy are effective in mitigating GHG emissions, especially when integrated with
technological advances in the manufacturing sector. Thus, while energy efficiency remains
a promising avenue for increasing energy resource capacity and mitigating environmental
degradation, its role is nuanced and varies depending on the regional context. Empirical
evidence thus supports the need for a multipronged policy approach, tailored to specific
regional needs and integrated with other strategic policies and governance structures, to
achieve the twin goals of sustainable development and environmental quality.

Another lens through which to assess the relationship between energy resource capac-
ity and environmental quality is depletion accounting. This principle, rooted in ecological
economics, advocates for comprehensive accounting of natural resource use and environ-
mental degradation in economic valuations [60]. Gyamfi et al. [61] extend this principle by
integrating depletion accounting into macroeconomic models and demonstrate its utility
for analyzing the complexities of sustainable economic development in the G7 economies.
Developed countries represent a particular context in which the correlation between energy
resource capacity and environmental quality appears to be positive. These economically
affluent societies have the financial means to invest in cleaner technologies and modernized
infrastructure. Rubashkina et al. [38] provide empirical support for this view, showing that
developed countries with strict environmental regulations have experienced significant
progress in green innovation, as posited by the Porter hypothesis [36]. In contrast, develop-
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ing countries often experience negative impacts on their environmental quality, generally
due to their energy resource capacity. In this context, the Pollution Haven Hypothesis
serves as a theoretical framework, which posits that firms may relocate pollution-intensive
activities to countries with lax environmental regulations [62]. Furthermore, Wu et al. [63]
examined the BRICS countries and found that natural resource volatility has a significant
impact on both economic performance and environmental quality.

Thus, the observed disparities in environmental quality between developed and
developing countries are primarily due to differences in technological capabilities, the ef-
fectiveness of institutional frameworks, and policy orientation. While developed countries
are increasingly aligning their energy strategies with sustainable development, developing
countries face challenges that often lead to environmental degradation.

2.4. Digitalization and Environmental Quality

The nexus between digitalization, mainly mediated by ICT, and environmental quality
is a complex, multidimensional matrix influenced by a wide range of variables. These
variables extend beyond purely technological factors to include economic development,
technological maturity, policy frameworks, and temporal considerations, all of which
contribute to the multidimensionality of this relationship.

In the context of economically developed countries, there is a convergence of advanced
ICT infrastructure, robust policy frameworks, and high levels of public awareness, all of
which contribute synergistically to favorable environmental outcomes. Recent empirical
evidence reinforces this synthesis and draws attention to the role of emerging technologies
such as data analytics, smart grids, and energy management systems in improving the
environment [64,65]. Subsequent advances in Internet of Energy (IoE) and blockchain
technologies are proving to be critical for energy optimization, leading to significant re-
ductions in GHG emissions [66,67]. These innovations, when integrated with artificial
intelligence (AI) and the Internet of Things (IoT), significantly improve the operational
efficiency of smart grids, highlighting the importance of technological synergies in environ-
mental protection [68]. These findings are consistent with those of Huang et al. [69], who
point out that developed economies, represented by the G-7 countries, generally experience
improvements in environmental quality that can be attributed to ICT and other variables.

Developing economies demarcate a more diverse landscape, where the prospects for
digitalization to influence environmental quality are hampered by infrastructural inad-
equacies that encompass both hardware and software elements [70]. Empirical studies
focusing on sub-Saharan Africa suggest a positive but statistically insignificant relationship
between ICT and environmental quality [71]. Comprehensive analyses, including data
from 77 developing countries, present a multifaceted picture in which the positive effects
of ICT on reducing CO2 emissions are offset by other mediating variables such as glob-
alization and financial development [72]. This complex relationship is further supported
by subsequent studies showing how financial development and economic complexity can
either enhance or mitigate the environmental impacts of digitalization [69,73–75].

Temporal variables further complicate this complex equation. Initial phases of digital
infrastructure development often require increased energy inputs, resulting in transient
spikes in GHG emissions [64,76]. However, this trend typically reverses as digital systems
mature. Specifically, Batool et al. [73] find that in selected developing countries, the long-
term effects of ICT and financial development may be detrimental to environmental quality
despite insignificant short-term impacts. Across a broader spectrum that includes both
developed and developing economies, renewable energy embedded in ICT infrastructures
consistently has a positive impact on environmental quality [69,75].

From the compendium of recent empirical studies, it is clear that the potential for
digitization to facilitate environmental improvement is complex, non-linear, and highly de-
pendent on a number of modulating variables such as economic development, technological
sophistication, and governance paradigms.
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3. Data and Methodology
3.1. Data

The aim of this study is to examine the impact of information and communication
technology (ICT) adoption, energy resource capacity, and environmental tax revenues on
environmental quality. The analysis covers a diverse sample of 88 countries, including
50 low- and middle-income countries (LMICs) and 38 high-income countries (HICs), over
the period 2000 to 2021. The choice of time period is primarily dictated by the availability
of comprehensive and consistent data for all variables of interest.

The dependent variable in this analysis is per capita greenhouse gas emissions
(GHG_PC), expressed in metric tons of carbon dioxide equivalent. This critical measure
of environmental quality is derived from the Emissions Database for Global Atmospheric
Research (EDGAR) [77]. To test the EKC (Environmental Kuznets Curve) hypothesis, we
include gross domestic product per capita (GDP_PC), adjusted to constant 2015 U.S. dol-
lars, and its squared term. GDP data are obtained from the Organization for Economic
Cooperation and Development (OECD) database [78].

In addition, we consider environmentally related tax revenue (ERTR) as a percentage
of GDP. This indicator represents the fiscal dimension of environmental policies and is also
obtained from the OECD database [78]. The study also integrates the ICT Capacity Index
(ICT_CI) and the Energy Capacity Index (ECI) to measure the breadth and efficiency of
ICT infrastructure and energy resources, respectively. These indices are derived from the
Productive Capacities Index of the United Nations Conference on Trade and Development
(UNCTAD) [79].

Table 1 provides an overview of the variable definitions, data sources and their statisti-
cal characteristics. A preliminary statistical analysis was conducted to validate the normal
distribution of the variables and the absence of outliers, thus confirming the suitability of
the dataset for our subsequent econometric analysis.

