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Abstract: Microplastics (MPs), as an emerging persistent pollutant, exist and accumulate in the
environment, which has garnered them considerable global attention. While the origin, dispersion,
distribution, and impact of MPs have been extensively documented, the characterization and removal
strategies for MPs present ongoing challenges. In this literature review, we introduce in detail the
advantages and disadvantages of seven characterization methods, from macroscopic to microscopic,
from visual observation to microscopic characterization, and discuss their scope of application. In
addition, 12 treatment schemes were summarized from the three treatment directions of physics,
chemistry, and biology, including filtration, adsorption, extraction, magnetic separation, oil film sepa-
ration, Fenton oxidation, electrochemical oxidation, persulfate advanced oxidation, photocatalytic
oxidation, coagulation, electrocoagulation, foam flotation, anaerobic–anoxic–aerobic activated sludge,
enzymatic degradation, bacterial degradation, and fungal degradation. Additionally, we present a
critical assessment of the advantages and drawbacks associated with these removal strategies. Build-
ing upon the findings of our research team, we propose a novel approach to degrade MPs, which
combines three-dimensional electrocatalytic oxidation technology with persulfate advanced oxidation
technology. This advanced oxidation technology achieves 100% degradation of antibiotics in water,
can degrade large molecules into environmentally harmless small molecules, and should also be a
very good strategy for the degradation of MPs. Compared with two-dimensional electrocatalytic
technology, the degradation efficiency is higher and the degradation cost is lower This review intends
to propel further advancements for addressing the issue of MP pollution.

Keywords: microplastics; removal technologies; characterization methods

1. Introduction
1.1. Definition

In the past 70 years, the global production of plastic has exceeded 8 billion tons, and
this number is still increasing rapidly. According to statistics, by 2050, the global annual
production of primary plastic may exceed 34 billion tons. Plastics undergo a gradual
decomposition process, resulting in the formation of small plastic fragments, through
physical, chemical, and biological mechanisms. These fragments can be categorized into
various sizes, such as megaplastics (more than 50 cm), macroplastics (5–50 cm), mesoplastics
(0.5–5 cm), microplastics (MP, 0.1 µm–5 cm), and nanoplastics (NP, less than 1 µm) [1].
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As far back as 2004, Thompson et al. from Plymouth University made a groundbreaking
discovery of plastic debris in marine water and sediment, coining the term “microplastics”
(MPs) [2]. MPs are defined as plastic fragments and particles with a diameter less than
5 mm [3–5]. In 2013, the Marine Waste Technical Group of the European Marine Waste
Management Agency proposed a classification of microplastics into small microplastics
(SMPs, 1 µm–1 mm) and large microplastics (LMPs, 1–5 mm) [6,7]. The particle size of
MPs can vary from a few microns to a few millimeters, forming a heterogeneous mixture
of plastic particles with different shapes, making them nearly imperceptible to the naked
eye [8,9]. They are often described as the “PM2.5 of the sea”, drawing a vivid analogy to
airborne fine particulate matter.

1.2. Sources

Gaining insight into the origins of MPs was a crucial aspect of comprehending their
formation. Plastic waste, encompassing packaging materials (PE, PP, PS, PVC, PET, PC,
PEP, PMMA), medical devices (PVC, PE, PP, PS, PTFE), and agricultural films (PE, PVC,
EVA), emerged as a significant contributor to the presence of MPs [10]. The degradation of
plastic waste, whether through natural processes or human intervention, yielded fragments
teeming with MPs, resembling detritus or scum [11–13]. Cleaning and washing products
(EVOH, PU, PS, PP, PC) in daily life were also one of the sources of MPs [14–16]. Notably,
Dris et al. discovered that clothing released a substantial amount of fibers (PTT, PET, PBT,
PA, PAN, PVA, PU, PP, PVC, etc.) during the drying process, with natural drying methods
exacerbating fiber shedding compared to machine drying [17]. In addition, the wear and
erosion of textiles and microfibers from tire usage constituted another significant wellspring
of MPs [18,19].

1.3. Discharge, Distribution, and Transportation

The migration of MPs occurs through surface runoff and atmospheric deposition,
representing significant pathways for their dispersal. All kinds of plastics existing in soil
and water will degrade into microplastics of different sizes through photolysis, weather-
ing, hydrolysis, and microbial degradation. Microplastics circulate and transfer in water,
soil, and the atmosphere through surface runoff, underground infiltration, atmospheric
deposition, and atmospheric flow (Figure 1). Regrettably, sewage treatment plants within
urban centers cannot handle these pollutants, leading to their ultimate accumulation within
the vast expanse of the ocean [20,21]. Due to the characteristics of microplastics, such as
being thin, small, and easily adsorbed, the introduction, migration, and transportation of
microplastics in water are the fastest. Microplastics in land waters or oceans are suspended
in the atmosphere by air currents and then moved around. Urban activities and the utiliza-
tion of everyday household items play a pivotal role in the widespread distribution and
transportation of MPs on land. From the wear and tear of tires to the flaking of paint, from
plastic manufacturing to the textile industry, and from cosmetics to exfoliating agents and
washing products, these seemingly innocuous elements all contribute to the proliferation
of MPs [22,23].

Of particular significance are the superfine fibers emanating from our everyday apparel
and bedding, which are released into the air and subsequently emerge as the primary source
of atmospheric MPs. Under the influence of rainwater, these minute microfibers settle
upon the land, infiltrating rivers and ultimately finding their way into the depths of the
ocean [24]. The Philippines, India, Malaysia, China, and Indonesia are the top five countries
responsible for annual marine plastic emissions. Rainfall, acting as a potent driving force,
facilitates the transportation of MPs, while also serving as a conduit for their migration
from the surface to the waterways. Astonishingly, the research team led by Leslie et al.
made a groundbreaking discovery, detecting microplastics within the blood of human
volunteers for the first time, further underscoring the omnipresence of these pollutants in
our daily lives [25].
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Figure 1. Cyclic process of emission, transfer, and decomposition of MPs.

Plants and animals, through a variety of pathways, absorb MPs from the atmosphere,
soil, and water, perpetuating the continuous transfer and enrichment of these contaminants
throughout the intricate web of the food chain. A momentous revelation emerged from
the research conducted by Aves et al.’s team, as they detected microplastics within newly
fallen snow in Antarctica, shedding light on the far-reaching extent of MPs’ influence [26].
Thus, it becomes evident that MPs have permeated every facet of our existence.

1.4. Negative Effects

MPs in the environment affect biome composition and nitrogen cycling. Numerous
studies conducted both domestically and internationally have revealed the propensity of
MPs to permeate the very fabric of our ecosystem, infiltrating crops, fish, earthworms,
chickens, bees, marine, and terrestrial animals, as well as humans, thereby impeding
their growth, development, and reproductive capabilities [27,28]. MPs can adsorb other
pollutants, and these vagabond MPs themselves and their adsorbed pollutions are easily
consumed by mussels, zooplankton, and other organisms residing at the lower echelons
of the food chain, and possess an inherent resistance to digestion within the confines of
the stomach. Consequently, they accumulate and settle within the delicate tissues and
bodily structures of humans, unleashing an onslaught of maladies and even death in
their wake [29–31].

2. Characterization of MPs

The classification of MPs encompasses two distinct categories: primary MPs and
secondary MPs [32,33], as illustrated in Figure 2. Primary MPs pertain to plastic granules
derived from industrial products that find their way into the aquatic environment via rivers
and sewage treatment plants. Examples include the minute particles encapsulated within
cosmetic formulations, as well as plastic and resin granules utilized as raw materials in
industrial processes. On the other hand, secondary microplastics arise from the physical,
chemical, and biological transformations undergone by larger plastic waste, resulting in
fragmentation and volume reduction [34–36].
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Microplastics (MPs) have gained recognition as a burgeoning category of pollu-
tants worldwide, warranting diligent attention from researchers in terms of detection
and characterization [37,38]. Characterizing MPs poses several challenges, primarily due
to the complex composition of environmental samples, which often comprise diverse
substances that are difficult to differentiate from MPs. Consequently, elucidating the
morphological attributes of MPs stands as a significant obstacle within the realm of MP
research [39,40]. Presently, prevailing methods of characterization encompass visual dis-
crimination, microscopic discrimination, scanning electron microscopy (SEM), atomic force
microscopy (AFM), Fourier transform infrared spectroscopy (FT-IR), Raman spectroscopy,
and pyrolysis analysis [41–43].

2.1. Visual Discrimination

The method of visual identification primarily targets larger microplastics, ranging from
1 to 5 mm in size, which are predominantly found in coastal areas. This approach typically
involves the use of tweezers and trays to directly separate and identify the particles [44].
However, the presence of numerous organic and inorganic substances in the general
sample, which closely resemble the size and appearance of plastics, makes it challenging to
differentiate them accurately. Occasionally, smaller but colorful plastics can be identified
visually [45]. It is worth noting that naturally occurring fibers tend to produce white and
transparent microplastics, while synthetic fibers often exhibit vibrant colors [46]. Although
the visual method is straightforward and convenient, it can lead to significant errors due to
the similarity between plastics and other substances in the sample. De Witte et al. devised
a technique that involved touching the sample with a heated needle tip, allowing them
to determine if the material was plastic based on whether it melted or curled. However,
this method has its limitations, as the properties of certain plastics may not change unless
the temperature of the needle tip is sufficiently high. Additionally, this approach is most
effective when specific characteristics of the plastic are known beforehand [47]. While the
visual method is easy to implement, it is prone to substantial errors.

2.2. Microscopic Discrimination

Traditional optical microscopy has been widely employed for the identification of
microplastics measuring several hundred microns in size [48]. By enlarging the image,
this method offers valuable insights into the surface texture and structural characteristics
of the particles, enabling the differentiation of plastics from other materials with similar
appearances. While this technique is capable of detecting smaller microplastics, accurate
discrimination becomes challenging when dealing with colorless and shapeless particles
measuring less than 100 µm [49]. It is worth noting that previous studies have uncovered
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a significant discrepancy of up to 20% in the classification of plastics using microscopy,
with transparent particles accounting for 70% of the misidentified samples, a finding later
verified through spectral analysis [50].

2.3. Scanning Electron Microscopy

Scanning electron microscopy (SEM) employs a powerful electron beam to illumi-
nate the sample, initiating interactions that generate secondary electrons. These electrons
serve as valuable signals, revealing the intricate morphology of the specimen [51]. SEM
yields high-resolution, magnified images of plastic particles, enabling the discrimination of
minute microplastics and organic particles [52]. In a comprehensive study, Cooper et al.
utilized SEM to meticulously examine the morphological characteristics of various plastic
fragments collected from beach environments. Their meticulous observations confirmed
that both mechanical and chemical weathering processes occurring on the shoreline induce
the development of cracks, grooves, and notches on the surfaces of plastic fragments. Over
time, these alterations contribute to the fragmentation of plastics into smaller particles [53].
Nevertheless, this technique is not without its challenges. For instance, samples must be
examined in a vacuum environment, restricting the range of applicable specimens. More-
over, SEM provides only two-dimensional plane images, lacking height and directional
information. Consequently, liquid samples cannot be observed using this method [54].