The comparative analysis of mean values across five key variables in LMICs and HICs,
as illustrated in the set of graphs in Figure 1, sheds light on the stark contrasts in their
environmental and economic contexts. These graphs collectively underscore significant
disparities across various indicators, enriching our understanding of the challenges and
capacities within these distinct groups. The GHG_PC graph shows significantly higher
levels in HICs. This difference likely reflects their more intensive industrial activities
and elevated energy consumption. In contrast, the graph for GDP_PC aligns with this
trend, showing that HICs possess more developed economies and are capable of advanced
environmental management but also potentially contribute to substantial environmental
externalities. Furthermore, the ERTR graph as a percentage of GDP is markedly higher in
HICs, suggesting their more extensive application of fiscal mechanisms in environmental
policies. This pattern is mirrored in the ECI and ICT_CI graphs, which indicate that HICs
enjoy more advanced energy infrastructures and greater ICT development. These elements
are crucial in contemporary environmental management strategies. Each graph within
Figure 1 underscores significant differences in GHG emissions, ERTR, and energy and
ICT capacities between LMICs and HICs. These disparities point to the complexity of
environmental issues and the role of various economic and technological factors. The
higher GHG emissions and ERTR in HICs, coupled with their advanced energy and ICT
capacities, signal the need for environmental strategies that are not only region-specific
but also adaptable to the shifting global economic and technological landscape. These
graphically represented data suggest the necessity of a more in-depth exploration to fully
comprehend the underlying dynamics and factors influencing environmental outcomes
in these diverse economic contexts. Such an analysis is vital for developing informed
and effective policy interventions tailored to the unique needs and capabilities of LMICs
and HICs.
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Table 1. Variable definitions and descriptive statistics.

Variable GHG_PC GDP_PC ERTR ECI ICT_CI

Definition

Greenhouse gas
emissions per
capita (tons of
carbon dioxide

equivalent)

Gross domestic
product per capita

(constant 2015
US$)

Environmentally
related tax revenue

(% of the GDP)

Energy capacity
index ICT capacity index

Source EDGAR OECD OECD UNCTAD UNCTAD

Low- and middle-income countries (LMICs)

Obs. 1100 1100 1100 1100 1100
Mean 5.926 8602.581 1.111 43.488 30.385

Std. dev. 4.815 6233.191 0.836 18.972 16.051
Min 0.755 587.060 0.53 1 1
Max 24.354 31,450.77 4.14 75.293 71.393

High-income countries (HICs)

Obs. 836 836 836 836 836
Mean 11.729 38,570.75 2.282 71.805 61.131

Std. dev. 7.337 16,925.17 0.900 6.886 12.126
Min 1.844 11,630.56 0.15 49.263 25.540
Max 48.447 11,4973.9 5.1 98.049 86.118

Sampled countries: LMICs: Argentina, Bangladesh, Belize, Bolivia, Botswana, Brazil, Bulgaria, Burkina Faso,
Cabo Verde, Cameroon, China, Colombia, Côte d’Ivoire, Democratic Republic of the Congo, Dominican Republic,
Ecuador, Egypt, El Salvador, Eswatini, Ghana, Guatemala, Guyana, Honduras, India, Jamaica, Kazakhstan,
Kenya, Kyrgyzstan, Madagascar, Malaysia, Mali, Mexico, Morocco, Nicaragua, Niger, Panama, Paraguay, Peru,
Philippines, Romania, Rwanda, Saint Lucia, Senegal, South Africa, Togo, Tunisia, Turkey, Uganda, Ukraine, and
Vietnam. HICs: Antigua and Barbuda, Australia, Austria, Bahamas, Belgium, Chile, Croatia, Cyprus, Czech
Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Japan, Latvia,
Lithuania, Luxembourg, Malta, Netherlands, New Zealand, Norway, Poland, Portugal, Slovak Republic, Slovenia,
Spain, Sweden, Switzerland, Trinidad and Tobago, United Kingdom, United States, and Uruguay.
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gas emissions per capita (GHG_PC); (b) gross domestic product per capita (GDP_PC); (c) environ-
mentally related tax revenue (ERTR) as a percentage of GDP; (d) Energy Capacity Index (ECI); (e) ICT
Capacity Index (ICT_CI).

3.2. Analytical Methods
3.2.1. Cross-Sectional Dependence Tests

The dynamics of economic and financial variables often reveal complex interrelation-
ships that are best understood through the lens of cross-sectional dependence (CSD). In
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the context of CSD, weak dependence typically results from localized economic activity or
shocks that are confined to specific sectors of the economy. Conversely, strong dependence
arises when economic shocks are more widespread and affect multiple sectors simulta-
neously. Such shocks can be triggered by a variety of factors, including, but not limited
to, fluctuations in demand, changes in macroeconomic policies, or different regulatory
frameworks across countries. Further complexity arises from the intrinsic economic in-
terdependencies, the presence of externalities, and the macro-level interconnectedness
of economies across geographic boundaries. Neglecting the implications of CSD can
lead to significant biases, particularly when latent variables that are not observable in
the model interact with explanatory variables, thereby contaminating the integrity of the
econometric model.

Given the critical role of CSD in robust statistical inference, the first step in the
econometric analysis focuses on identifying its presence or absence. Accurate detec-
tion of CSD is essential for the validation of subsequent statistical procedures, includ-
ing unit root tests, cointegration analysis, and long-run equilibrium relationships. The
gravity of overlooking CSD, as pointed out by Westerlund and Edgerton [80] and Sharif
et al. [81], cannot be overemphasized, given its potential to produce spurious results and
misleading interpretations.

To address this critical issue, the current study employs the CD test as described by
Pesaran [82,83] as well as the CDw+ test developed by Fan et al. [84]. The mathematical
formulation of the CD test is expressed as follows:

CD =

√
2T

N(N − 1)

(
N−1

∑
i=1

N

∑
j=i+1

ρ̂ij

)

Here, T refers to the number of cross-sectional observations, ρij denotes the correlation
residuals derived from the regression model, and N represents the length of the time
dimension of the panel data.

Regarding the CDw+ test of Fan et al. [84], it is formulated as follows:

CDw+ =

√
2

TN(N − 1)

T

∑
t=1

N

∑
i=2

i−1

∑
j=1

(wi ε̂i,twj ε̂ j,t) +
N

∑
i=2

i−1

∑
j=1

∣∣∣∣∣ρ̂ij

∣∣∣∣∣1
(∣∣∣∣∣ρ̂ij

∣∣∣∣∣> 2

√
ln(N)

T

)

where ρ̂ij represents the cross-sectional correlation estimator, wi and wj the average weights
of individual-specific covariances, and ε̂i,t and ε̂ j,t the vectors of idiosyncratic error terms.

3.2.2. Slope Homogeneity Tests

After verifying the CSD in the panel data, the study proceeds to the second step,
which aims to investigate the issue of slope homogeneity within the panel data. The
presence of slope heterogeneity can distort the subsequent econometric results, making
this step necessary. For this purpose, the study employs the Pesaran and Yamagata [85]
test, an extension of the original test developed by Swamy [86]. This test considers a null
hypothesis of slope homogeneity and an alternative hypothesis of slope heterogeneity. Two
specific statistics, delta (∆̃) and adjusted delta (∆̃adj), are computed to test these hypotheses.
Mathematically, these statistics are expressed as:

∆̃ =
√

N
(

N−1S̃−k√
2k

)
∆̃adj =

√
N

(
N−1S̃−k√
2k(T−k−1)

T+1

)

In these equations, N is the number of cross-sectional units, T is the time dimension,
k is the number of independent variables, and S̃ is the modified Swamy [86] test statistic.
The Pesaran and Yamagata [85] test provides robust performance, especially when the time
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dimension T exceeds the number of cross-sectional units N. In addition, the test accounts
for the residual CSD, which underscores its reliability, as confirmed by Bersvendsen and
Ditzen [87].

3.2.3. Panel Unit Root Tests

The third analytical step of the study addresses the issue of non-stationarity in the
panel data, especially when cross-sectional dependencies are prevalent. Given the inherent
limitations of conventional first-generation unit root tests under CSD conditions, the current
study opts for second-generation unit root tests for a more nuanced analysis. Specifically,
two tests are employed: the Cross-sectionally Augmented Dickey-Fuller (CADF) test
and the Cross-sectionally Augmented Im, Pesaran and Shin (CIPS) test introduced by
Pesaran [88]. The CADF test is expressed by the following equation:

∆Zit = ϕi + ςiZi,t−1 + σiZt−1 +
p

∑
j=0

σij∆Zt−1 +
p

∑
j=1

λij∆Zi,t−1 + εit

In this equation, ∆ symbolizes the difference operator, Zt−1 and ∆Zt−1 denote the
cross-sectional averages of lagged levels and first differences, respectively, and ε is the
error term.

The CIPS statistics are then computed based on the individual CADF statistics for each
panel unit. This is formalized as:

CIPS =
1
N

n

∑
i=1

CADFi

where T is the number of cross-sections and N is the sample size in terms of periods.
In addition, the study employs the sequential unit root tests at unknown breakpoints

proposed by Ditzen et al. [89] to identify multiple structural breaks in the time series. This
step reinforces the robustness of the non-stationarity assessment, especially when the series
is subject to unobservable shocks or regime changes. It allows the analysis to better adapt
to the complexities introduced by the CSD and thus improves the overall integrity of the
time series analysis.

3.2.4. Panel Cointegration Tests

The fourth step of the analysis involves the use of panel cointegration tests to iden-
tify the long-run relationships among the variables under study. Cointegration refers to
the statistical equilibrium that long-run variables tend to achieve even when they are
individually non-stationary. This step becomes meaningful when panel stationarity is
confirmed, a prerequisite for robust cointegration analysis. To this end, we implement
Westerlund’s [90] test for panel cointegration, which controls for both slope heterogeneity
and cross-sectional dependence within the panel. The empirical literature supports the
effectiveness of this method in dealing with CSD issues and in producing reliable long-run
estimates between panel series. The Westerlund [90] test uses the following equation to
determine the relationship between variables:

∆yit = δ′ idt + αi
(
yit−1 − β′

ixit−1
)
+ ∑pi

j=1 αij ∆yit−j + ∑pi
j=0 γij ∆xit−j + eit

In this equation, ∆yit and ∆xit denote the first differences of the dependent and
independent variables, respectively, while eit represents the error term.

The test includes two categories of statistics. Group mean statistics (Gτ and Gα) assess
cointegration when one or more components are involved. Panel statistics (Pτ and Pα), on
the other hand, examine cointegration across all cross-sectional units. The computation of
the test statistics is expressed as follows:
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For large samples:

Gτ =
1
N ∑N

i=1
α̂i

SE(α̂i)
and Pτ =

α̂

SE(α̂)

For small samples:

Gα =
1
N ∑N

i=1
Tα̂i

α̂i(1)
and Pα = Tα̂

When the variables are found to be cointegrated, this study uses the Cross-Sectional-
Augmented Autoregressive Distributed Lag (CS-ARDL) model, as developed by Chudik
and Pesaran [91], to further explore the short-run and long-run relationships between
the variables.

3.2.5. Estimation of Short-Run and Long-Run Elasticities

The fifth analytical step of our study is to estimate both short-run and long-run
elasticities, which is necessary after establishing long-run cointegration among the variables.
For this purpose, we employ the Cross-Sectional Augmented Autoregressive Distributed
Lag (CS-ARDL) model. This model is particularly suitable for our panel data, which are
characterized by cross-sectional dependence (CSD). CS-ARDL is adept at dealing with
several complex issues commonly associated with panel data, including cross-sectional
dependence, endogeneity, heteroskedasticity, multicollinearity, omitted variable bias, and
dynamic panel bias. Such capabilities of the CS-ARDL model make it a reliable and
robust choice for analyzing complex datasets, as supported by the existing empirical
literature [81,92–95]. Furthermore, the CS-ARDL model is known for its ability to provide
trustworthy impact parameters, thus effectively addressing the many challenges typical of
panel data analysis, as highlighted by Chudik and Pesaran [91].

To further validate the robustness of our CS-ARDL estimates, we also include al-
ternative methods: the Dynamic Common Correlated Effects Mean Group (DCCEMG)
estimator and the Augmented Mean Group (AMG) estimator. The DCCEMG estimator,
introduced by Chudik and Pesaran [96], and the AMG estimator, developed by Eberhardt
and Teal [97], offer unique advantages. These include their ability to address identification
problems that are often obscured by temporal variations in the data. Both DCCEMG and
AMG are effective in dealing with heterogeneity across slopes and in mitigating spillover
effects arising from cross-sectional dependencies. They do this by averaging the effects of
determinants across all cross-sectional units, thereby neutralizing the negative effects of
cross-sectional dependencies. In addition, these methods are flexible enough to account for
structural breaks and year-specific effects, which is essential in addition to dealing with
CSD and heterogeneity in our analysis.

3.3. Model Specification

Building on the theoretical foundations of the EKC and informed by studies such as
those of Dahmani et al. [98,99], Hashmi et al. [16], Islam and Rahaman [70], Pata et al. [100],
and Saqib et al. [101], the current study constructs an analytical framework specifically
tailored to its research objectives. This framework is articulated through a governing
equation designed to capture the relationship between GHG emissions and a selection of
economic and policy variables and is presented as follows:

GHGit = f (GDP_PCit, GDP2_PCit, ECIit, ERTRit, ICT_CIit)

The econometric specification of the equation is formalized as:

GHG_PCit = α0i + α1iGDP_PCit + α2iGDP2_PCit + α3iERTRit + α4iECIit + α5i ICT_CIit + εit

In this configuration, the indices i and t denote countries and time intervals, respec-
tively. The symbol εit denotes the stochastic error term. The coefficients α0i, α1i, α2i, α3i, α4i,
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and α5i are parameters quantifying the constant term and the influence of GDP per capita,
the square of GDP per capita, environmentally related tax revenue, the energy capacity
index, and the ICT capacity index. Validation of the EKC framework would require a statis-
tically significant and positive α1i and a statistically significant and negative α2i, indicating
an inverted U-shaped relationship between GHG emissions and economic development.