2.4. Atomic Force Microscope

Currently, the examination of microplastics (MPs) through the use of atomic force
microscopy (AFM) allows for the detection of minute particles, reaching a minimum size
of several microns, while providing a genuine three-dimensional representation of the
surface topography [55]. Moreover, this method circumvents the need for special sample
preparation and operates effectively under normal pressure, even in liquid environments.
Demir-Yilmaz et al. employed atomic force microscopy to investigate the biophysical
attributes of MPs, revealing their nanostructure characterized by rough, irregular, and
hydrophobic surfaces [56]. By integrating AFM with microfluidics [57], it becomes possible
to precisely assess the interaction between microalgae and MPs, while accurately deter-
mining their hydrophobic properties. Nevertheless, AFM presents limitations, including a
restricted imaging range, slow imaging speed, and susceptibility to probe interference [58].

2.5. Fourier Transform Infrared Spectroscopy

Fourier transform infrared spectroscopy (FT-IR) boasts numerous advantages, includ-
ing its non-invasive nature, uncomplicated sample preparation, and qualitative precision,
rendering it a favored technique for the structural analysis of materials [59,60]. Employ-
ing graphical analysis, FT-IR can circumvent false-positive outcomes in the absence of
microplastics (MPs) and minimize misidentification of MPs lacking distinct coloration or
material characteristics [61]. By utilizing infrared radiation to detect molecular vibration
frequencies and distinct functional groups, FT-IR provides insight into the weathering
degree of MPs through oxygen-demanding bonds. Nonetheless, this method is suscep-
tible to interference from water and organic pollutants, posing challenges in detecting
oxidation functional groups of MPs and MPs with diameters below 20 microns. These
factors, whether directly or indirectly, impact the qualitative efficacy of FT-IR in identifying
MPs [62]. To enhance the recognition accuracy of MPs, Wander et al. ingeniously combined
Principal Component Analysis (PCA), a statistical feature extraction method based on
minimizing the mean square error, with FT-IR, effectively reducing the data dimensions of
MP samples and visually depicting particle familiarity [63,64]. In addition to identifying
sample composition, FT-IR also permits quantitative analysis of MP quantities [65].
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2.6. Raman Spectrometer

Raman spectrometry is an exquisite technique of vibrational spectroscopy, which relies
on the captivating phenomenon of inelastic light scattering to bestow upon us mesmerizing
vibrational spectra. This method has found wide application in the meticulous analysis of
minute particles [66,67]. Not only does Raman analysis have the capability to unravel the
identity of these particles, but it also holds the power to divulge precious insights into the
composition of the samples under scrutiny. Astonishingly, the Raman spectrometer boasts
remarkable sensitivity, capable of detecting particles as minuscule as 1 µm in size [68].
What further elevates the allure of this technique is its non-contact nature, which ensures
the preservation of the pristine structure of the samples, and, in turn, facilitates subsequent
analyses [69]. In contrast to its counterpart, FT-IR, Raman spectroscopy triumphs in the
identification of both organic and inorganic additives and coatings, in addition to the matrix
polymers. However, it is worth noting that the Raman signal from the matrix can easily be
obfuscated by the more pronounced scattering from additives and coatings, rendering their
identification a formidable task. Meanwhile, the presence of fluorescence in the samples
poses the most formidable challenge to Raman detection. Infrared spectroscopy, on the
other hand, proves to be a more suitable tool for the identification of additives and coatings,
particularly when confronted with samples that exhibit fluorescence [70]. Nevertheless, it
is essential to acknowledge that the efficacy of this characterization method is contingent
upon the stringent demands imposed upon the samples.

2.7. Thermal Cleavage

Thermal cleavage analysis, an emerging spectroscopic technique that exploits the
thermal stability of samples to discern changes in their physicochemical properties, has
emerged as a promising tool for the identification of microplastics (MPs) [71]. The combi-
nation of thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC)
has proven effective in discerning polyethylene (PE) and polypropylene (PP) [72]. By
integrating TGA with solid-phase extraction (SPE) and coupling it with thermal and in-
spiratory chromatography–mass spectrometry (TDS-GC-MS), one can harness the full
detection potential of multiple approaches, revealing intricate details with exceptional
resolution [73]. This methodology offers the advantage of direct identification of samples
and mixed polymers, representing a relatively straightforward and expeditious means of
analysis. However, it is crucial to note that this approach is inherently destructive, limiting
its utility in chemical characterization alone, thereby precluding the acquisition of crucial
information regarding the morphology, size, and quantification of microplastics [74]. Thus,
ongoing efforts to refine and optimize thermal analysis are imperative to establish it as an
efficient and widely adopted technology for microplastic detection.

3. MP Treatment Technologies

Currently, a plethora of approaches exist for addressing microplastics (MPs), cate-
gorically classified as physical, chemical, and biological treatment techniques (Figure 3).
The physical methods encompass various strategies such as filtration [75], adsorption [76],
extraction [77], magnetic separation [78], and oil film separation [79]. On the other hand,
the chemical methodologies encompass Fenton oxidation, electrocoagulation, advanced
oxidation technologies, coagulation, and foam flotation. Lastly, the biological approaches
encompass the anaerobic–anoxic–aerobic activated sludge method, enzymatic degradation,
bacterial degradation, and fungal degradation [80–85].
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3.1. Physical Methods
3.1.1. Filtration Method

The process of filtration involves the interception of solid particles and other sub-
stances within a suspension, thereby separating them from the liquid medium. In the early
stages of microplastic (MP) separation, the filtration method emerged as a widely employed
technique due to its simplicity and rapidity of operation [86,87]. For instance, Tadsuwan
et al. utilized a series of filters ranging from 5 mm to 0.05 mm in size to eliminate MPs
from wastewater obtained from Thai municipal treatment plants, achieving a removal rate
of 33.33% [88]. Wang et al. employed a biochar filter to effectively eliminate MPs with a
diameter of 10 µm, resulting in a remarkably efficient removal exceeding 95% [89]. Similarly,
Ziajahromi et al. employed gravel as a filtering medium to extract MPs from sludge and
biosolids obtained from Australian wastewater treatment plants, resulting in a removal
rate of 69–79% [90]. While the filtration method remains a common strategy for managing
MPs, it is worth noting that it can generate smaller MPs, thereby augmenting the challenges
associated with post-processing. This method only collects microplastics and does not
achieve the purpose of eradication. Moreover, this method has higher requirements for the
filter, and too high a cost will be invested if the processing volume is too large. In future
studies, researchers should design more advanced filters to increase throughput and reduce
treatment costs.

3.1.2. Adsorption Method

The adsorption technique entails utilizing a porous solid adsorbent to capture one
or more types of adsorbates from the water sample’s surface. Subsequently, appropriate
solvents, or heating or blowing methods, are employed to release the adsorbate, thereby
achieving the objective of separation and enrichment. Adsorption is frequently employed
for the elimination of water pollutants [91–93]. Currently, adsorption is commonly em-
ployed for the removal of microplastics (MPs) from water [94,95]. For example, Wang et al.
fabricated a natural biodegradable sponge material with exceptional mechanical proper-
ties by utilizing plant protein as a chemical crosslinking agent. A polystyrene MP waste
solution was prepared using deionized water. The adsorbent’s removal efficiency reached
38% with an adsorption time of 10 s. In simulated wastewater, the material exhibited an
adsorption efficiency of 81.2% for MPs. Even after 20 cycles, the adsorbent maintained its
rapid adsorption capability. The primary mechanisms of MP removal by the adsorption
material are hydrophobicity and particle diffusion [96]. Sun et al. employed chitin and
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graphene oxide (ChGO) as raw materials to fabricate a solid and compressible sponge
adsorption material. Deionized water was used to prepare the MP waste solution. The
adsorption rates of ChGO for pure polystyrene, carboxylic-acid-modified polystyrene, and
amine-modified polystyrene were 89.8%, 72.4%, and 88.9%, respectively. This adsorption
material primarily captures MPs through electrostatic interactions, hydrogen bond inter-
actions, and π-π interactions. Additionally, the material exhibits excellent activation and
regeneration capabilities [97]. Yuan et al. employed three-dimensional reduced graphene
oxide as an adsorbent to remove polystyrene MPs. It was discovered that the main adsorp-
tion mechanism was the strong π-π interaction between graphene oxide and polystyrene
MPs. Deionized water was utilized to prepare the MPs waste solution. The maximum
adsorption capacity of three-dimensional reduced graphene oxide for polystyrene MPs was
617.28 mg/g. Furthermore, the material displayed remarkable regeneration capabilities [98].
The adsorption method offers the advantages of simple operation, minimal equipment
requirements, and high efficiency. However, the cost, structural stability, and adsorption
selectivity of the adsorbent restrict its widespread application. Moreover, the adsorption
method solely separates MPs from water, necessitating the implementation of additional
methods for the treatment of MPs in subsequent stages. In future studies, researchers
need to design an adsorbent that is efficient in handling microplastics, has good recycling
performance, and is easy to recycle.

3.1.3. Extraction Method

The utilization of extraction techniques has gained considerable attention for the
treatment of industrial wastewater containing high concentrations of phenols, nitrogen
heterocycles, dyes, heavy metals, and other pollutants [99,100]. In recent years, numerous
scholars worldwide have devoted their efforts to the development and application of
extraction methods for the treatment of microplastics (MPs) [101,102]. For instance, Li et al.
employed a custom-designed separation and extraction apparatus to effectively isolate
and extract MP particles, presenting a readily available device for MP extraction. This
self-fashioned equipment successfully extracted three types of biodegradable MPs (poly-
butylene succinate, poly(adipic acid) butylene terephthalate, and polylactic acid) as well as
four types of non-degradable MPs (low-density polyethylene, polystyrene, polypropylene,
and polyvinyl chloride). The recovery rates for these MPs ranged between 92% and 99.6%,
thus highlighting the accuracy and precision of their separation and extraction device [103].
In a separate study, Nuelle et al. implemented a two-step approach to extract MPs from
sediment samples. The extraction recoveries for polyethylene, polypropylene, polyvinyl
chloride, poly(ethylene terephthalate), polystyrene, and polyurethane (1 mm) were found
to be as high as 91% to 99% [104]. Similarly, Han et al. employed an extraction method
to isolate MP particles from soil and sediment samples. By refining the flotation process
and flotation solution, they successfully extracted and separated six commonly found MP
compounds, namely polyethylene, polyethylene terephthalate, polypropylene, polyvinyl
chloride, polystyrene, and expanded polystyrene. The extraction recoveries achieved for
MPs were remarkably high, ranging from 80% to 100% [105]. Wang et al. applied an
extraction technique to separate styrene MP spheres of various sizes (0.05, 1.0, 2.6, 4.8, and
100 µm) from biosolid and soil samples. While styrene nanoparticles with a diameter of
100 µm could be extracted completely from biosolids and soil, the extraction efficiency for
smaller particles ranged from 5% to 80% [106]. This method boasts the advantages of simple
instrumentation, automated control, and high operational safety. However, it is worth
noting that the cost associated with this method remains high, and the separation of the
dissolved solute in the extraction solvent poses a challenge. In future studies, researchers
should seek a green and economical extractant to treat MPs.
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3.1.4. Magnetic Separation