To extend the model’s ability to incorporate temporal dynamics and cross-sectional
dependencies, a cross-sectional augmented autoregressive distributed lag approach is
integrated. The transformed equation is presented as:

GHG_PCit = α0 +
P

∑
j=1

βitGHG_PCi,t−j +
P

∑
j=0

αitXt−j +
3

∑
j=0

ϕitZt−j + εit

In this extended formulation, the dependent variable GHG_PCit remains the focal
metric of environmental quality. The vector Xit = (GDP_PCit, GDP2_PCit, ERTRit, ECIit,
ICT_CIit) encapsulates the core independent variables. Temporal lags are included through
the coefficients β and ϕ. An additional term, Zt =

(
∆GHG_PCt, Xt

′)′, is included to control
for CSD.

The model architecture is designed to provide a nuanced understanding of the vari-
ables under consideration. It incorporates both static and dynamic coefficients to control
for time-invariant and time-varying effects. Furthermore, the model accounts for cross-
sectional dependencies, which is critical for data that exhibit interconnectedness across
entities. This level of detail not only enhances the robustness of the model but also allows
for a more comprehensive exploration of the economic and environmental paradigms it
seeks to investigate.

4. Results and Discussion
4.1. Outcomes of CSD and Slope Homogeneity Tests

The first stage of the analytical procedure involved an examination of the CSD among
the preselected variables. Using the CD and CDw+ tests developed by Pesaran [82,83] and
Fan et al. [84], respectively, the study found conclusive evidence against the null hypothesis
of weak CSD at the 1% significance level for all variables. An exception was found for
ERTR in the context of LMICs, which indicated a rejection of the null hypothesis at a 5%
significance level according to the CD test. These results were confirmed in both panels,
including LMICs and HICs, as shown in Table 2. The empirical evidence thus suggests
that shocks to one economy within a panel are likely to spill over to other economies in the
same panel. This implies that any econometric analysis using panel data should control for
the potential correlation between cross-sectional units to ensure the accuracy and reliability
of the estimates.

Table 2. Cross-sectional dependence analysis results.

Variable

LMICs HICs

Test Value (p-Value) Test Value (p-Value)

CD CDw+ CD CDw+

GHG_PC 10.39 *** (0.000) 2909.98 *** (0.000) 43.76 *** (0.000) 1994.84 *** (0.000)
GDP_PC 119.48 *** (0.000) 4487.85 *** (0.000) 79.58 *** (0.000) 2486.99 *** (0.000)

GDP2_PC 119.30 *** (0.000) 4483.17 *** (0.000) 79.50 *** (0.000) 2483.29 *** (0.000)
ERTR 2.24 ** (0.025) 1958.63 *** (0.000) 27.22 *** (0.000) 1486.86 *** (0.000)
ECI 92.06 *** (0.000) 3731.65 *** (0.000) 5.84 *** (0.000) 1399.82 *** (0.000)

ICT_CI 159.42 *** (0.000) 5576.64 *** (0.000) 120.30 *** (0.000) 3198.52 *** (0.000)

Notes: The CD statistic is normally distributed under the null hypothesis of no cross-sectional dependence.
*** and ** indicate the statistical significance level at 1% and 5%, respectively. Variables are in logarithms.

In addition to the CSD tests, the study implemented the Pesaran and Yamagata [85]
test to assess the homogeneity of the slopes across panel units. The data presented in
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Table 3 show that both the delta (∆̃) and adjusted delta (∆̃adj) tests led to the rejection of the
null hypothesis of slope homogeneity at the 1% significance level. This result was observed
regardless of the economic classification of the panel, whether LMICs or HICs. The results
clearly confirm the existence of slope heterogeneity within the panels studied.

Table 3. Slope heterogeneity analysis results.

Statistics
LMICs HICs

Test Value (p-Value) Test Value (p-Value)

Delta tilde (∆̃) test 21.470 *** (0.000) 20.890 *** (0.000)
Delta tilde adjusted (∆̃adj) test 26.001 *** (0.000) 25.299 *** (0.000)

*** indicates the statistical significance level at 1%.

These empirical results provide conclusive support for the existence of both CSD and
slope heterogeneity. Given these complexities, it is evident that the use of second-generation
unit root tests, cointegration tests, and estimation techniques is warranted for accurate
stationarity assessment, cointegration analysis, and model estimation. Furthermore, the
evidence supports the notion of economic interdependence among the nations represented
in each panel, thereby validating the conceptual framework of the model designed to
capture these complex interrelationships.

4.2. Outcomes of the Second Generation of Panel Unit Root Tests

After identifying CSD and slope heterogeneity in the panels of LMICs and HICs,
the focus shifted to examining the unit root properties of the specified variables. To
operationalize this, the study used second-generation panel unit root tests, specifically
the CADF and CIPS techniques. The results are systematically documented in Table 4 for
both the LMICs and HICs panels. The composite inference drawn from these unit root
tests shows that, with the exception of the ICT capacity index variable, all other variables
remain non-stationary at their levels, categorically denoted as I(0). Conversely, these series
were found to be integrated of order one, I(1). Thus, the null hypothesis H0 is decisively
rejected in favor of the alternative hypothesis H1, which posits stationarity in the presence
of the aforementioned CSD and slope heterogeneity. This decisive result sets the stage for
the subsequent implementation of panel cointegration tests, the purpose of which is to
investigate the existence of long-run equilibrium relationships among the variables.

As a further robustness check of the results, sequential tests for multiple breaks
at unknown breakpoints by Ditzen et al. [89] were additionally conducted. This test is
designed to identify multiple structural breaks at unknown breakpoints. The derived
statistics, reported in Table 5, show that the values of the test statistics are consistently
below the Bai and Perron 1% critical values for both panels. This statistically substantiates
the absence of structural breaks, mean shifts, or regime shifts, thus excluding the need for
breakpoint estimation in the series.

4.3. Results of Panel Cointegration Analysis

The prerequisite for assessing both long-run and short-run elasticities between the
variables of interest is the prior verification of cointegration relationships within the panel
data. In line with this requirement, the current study applied the cointegration test devel-
oped by Westerlund [90], which accounts for the existence of CSD in the datasets. The test
results are presented in Table 6.

Within the Westerlund [90] framework, four salient statistics are generated: Gτ , Gα,
Pτ , and Pα. Specifically, Gτ and Gα focus on assessing cointegration relationships at the
individual cross-sectional level. Conversely, Pτ and Pα are designed to collectively evaluate
the panel under the null hypothesis of no cointegration. Each of these statistical measures
was found to be significant at the 1% level, convincingly rejecting the null hypothesis
of non-cointegration among the series under study. This robust empirical result lends
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credence to the existence of long-run equilibrium relationships between environmental
quality and GDP_PC, ERTR, ECI, and ICT_CI in both the LMICs and HICs panels.

Table 4. Unit root test analysis results.