Magnetic separation technology encompasses the application of magnetic fields to
manipulate substances, often harnessed in the realm of water treatment [107]. Presently,
magnetic separation finds frequent employment in the isolation of microplastics (MPs).
As an illustration, Tang et al. devised hydrophobic iron nanoparticles for the magnetic
separation and extraction of MPs. Remarkably, their findings reveal that this material
effectively eliminates over 90% of MPs ranging from 10 to 20 µm and exceeding 1 mm
in size from seawater. Furthermore, this material boasts an ability to remove 84% and
78% of MPs measuring 200 µm to 1 mm from freshwater and sediment, respectively [108].
In a separate study, Tang et al. synthesized magnetic carbon nanotubes, leveraging their
magnetic properties to isolate MPs from aqueous solutions. When employing a dose
of 5 g/L, the efficient removal for MPs reached a remarkable 100% within a span of
300 min. Even after undergoing four cycles of use, the efficiency remained at 80% for MPs
at a concentration of 5 g/L. Scanning electron microscopy (SEM) images exhibited the
adsorption of MPs onto the surface of magnetic carbon nanotubes [109]. The magnetic
separation approach boasts notable advantages, such as its capacity for high-volume
treatment, minimal generation of waste sludge, and the potential for long-range magnetic
enhancement in separation. However, certain drawbacks persist, including the tendency for
magnetic seeds, MPs, and other lipophilic/oleophobic substances to aggregate on surfaces.
In future studies, researchers need to develop a suitable magnetic separation method for
different MPs to improve the universality of this method as much as possible.

3.1.5. Oil Film Separation

Oil film separation represents a hydrophobic and density-agnostic technique, fre-
quently employed in the realm of microplastic (MP) separation [110]. For instance, Crichton
et al. introduced an innovative and economical oil film method for MP removal. Im-
pressively, the efficient removal of total MPs, fibers, and particles reached 96.1% ± 7.4,
92.7% ± 4.3, and 99% ± 1.4, respectively, underscoring the immense potential of this
approach in MP elimination [111]. In a similar vein, Mani et al. harnessed castor oil mem-
branes to effectuate the separation of MPs from aqueous matrices, yielding an impressive
average MP removal rate of up to 99%. Notably, this method achieved an MP removal
efficiency of 74 ± 13% in the Rhine River, further solidifying its environmental friendliness,
harmlessness, and efficacy in MP separation [112]. The method’s virtues include its density-
agnostic nature, cost-effectiveness, and low risk. However, it is worth mentioning that the
separation funnel was prone to blockage during the separation process [113]. In future
studies, researchers should work to solve the problem of separation equipment blockage
and establish a set of treatment methods for different sizes of microplastics.

3.2. Chemical Methods
3.2.1. Fenton Oxidation and Advanced Oxidation Technology

Fenton oxidation technology finds extensive application in the realm of water
treatment [114,115]. Presently, researchers have reported the utilization of chemical oxida-
tion methods to address wastewater containing microplastics (MPs) [116]. For instance,
Liu et al. employed the heat-activated K2S2O8 oxidation process and the Fenton oxida-
tion process in the treatment of MPs. K2S2O8 generates a considerable quantity of sulfate
radicals and hydroxyl radicals under Fenton-like and thermal activation, which facilitate
the oxidation and degradation of MPs. Consequently, the scanning electron microscopy
(SEM) diagram in Figure 4 demonstrates the deformation of the surface of polystyrene
(PS) and polyethylene (PE), signifying a certain extent of degradation of MPs composed of
these materials [117]. Prominent advanced oxidation technologies presently encompass
electrochemical oxidation, persulfate advanced oxidation, and photocatalytic oxidation.
Photocatalytic degradation of MPs also represents a prevalent approach [118,119]. For in-
stance, Venkataramana et al. employed a 350 W metal halide lamp to irradiate polyethylene
MPs, resulting in a weight reduction rate of 12.5% after 5 h, indicating the partial degrada-
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tion of MPs through the photocatalytic method [120]. Uheida et al. proposed a sustainable
and environmentally friendly photocatalytic technique for eliminating polypropylene MPs
from water activated by visible light. Following two weeks of visible-light irradiation, the
average particle volume decreased by 65% due to reduction. Gas chromatography–mass
spectroscopy (GC/MS) analysis revealed that the predominant degradation by-products
were ethynyloxy/acetyl radicals, hydroxypropyl, butyraldehyde, acetone, acrolein (prope-
nal), and the pentyl group [121]. Additionally, electrochemical oxidation also represents
a common method for wastewater treatment [122,123]. Kiendrebeogo et al. employed an
electrochemical oxidation process to address the issue of synthetic polystyrene microplas-
tics (MPs) in wastewater. Through the application of an electric field, a significant number
of hydroxyl radicals and sulfate radicals were generated, showcasing their potent oxidizing
capabilities against polystyrene MPs. Ultimately, the mineralization of polystyrene MPs
into CO2 was achieved. The removal efficiency reached an impressive 89 ± 8% within a
span of 6 h, utilizing a Na2SO4 dosage of 0.06 M. SEM characterization instruments substan-
tiated that the degradation of polystyrene MPs did not result in their fragmentation into
smaller particles, but rather their direct conversion into gaseous products (Figure 5) [124].
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and Fenton processes for 5 days. Reprinted with permission from ref. [117]. Copyright 2019,
Copyright Xu X.H.
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Miao et al. adopted a two-dimensional electrocatalytic oxidation method to degrade
polyvinyl chloride (PVC) microplastics. Following 6 h of electrocatalytic oxidation, re-
markable dechlorination efficiency (75%) and weight loss (56%) were achieved for PVC.
Mechanistic insights, as depicted in Figure 6, illustrated that polyvinyl chloride obtains
electrons directly from the TiO2/C cathode plate and undergoes dechlorination under
elevated temperature conditions. Concurrently, hydroxyl radicals oxidize polyvinyl chlo-
ride microplastics, resulting in the formation of oxygen-containing groups such as C=O
and O-H. Eventually, these substances are partially mineralized into CO2 and H2O. Gas
chromatography–mass spectroscopy (GC/MS) and high-performance liquid chromatogra-
phy (HPLC) analyses revealed that the predominant degradation by-products were alkenes,
alcohols, monocarboxylic acids, dicarboxylic acids, and esters [125].
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Fenton oxidation and advanced oxidation technology offer a multitude of advantages,
including high removal efficiency, dependable and consistent outcomes, simple equipment,
convenient operation and maintenance, and cost-effectiveness. However, it is important to
acknowledge that these technologies also present a range of challenges, such as suboptimal
treatment efficacy, elevated costs, the potential for secondary pollution, and stringent
process requirements.

Based on our team’s comprehensive investigation into electrochemical oxidation and
persulfate advanced oxidation, we have devised a sophisticated water treatment system
that combines three-dimensional electrocatalytic oxidation with persulfate advanced ox-
idation. Our findings indicate that the combination of electrocatalytic oxidation, PMS
advanced oxidation, and waste coal cinder yielded the highest efficient removal (99.95%)
and mineralization efficiency (90.16%) for sulfadiazine over a period of 90 min [126]. The
three-dimensional electrocatalytic coupled PMS advanced oxidation system achieved an
efficient removal and efficient mineralization of 99.56% and 88.63%, respectively, for sul-
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famethazine within the same time frame [127]. Furthermore, we employed a self-assembled
three-dimensional electrocatalytic oxidation degradation reactor to degrade sulfonamide,
resulting in an efficient removal and efficient mineralization of 99.845% and 88.958%,
respectively [128]. Similarly, sulfonamide exhibited an efficient removal and efficient miner-
alization of 99.867% and 89.675%, respectively [129]. Additionally, a meticulously prepared
spherical bimetallic clay catalyst was utilized to degrade bromobenzonitrile, achieving a
complete efficient removal of 100% [130]. These degradation systems generate a substantial
amount of highly reactive oxygen species, which possess potent oxidation capabilities.
Moreover, these degradation systems demonstrate remarkable recyclability. Furthermore,
the presence of chloride ions enhances the degradation efficiency of these systems.

Based on the aforementioned reports, it was postulated that the integration of three-
dimensional electrocatalytic oxidation with persulfate advanced oxidation would impart
a fresh perspective on the degradation of microplastics (MPs). This treatment method is
relatively new and its mechanism may not be clear. In future studies, researchers should
broaden the study of the treatment mechanisms, so as to avoid the environmental impact
of some degradation intermediates.

3.2.2. Coagulation Method

The coagulation technique involves the introduction of coagulants into wastewater,
thereby destabilizing and aggregating the organic pollutants present into larger clumps of
alum, measuring hundreds of microns or even millimeters. Subsequently, the pollutants
in the wastewater could be eliminated through gravity sedimentation or other methods
of solid–liquid separation [131]. Currently, coagulation is employed in the treatment of
pollutants containing microplastics (MPs) [132,133]. For instance, Zhou et al. utilized
poly-aluminum chloride (PAC) and FeCl3 as coagulants to eliminate polystyrene (PS) and
polyethylene (PE) MPs. As depicted in Figure 7, charge neutralization transpires between
the flocculant and MPs. Scanning electron microscope (SEM) images reveal the occurrence
of aggregation and adsorption between the MPs and the coagulant, while Fourier transform
infrared (FTIR) spectra demonstrate the formation of novel chemical bonds during the
interaction between the MPs and the coagulant. Furthermore, there is a discernible alter-
ation in the zeta potential before and after adsorption, indicating the successful removal of
PS and PE MPs [134]. Ma et al. employed aluminum-based (AlCl3·6H2O) and iron-based
salt (FeCl3·6H2O) coagulants to eliminate polyethylene MPs. The findings indicate that
aluminum salt outperforms iron salt in the removal of polyethylene. Notably, the efficiency
of removal increases as the particle size of polyethylene decreases. Nevertheless, even
when the dosage of aluminum-based salt was as high as 15 Mm, the maximum average
removal rate reached a mere 36.89% [135]. Shahi et al. employed alum coagulant and alum
composite cationic polyamine-coated sand coagulant to eliminate MPs from wastewater
in drinking water treatment plants. The results demonstrate that the removal rate of the
alum composite cationic polyamine-coated sand coagulant surpassed that of alum alone by
26.8%. The data underscore the significance of the particle size, morphology, and surface
characteristics of MPs in the removal process within drinking water treatment plants [136].