Level First-Difference

Without Trend With Trend Without Trend With Trend

Cross-Sectionally Augmented IPS (CIPS)

LMICs HICs LMICs HICs LMICs HICs LMICs HICs

GHG_PC −1.701 −1.634 −2.745 *** −2.668 ** −4.013 *** −4.238 *** −4.128 *** −4.395 ***
GDP_PC −1.921 −1.784 −1.927 −2.041 −3.314 *** −3.375 *** −3.472 *** −3.502 ***

GDP2_PC −1.827 −1.750 −1.883 −1.995 −3.289 *** −3.378 *** −3.440 *** −3.496 ***
ERTR −2.008 −1.861 −2.731 *** −2.473 −4.615 *** −4.128 *** −4.770 *** −4.274 ***
ECI −1.975 −2.000 −2.306 −2.559 * −4.519 *** −4.742 *** −4.730 *** −4.853 ***

ICT_CI −2.082 * −2.129 ** −2.174 −2.070 −3.298 *** −3.427 *** −3.574 *** −3.522 ***

Cross-Sectionally Augmented Dicky-Fuller (CADF)

GHG_PC −1.750 −1.665 −2.681 *** −2.634 ** −3.171 *** −4.315 *** −3.367 *** −4.383 ***
GDP_PC −1.924 −1.845 −1.938 −2.036 −3.293 *** −3.625 *** −3.474 *** −3.755 ***

GDP2_PC −1.816 −1.823 −1.887 −2.009 −3.268 *** −3.327 *** −3.444 *** −3.627 ***
ERTR −2.033 −1.798 −2.778 *** −2.347 −4.614 *** −4.128 *** −4.753 *** −4.267 ***
ECI −2.037 −2.000 −2.271 −2.456 −4.504 *** −4.722 *** −4.686 *** −4.825 ***

ICT_CI −2.102 * −2.596 *** −2.224 −2.905 *** −3.330 *** −4.899 *** −3.599 *** −4.942 ***

Notes: The panel unit root test was conducted under the null hypothesis that the variables are homogeneous and
non-stationary. ***, ** and * indicate the statistical significance level at 1%, 5%, and 10%, respectively. Variables are
in logarithms.

Table 5. Sequential test for multiple breaks at unknown breakpoints.

Bai and Perron Critical Values

Test Statistic 1% Critical Value 5% Critical Value 10% Critical Value

LMICs HICs LMICs HICs LMICs HICs LMICs HICs

F(1|0) 2.36 2.23 4.08 3.82 3.35 3.12 2.99 2.81
F(2|1) 3.31 1.01 4.32 4.05 3.69 3.45 3.34 3.11
F(3|2) 1.26 1.19 4.51 4.19 3.84 3.59 3.53 3.27
F(4|3) 3.01 2.08 4.59 4.27 3.96 3.72 3.68 3.44

Table 6. Westerlund [90] Panel cointegration tests.

Value Z-Value p-Value

Statistic LMICs HICs LMICs HICs LMICs HICs

Gτ −3.476 −4.318 −10.291 −15.704 0.000 0.000
Gα −11.642 −13.800 −1.753 −5.911 0.004 0.000
Pτ −26.971 −22.996 −12.265 −11.352 0.000 0.000
Pα −12.500 −12.264 −6.176 −7.803 0.000 0.000

Notes: The Gτ and Gα statistics assess cointegration for each individual cross-section, while the Pτ and Pα statistics
assess panel cointegration under the null hypothesis of no cointegration.

The confirmation of cointegration paves the way for the application of econometric
models capable of handling cointegrated panel series, especially in contexts with CSD
and slope heterogeneity. To this end, advanced econometric estimators, including but not
limited to the AMG, DCCEMG, and CS-ARDL models, will be employed in subsequent
phases of the analysis to quantify the short-run and long-run elasticities between variables.
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4.4. Results of the Estimation of Short-Run and Long-Run Elasticities

Using the CS-ARDL approach, this step investigates the short-run and long-run deter-
minants that influence environmental quality, as shown in Table 7. An initial assessment
of model quality is warranted prior to the analysis of variable-specific results. The error
correction term (ECT (−1)) has significant negative coefficients for both income panels,
specifically −0.394 for LMICs and −0.534 for HICs. These values confirm the reliability
of the models by indicating a tendency to revert to the long-run equilibrium, with HICs
showing a faster tendency to revert to the long-run equilibrium, as indicated by the steeper
negative coefficient. The robustness of the model is further supported by the CD statistic,
which is negative but statistically insignificant for both LMICs and HICs. This lack of
statistical significance confirms the absence of cross-sectional dependence and, thus, the
robustness of the CS-ARDL methodology employed.

Table 7. CS-ARDL analysis results.

LMICs HICs

Variables Coefficients Standard Error Coefficients Standard Error

Long-run results

GDP_PC 0.147 *** 0.125 0.356 *** 0.161
GDP2_PC −0.048 *** 0.034 −0.050 *** 0.046

ECI 0.194 *** 0.125 −0.082 ** 0.067
ERTR −0.073 * 0.042 −0.242 *** 0.134

ICT_CI −0.057 0.064 −0.105 *** 0.061

Short-run results

ECT (−1) −0.394 *** 0.064 −0.534 *** 0.067
GDP_PC 0.284 *** 0.129 0.554 *** 0.169
GDP2_PC −0.023 ** 0.018 −0.121 *** 0.086

ECI 0.241 *** 0.105 −0.027 * 0.013
ERTR −0.046 0.023 −0.152 *** 0.107

ICT_CI −0.056 0.108 −0.038 ** 0.019

CD Statistic −0.43 (0.670) −0.84 (0.402)
Notes: The CD statistic test is standard normally distributed under the null hypothesis of weak cross-sectional
dependence. The value in parentheses for the CD statistic is the p-value. ***, ** and * indicate the statistical
significance level at 1%, 5%, and 10%, respectively.

Turning to the main results, economic growth emerges as a determinant of environ-
mental degradation for both LMICs and HICs. Specifically, the long-run coefficients for
GDP_PC are 0.147 for LMICs and 0.356 for HICs, confirming that economic expansion
tends to increase environmental degradation. These results are consistent with those of
Ahmad et al. [102] and Shah et al. [103], which show an intensified ecological footprint
in the G-11 countries and increasing carbon emissions in the top 15 natural gas suppliers,
respectively. The direct nexus between economic growth and GHG emissions is based on
the idea that the production of goods and services in the selected economies inherently
requires increased energy consumption, which subsequently leads to higher emissions.
This notion is supported by the studies of Pata et al. [100] and Shokoohi et al. [13], which
examined the impact of energy intensity and technology adoption on this relationship
in the Middle East and four technologically advanced countries, respectively. Moreover,
the empirical evidence supports the EKC hypothesis, confirming the framework of Gross-
man and Krueger [3] and Stern [12]. This hypothesis proposes an initial worsening of
environmental quality, followed by an improvement as economies mature. The empirical
alignment with the EKC hypothesis is further supported by studies by Jahanger et al. [8],
Saqib et al. [101], Dahmani [104], and Youssef et al. [105], all of which confirm similar
trends in major manufacturing economies, the United States, and European Economic Area
countries, respectively.
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Looking at the coefficients for LMICs and HICs in both the short and long run, LMICs
have relatively lower coefficients, indicating their nascent stage in the EKC. This observation
is congruent with Islam and Rahaman [70], who found the Gulf Cooperation Council
countries to be similarly positioned in their EKC trajectory. Conversely, the elevated
coefficients for the HICs suggest that these nations are likely approaching the turning point
in their EKC, where societal pressure for improved environmental quality gains traction.
Thus, the temporal elasticity estimates confirm that economic growth and environmental
quality are interrelated in a complex, non-linear manner that evolves over time.