Moreover, electrocoagulation serves as a technique employed for the eradication of
pollutants through the application of a pulsed high voltage, thereby facilitating electro-
chemical reactions. Presently, electrocoagulation has found utility in the elimination of
MP pollutants. For instance, Perren et al. employed electrocoagulation in the purification
of synthetic wastewater containing varying concentrations of polyethylene MP spheres.
Their findings corroborate that the efficacy of electrocoagulation in removing pollutants
can surpass 90% when the pH level ranges from 3 to 10. Astonishingly, the removal rate
achieved a staggering 99.24% at a pH value of 7.5 [137].
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In summary, the coagulation process exhibits numerous advantages, including its
simplicity in operation, minimal equipment requirements, and swift treatment duration.
Nevertheless, it is important to note that pH exerts a profound influence on this method,
and many coagulants possess reducibility and coloration. Should the dosage be excessive,
adverse consequences such as heightened chromaticity and diminished removal rates may
ensue. In future studies, researchers should increase their exploration of the factors that
affect this method and work out the most appropriate treatment scheme.

3.2.3. Foam Flotation Method

Furthermore, foam flotation represents a technique utilized for the separation of miner-
als from impurities. Raw ore powder is agitated with water and reagents, which selectively
interact with the desired minerals to modify their surface properties. Subsequently, air
is introduced into the mixture, causing the targeted minerals to rise to the top and form
a froth. Currently, numerous researchers have employed this method for the removal of
MPs [138,139]. For instance, Imhof et al. devised a foam-flotation-based approach for the
separation of MPs, achieving a removal efficiency of 55% [140]. Additionally, Nguyen et al.
have highlighted the presence of unpredictable factors that may impede the separation
of MPs [141]. Talvitie et al. developed an air flotation technique to eliminate MPs from
water, achieving an impressive removal efficiency of up to 95%, thereby reducing the MP
concentration from 2 MP/L to 0.1 MP/L in an aqueous solution [142]. Enfrin et al. and
Sun et al. advocate the use of foam flotation as a means to treat MPs, given its simple oper-
ation, low cost, and potential to mitigate MP discharge into sewage [143,144]. Additionally,
Jiang et al. applied froth flotation for the removal of MPs from beach and lake sediments
(Figure 8). In their study, sodium oleate was employed to restore the hydrophobicity of MPs,
facilitating their effective removal from sediments [145]. Consequently, the foam flotation
method offers advantages in its uncomplicated equipment and affordability. However, the
experiment’s reproducibility remains a significant challenge, with temperature exerting
a substantial influence. Regrettably, few scientists have expounded upon the unstable
performance of foam flotation, leaving it as a focal point for future research endeavors.
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3.3. Biological Methods
3.3.1. Anaerobic–Anoxic–Aerobic Activated Sludge Method

The anaerobic–anoxic–aerobic activated sludge (AAO) process was employed to elimi-
nate organic pollutants in water through a combination of anaerobic, anoxic, and aerobic
zones, along with different sludge return strategies. This technique primarily targeted
the removal of BOD [146]. Presently, numerous researchers have applied this approach
to address MPs [147,148]. For instance, Yang et al. introduced a technology based on the
anaerobic–anoxic–aerobic activated sludge process to treat authentic MPs obtained from
a sewage treatment facility in Beijing, resulting in a 54.47% removal rate [149]. Jia et al.
proposed a similar approach for the treatment of real MPs in wastewater obtained from a
wastewater treatment plant in Shanghai, achieving a removal rate of 26.01% [150]. Jiang
et al. implemented an anaerobic–anoxic–aerobic activated sludge process to treat real MPs
in wastewater derived from wastewater treatment plants in northern China, resulting in a
removal rate of 16.9% [151]. Similarly, Liu et al. applied an anaerobic–anoxic–aerobic acti-
vated sludge process to treat authentic MPs in wastewater from a sewage treatment plant in
a specific region of China, yielding a removal rate of 16.6% [152]. The AAO process offers
advantages such as cost-effectiveness, a straightforward process flow, and a short hydraulic
retention time. However, this method is time-consuming, exhibits low removal efficiency,
is susceptible to bacterial demise, and generates a substantial amount of sludge. In future
studies, researchers need to screen and domesticate a high-quality bacterial community
that can achieve good results in the degradation of microplastics in different environments.