The analysis of the ERTR shows a contrasting impact on environmental quality be-
tween LMICs and HICs. In LMICs, the ERTR coefficient is −0.073, indicating a marginally
significant negative impact in the long run, but appears to be insignificant in the short
run. This pattern suggests that the effectiveness of the ERTR may be limited in these
regions, possibly due to underdeveloped regulatory frameworks and economic constraints,
as discussed by Rafique et al. [42] and Timilsina et al. [41]. Conversely, in HICs, the ERTR
coefficients (−0.242 in the long run; −0.152 in the short run) are more robust, indicating the
effectiveness of environmental taxation in these environments. This difference is in line
with the findings of Alola and Nwulu [31] and Wolde-Rufael and Mulat-weldemeskel [32],
who highlight the stronger enforcement capacity of developed countries, which signifi-
cantly reduces GHG emissions. Furthermore, the differential impact of ERTR between
LMICs and HICs underscores the need for policies that are specifically tailored to regional
and sectoral nuances. Ahmad and Satrovic [43], Liu et al. [44], and Shayanmehr et al. [45]
argue for adaptively structured environmental taxes that consider unique regional and
sectoral characteristics, which could significantly increase their effectiveness. Continuous
empirical evaluation incorporating local conditions remains crucial to optimizing the en-
vironmental benefits of these fiscal strategies. Nevertheless, considering the findings of
Vecellio Segate [52], it is clear that while the differential impact of ERTR across LMICs
and HICs is pronounced, a shift towards a more globally coordinated and cooperative
fiscal framework is essential. This reorientation, which resonates with Vecellio Segate’s [52]
recommendations and is reflected in initiatives such as the OECD’s BEPS 2.0 [53], aims
to better capture the complex transnational nature of environmental externalities and the
entities responsible for them. Therefore, progress towards a fairer and more effective
environmental tax system requires not only context-specific national policies but also a
broader, international rethinking of tax frameworks. This holistic approach will ensure that
environmental taxes effectively target the real drivers of environmental degradation and
transcend national and regional boundaries.

The study also examines the role of ECI in influencing environmental quality and
finds significant differences between LMICs and HICs. In LMICs, both the long-term and
short-term coefficients are 0.194 and 0.241, respectively, and are statistically significant at
the 1% level. In light of the existing literature, particularly Ehigiamusoe and Dogan [54],
the positive coefficients may suggest that an increase in energy capacity is detrimental
to environmental quality. Possible explanations for this trend could be inefficiencies in
the energy system or the particular mix of energy sources used, which may be at a less
mature stage of the transition to sustainability. Conversely, in the HICs, the ECI coefficients
are negative and statistically significant, with values of −0.082 and −0.027 in the long
and short term, respectively. This result may be consistent with the findings of studies
such as Rubashkina et al. [38], which suggest that wealthier and more technologically
advanced countries may be more advanced in the development and adoption of clean
technologies. The negative coefficients may indicate a shift towards more energy-dense but
cleaner forms of energy. This trend is corroborated by Li et al. [55], who found a reduction
in carbon dioxide emissions with the adoption of green technologies in developed East
Asian economies. Furthermore, the principle of depletion accounting, explored in Huo and
Peng [58], may provide additional context, suggesting that HICs are gradually adopting
sustainable resource management strategies due to their financial and policy frameworks.
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Energy efficiency introduces further complexity to this dynamic, particularly due to
the “rebound effect” described by Saunders [58] and Amjadi et al. [6]. This phenomenon
suggests that efficiency gains could paradoxically lead to higher overall energy consump-
tion. Although this study does not directly quantify these variables, they add nuance to
the interpretation of the impact of the ECI on environmental quality. Thus, it could be
cautiously argued that efficiency measures, while implemented, may not translate linearly
into improved ECI or environmental quality. The divergent impacts of ECI in LMICs and
HICs thus underscore the complexity of the relationship between energy capacity and
environmental quality. These observations argue for tailored, multidimensional policy
approaches that recognize the different influences of income strata, technological capacities,
and governance frameworks on the relationship between ECI and environmental quality.

Finally, the ICT capacity index adds another dimension to the analysis. For HICs,
the estimated coefficients are negative and statistically significant, providing evidence
that advances in ICT contribute directly to GHG emission reductions. Specifically, a 1%
increase in the ICT capacity index is associated with a 0.105% reduction in GHG emissions
in the long run and a 0.038% reduction in GHG emissions in the short run. These results
are consistent with existing studies that highlight the synergistic effects of mature ICT
infrastructures, robust policy frameworks, and technological innovation in improving
the environment [64,66,67]. On the other hand, in LMICs, the estimated coefficients of
ICT_CI are statistically insignificant in both the short and long run. This finding suggests
that the relationship between ICT and environmental quality in these countries has yet
to be definitively established. Such inconclusive results can be contextualized by the
literature highlighting the infrastructural deficiencies and the nuanced roles of governance
and financial systems in LMICs [70,72]. Thus, while the ICT_CI variable is critical in
reducing GHG emissions in HICs, its role in LMICs remains ambiguous and requires
further empirical investigation. The findings of this study on the differential impact of ICT
in HICs and LMICs further underscore the need for policy frameworks that are fine-tuned
to each country’s economic, technological, and governance landscape.

The study thus provides a multifaceted understanding of the variables that affect
environmental quality. This understanding calls for nuanced, context-sensitive policies that
recognize the multiple influences of economic development patterns, technology adoption,
and governance quality.

4.5. Robustness Analysis

The validity of the long-run estimates of the CS-ARDL model is confirmed by the
application of alternative techniques, specifically the AMG and DCCEMG methods. As
shown in Table 8, these methods produce results that are largely consistent with those of
the CS-ARDL model for the variables under study. The positive coefficients for GDP_PC in
both the AMG and DCCEMG estimations confirm the proportional relationship between
economic growth and environmental degradation, thereby reinforcing the results of the
original model. At the same time, the negative coefficients for GDP2_PC in both method-
ologies and income groups support the viability of the EKC hypothesis. The coefficients for
the ECI reinforce the initial conclusion of the model, suggesting differential environmental
impacts between LMICs and HICs. Moreover, the statistically significant negative coeffi-
cients for ERTR in both AMG and DCCEMG underscore the effectiveness of such taxes
and highlight the need for geographically tailored fiscal interventions. The ICT capacity
index remains a salient variable, reaching statistical significance only in the context of HICs,
indicating its nuanced role in shaping environmental outcomes. Finally, the CD statistics
associated with the DCCEMG model substantiate the robustness of the findings, as they
support the null hypothesis of weak cross-sectional dependence. The congruence of the
results generated by the AMG and DCCEMG methods with those of the CS-ARDL model
reinforces the empirical robustness of the relationships among key economic, technological,
and environmental variables.
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Table 8. AMG and DCCEMG panel data long-run estimation results.

AMG DCCEMG

LMICs HICs LMICs HICs

Variables Coef. (Std. Err.) Coef. (Std. Err.) Coef. (Std. Err.) Coef. (Std. Err.)

GDP_PC 0.177 *** (0.138) 0.303 *** (0.093) 0.226 *** (0.162) 0.545 *** (0.055)
GDP2_PC −0.052 *** (0.022) −0.039 *** (0.028) −0.065 *** (0.034) −0.097 *** (0.063)

ECI 0.256 *** (0.151) −0.117 ** (0.072) 0.183 ** (0.097) −0.121 *** (0.086)
ERTR −0.052 ** (0.042) −0.237 ** (0.093) −0.064 ** (0.058) −0.369 ** (0.117)

ICT_CI −0.069 (0.064) −0.089 *** (0.067) −0.025 (0.053) −0.127 *** (0.085)

CD Statistic 1.02 (0.309) 1.27 (0.202)

Notes: The CD statistic test is standard normally distributed under the null hypothesis of weak cross-sectional
dependence. The value in parentheses for the CD statistic is the p-value. *** and ** indicate the statistical
significance level at 1% and 5%, respectively.

5. Conclusions and Policy Implications
5.1. Conclusions

The purpose of this study was to examine the interrelationships between digitalization,
energy resource capacity, and environmentally related tax revenue (ERTR) in their impact on
environmental quality over the period 2000 to 2021 in 50 LMICs and 38 HICs. Our research
has provided important insights into the differential impact of these factors in different
economic contexts, validating the EKC hypothesis by providing clear evidence of the
significant role of ERTR in mitigating environmental degradation. The study also highlights
the contrasting influences of energy capacity and digitalization on environmental quality
between LMICs and HICs, reflecting their different stages of economic development and
environmental policies. The use of advanced second-generation panel methods, including
the CS-ARDL, DCCEMG, and AMG models, was instrumental in addressing challenges
such as cross-sectional dependence, slope heterogeneity, and endogeneity, thus ensuring the
robustness and accuracy of our analysis. This research provides important insights into the
complex interplay between economic growth, technological progress, and environmental
sustainability and underscores the need for environmental policies that are tailored to the
unique economic realities and stages of development of different countries on their path to
sustainable environmental progress.

5.2. Policy Implications

In addressing the findings of this study, several key policy recommendations emerge,
emphasizing a multifaceted approach to mitigating environmental degradation. The study
highlights the need for a progressive environmental tax regime, particularly targeting
transnational corporations and supply chains. This regime should embody the polluter-
pays principle and compel industries with significant carbon footprints to contribute more
to environmental tax revenues. The use of these revenues to finance renewable energy
projects and circular economy initiatives is central to aligning with the United Nations
SDGs, particularly SDG-7 on affordable and clean energy and SDG-13 on climate action.
In addition, the study highlights the need for tailored energy policies that address the
different needs of LMICs and HICs. For LMICs, this includes a focus on developing green
finance and clean energy research facilitated by international financial support and develop-
ment assistance. Conversely, for HICs, the focus should be on facilitating decarbonization
credits and investments in renewable energy technologies to build sustainable energy in-
frastructures. The role of MNCs in environmental degradation requires significant attention.
Effective strategies must be implemented to counter their capital flows and tax avoidance
practices. These include strict enforcement of transparency requirements, strengthening
international tax cooperation, applying targeted environmental taxes on MNCs, and linking
tax incentives to their environmental performance. Furthermore, monitoring and regulat-
ing the capital flows of MNCs to prevent the exacerbation of environmental degradation
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and strengthening legal frameworks for corporate accountability are essential measures.
Leveraging ICTs in environmental protection strategies is critical, especially in high-income
countries where the impact of ICTs on environmental quality is more pronounced. This
includes fostering public–private partnerships to develop technologies such as smart grid
systems, data analytics for waste management, and artificial intelligence for real-time
pollution monitoring. These initiatives, in line with SDG-13, are expected to serve as
innovative solutions that synergize digitalization and environmental sustainability. Finally,
the importance of regional cooperation and cross-border initiatives cannot be overstated in
addressing the global nature of environmental challenges. These initiatives should focus on
promoting the exchange of best practices, facilitating joint research efforts, and harmonizing
environmental standards and policies. Particular attention should be paid to supporting
LMICs in making early investments in green technologies, thereby avoiding the initial
surge in emissions often associated with economic growth.

5.3. Future Research Directions

The limitations of this study provide a roadmap for future research. Extending the
time frame of the dataset and including a wider range of countries are crucial steps to
improving the robustness and applicability of the findings and to providing a compre-
hensive view of long-term trends and different economic scenarios. Examining the role
of multinational corporations is essential, as this would reveal the complex interactions
between corporate strategies, economic power dynamics, and environmental regulations.
A deeper examination of the impact of global elites and transnational supply chains on
environmental taxation and policy effectiveness is necessary to understand the intricate
relationship between wealth, resource distribution, and environmental outcomes. There is
also an urgent need to rethink approaches to environmental taxation, focusing on targeting
the capital flows and tax practices of large global corporations to address their environ-
mental impacts more effectively. In addition, assessing the balance between effective tax
enforcement and the protection of privacy and human rights is critical, with a particular
focus on the evolving legal frameworks governing these areas.

Author Contributions: Conceptualization, A.B.Y. and M.D.; methodology, A.B.Y. and M.D.; formal
analysis, M.D.; writing—original draft preparation, A.B.Y. and M.D.; writing—review and editing,
A.B.Y. and M.D. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: This study is based on data from several authoritative sources. Detailed
data on greenhouse gas emissions are provided by the Emissions Database for Global Atmospheric
Research (EDGAR), available at (https://edgar.jrc.ec.europa.eu/ accessed on 15 November 2023).
Comprehensive statistics on green growth indicators are provided by the Organization for Eco-
nomic Cooperation and Development (OECD), available at (https://stats.oecd.org/Index.aspx?
DataSetCode=GREEN_GROWTH accessed on 15 November 2023). In addition, the United Nations
Conference on Trade and Development (UNCTAD) provides valuable data on the Productive Capaci-
ties Index, available at (https://unctadstat.unctad.org/datacentre/dataviewer/US.PCI accessed on
15 November 2023).

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. UNFCCC. Paris Agreement; UNFCCC: Paris, France, 2015.
2. United Nations. Transforming Our World: The 2030 Agenda for Sustainable Development; United Nations, Department of Economic

and Social Affairs: New York, NY, USA, 2015.
3. Grossman, G.; Krueger, A. Environmental Impacts of a North American Free Trade Agreement; NBER Working Paper No. 3914;

National Bureau of Economic Research: Cambridge, MA, USA, 1991.
4. Dinda, S. Environmental Kuznets curve hypothesis: A survey. Ecol. Econ. 2004, 49, 431–455. [CrossRef]

https://edgar.jrc.ec.europa.eu/
https://stats.oecd.org/Index.aspx?DataSetCode=GREEN_GROWTH
https://stats.oecd.org/Index.aspx?DataSetCode=GREEN_GROWTH
https://unctadstat.unctad.org/datacentre/dataviewer/US.PCI
https://doi.org/10.1016/j.ecolecon.2004.02.011


Sustainability 2024, 16, 474 20 of 23

5. Schwab, K. The Fourth Industrial Revolution; Portfolio Penguin: London, UK, 2017.
6. Amjadi, G.; Lundgren, T.; Zhou, W. A dynamic analysis of industrial energy efficiency and the rebound effect: Implications for

carbon emissions and sustainability. Energy Effic. 2022, 15, 54. [CrossRef]
7. Berner, A.; Bruns, S.; Moneta, A.; Stern, D.I. Do energy efficiency improvements reduce energy use? Empirical evidence on the

economy-wide rebound effect in Europe and the United States. Energy Econ. 2022, 110, 105939. [CrossRef]
8. Jahanger, A.; Ozturk, I.; Chukwuma Onwe, J.; Joseph, T.E.; Razib Hossain, M. Do technology and renewable energy contribute to

energy efficiency and carbon neutrality? Evidence from top ten manufacturing countries. Sustain. Energy Technol. Assess. 2023, 56,
103084. [CrossRef]

9. Omondi, C.; Njoka, F.; Musonye, F. An economy-wide rebound effect analysis of Kenya’s energy efficiency initiatives. J. Clean.
Prod. 2023, 385, 135730. [CrossRef]

10. Olabi, A.G.; Abdelkareem, M.A.; Mahmoud, M.S.; Elsaid, K.; Obaideen, K.; Rezk, H.; Wilberforce, T.; Eisa, T.; Chae, K.-J.; Sayed,
E.T. Green hydrogen: Pathways, roadmap, and role in achieving sustainable development goals. Process Saf. Environ. Prot. 2023,
177, 664–687. [CrossRef]

11. Brundtland, G.H. Report of the World Commission on Environment and Development: Our Common Future; United Nations General
Assembly: New York, NY, USA, 1987.

12. Stern, D.I. The rise and fall of the Environmental Kuznets Curve. World Dev. 2004, 32, 1419–1439. [CrossRef]
13. Shokoohi, Z.; Dehbidi, N.K.; Tarazkar, M.H. Energy intensity, economic growth and environmental quality in populous Middle

East countries. Energy 2022, 239, 122164. [CrossRef]
14. Kostakis, I.; Arauzo-Carod, J.-M. The key roles of renewable energy and economic growth in disaggregated environmental

degradation: Evidence from highly developed, heterogeneous and cross-correlated countries. Renew. Energy 2023, 206, 1315–1325.
[CrossRef]

15. Agbanyo, G.K.; Ofori, C.; Prah, G.J.; Chin, T. Exploring the energy–economy–environment paradox through Yin–Yang harmony
cognition. Heliyon 2023, 9, e19864. [CrossRef]

16. Hashmi, S.M.; Yu, X.; Syed, Q.R.; Rong, L. Testing the environmental Kuznets curve (EKC) hypothesis amidst climate policy
uncertainty: Sectoral analysis using the novel Fourier ARDL approach. Environ. Dev. Sustain. 2023. [CrossRef] [PubMed]

17. Mpofu, F.Y. Green Taxes in Africa: Opportunities and Challenges for Environmental Protection, Sustainability, and the Attainment
of Sustainable Development Goals. Sustainability 2022, 14, 10239. [CrossRef]
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Carbon Neutrality: A New Evidence of Environmental Sustainability under the Prism of COP26. Resour. Policy 2023, 82, 103465.
[CrossRef]

104. Dahmani, M. Environmental quality and sustainability: Exploring the role of environmental taxes, environment-related technolo-
gies, and R&D expenditure. Environ. Econ. Policy Stud. 2023. [CrossRef]

105. Youssef, A.B.; Dahmani, M.; Mabrouki, M. The impact of environmentally related taxes and productive capacities on climate
change: Insights from European Economic Area countries. Environ. Sci. Pollut. Res. 2023, 30, 99900–99912. [CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1111/j.1468-0084.2007.00477.x
https://doi.org/10.1080/00036846.2022.2096861
https://doi.org/10.1038/s41598-023-36373-0
https://www.ncbi.nlm.nih.gov/pubmed/37277449
https://doi.org/10.1007/s10668-023-03546-w
https://doi.org/10.1016/j.jeconom.2015.03.007
https://doi.org/10.3390/en14227550
https://doi.org/10.1016/j.jclepro.2023.139088
https://doi.org/10.3390/su151310663
https://doi.org/10.1016/j.renene.2023.119000
https://doi.org/10.1016/j.resourpol.2023.103465
https://doi.org/10.1007/s10018-023-00387-9
https://doi.org/10.1007/s11356-023-29442-4
https://www.ncbi.nlm.nih.gov/pubmed/37615919

	Introduction 
	Theoretical Background and Literature Review 
	Economic Development and Environmental Quality 
	Environmental Taxation, Fiscal Mechanisms, and Environmental Quality 
	Energy Resource Capacity and Environmental Quality 
	Digitalization and Environmental Quality 

	Data and Methodology 
	Data 
	Analytical Methods 
	Cross-Sectional Dependence Tests 
	Slope Homogeneity Tests 
	Panel Unit Root Tests 
	Panel Cointegration Tests 
	Estimation of Short-Run and Long-Run Elasticities 

	Model Specification 

	Results and Discussion 
	Outcomes of CSD and Slope Homogeneity Tests 
	Outcomes of the Second Generation of Panel Unit Root Tests 
	Results of Panel Cointegration Analysis 
	Results of the Estimation of Short-Run and Long-Run Elasticities 
	Robustness Analysis 

	Conclusions and Policy Implications 
	Conclusions 
	Policy Implications 
	Future Research Directions 

	References