3.3.2. Enzymatic Degradation

Currently, the field of in situ degradation of microplastics (MPs) by enzymes under
gentle conditions is a highly active area of research [153,154]. In this approach, either
indigenous or introduced microorganisms are employed to degrade or metabolize MPs,
transforming them into harmless end products. Biocatalysis itself embodies the principles
of environmental friendliness, and an ideal enzyme possesses the ability to accomplish
MP degradation with exceptional efficiency [155]. In 2016, Yoshida et al. pioneered the
development and utilization of an enzyme capable of effectively breaking down polyethy-
lene terephthalate plastics. However, the inherent instability of this enzyme hindered its
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practical application in the field of biodegradation [156]. Subsequently, Son et al. utilized a
thermally stable variant of PETase to degrade polyethylene terephthalate MPs. Neverthe-
less, this enzyme exhibited limited durability, with a significant loss of activity within 24 h
at 37 ◦C [157]. Presently, numerous research groups have made substantial contributions to
the study of PETase [158–160]. Recently, Cui et al. introduced a novel computational design
strategy for enhancing protein stability, known as the Greedy Accumulated Strategy for
Protein Engineering (GRAPE). As a result of this innovative approach, a catalytic enzyme
called DuraPETase was engineered and its ability to degrade poly(ethylene terephthalate)
MPs was successfully demonstrated. Figure 9A illustrates the degradation of poly(ethylene
terephthalate) into smaller molecules or non-toxic substances. The scanning electron mi-
croscopy (SEM) image in Figure 9B clearly demonstrates noticeable alterations on the
surface of poly(ethylene terephthalate) MPs. Furthermore, the high-performance liquid
chromatography analysis in Figure 9C confirms the effective degradation of poly(ethylene
terephthalate) MPs by DuraPETase enzymes [161]. The enhancement of ispetase stabil-
ity was achieved through the utilization of state-of-the-art computational protein design
techniques. This groundbreaking approach yielded a redesigned enzyme with remark-
able resilience, effectively addressing the long-standing issues of enzyme instability and
fragility. Importantly, this breakthrough opens up new possibilities for the utilization of
biodegradable plastics. However, it is worth noting that the widespread implementation
of this method is hampered by its prohibitive costs and the intricate process required for
enzyme preparation [162]. In future studies, researchers should control treatment costs
while maintaining the efficient treatment of microplastics.

Sustainability 2022, 14, x FOR PEER REVIEW 15 of 28 
 

development and utilization of an enzyme capable of effectively breaking down polyeth-
ylene terephthalate plastics. However, the inherent instability of this enzyme hindered its 
practical application in the field of biodegradation [156]. Subsequently, Son et al. utilized 
a thermally stable variant of PETase to degrade polyethylene terephthalate MPs. Never-
theless, this enzyme exhibited limited durability, with a significant loss of activity within 
24 hours at 37 °C [157]. Presently, numerous research groups have made substantial con-
tributions to the study of PETase [158–160]. Recently, Cui et al. introduced a novel com-
putational design strategy for enhancing protein stability, known as the Greedy Accumu-
lated Strategy for Protein Engineering (GRAPE). As a result of this innovative approach, 
a catalytic enzyme called DuraPETase was engineered and its ability to degrade poly(eth-
ylene terephthalate) MPs was successfully demonstrated. Figure 9A illustrates the degra-
dation of poly(ethylene terephthalate) into smaller molecules or non-toxic substances. The 
scanning electron microscopy (SEM) image in Figure 9B clearly demonstrates noticeable 
alterations on the surface of poly(ethylene terephthalate) MPs. Furthermore, the high-per-
formance liquid chromatography analysis in Figure 9C confirms the effective degradation 
of poly(ethylene terephthalate) MPs by DuraPETase enzymes [161]. The enhancement of 
ispetase stability was achieved through the utilization of state-of-the-art computational 
protein design techniques. This groundbreaking approach yielded a redesigned enzyme 
with remarkable resilience, effectively addressing the long-standing issues of enzyme in-
stability and fragility. Importantly, this breakthrough opens up new possibilities for the 
utilization of biodegradable plastics. However, it is worth noting that the widespread im-
plementation of this method is hampered by its prohibitive costs and the intricate process 
required for enzyme preparation [162]. In future studies, researchers should control treat-
ment costs while maintaining the efficient treatment of microplastics. 

 
Figure 9. The degradation mechanism of PEN and PBT (A); the SEM images of PEN and PBT before 
and after degradation (B); HPLC chromatogram of the products released from the PEN and PBT 
films (C). Reprinted with permission from ref. [161]. Copyright 2021, Copyright Han X. 

3.3.3. Bacterial Degradation Method 
Bacteria, a prominent group of microorganisms, reign supreme as the most abundant 

lifeforms across all organisms. The morphological diversity of bacteria is striking, ranging 
from spherical to rod-shaped and even spiral forms [163,164]. Presently, bacteria find 
wide applications in the production of cheese, yogurt, wine, and antibiotics. Furthermore, 
their remarkable potential in wastewater pollutant degradation cannot be overlooked 

Figure 9. The degradation mechanism of PEN and PBT (A); the SEM images of PEN and PBT before and
after degradation (B); HPLC chromatogram of the products released from the PEN and PBT films (C).
Reprinted with permission from ref. [161]. Copyright 2021, Copyright Han X.

3.3.3. Bacterial Degradation Method

Bacteria, a prominent group of microorganisms, reign supreme as the most abundant
lifeforms across all organisms. The morphological diversity of bacteria is striking, ranging
from spherical to rod-shaped and even spiral forms [163,164]. Presently, bacteria find wide
applications in the production of cheese, yogurt, wine, and antibiotics. Furthermore, their
remarkable potential in wastewater pollutant degradation cannot be overlooked [165,166].
Researchers have harnessed the power of bacteria in the degradation of microplastics
(MPs). These bacteria primarily originate from sediments, sludge, and MP-laden water
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bodies [167–169]. For instance, Auta et al. isolated two pure bacteria from mangrove
sediments and employed them in the degradation of polypropylene MPs. After a span
of 40 days, the degradation rates for polypropylene MPs by Rhodococcus 36 and Bacillus
27 were recorded at 6.4% and 4.0%, respectively. The degradation process induced the for-
mation of various porous structures and irregularities on the surface of the MPs, providing
compelling evidence of the bacteria’s efficacy in polypropylene MP degradation. Auta et al.
employed Bacillus cereus and Bacillus gotthiilii bacteria to facilitate the degradation of
various types of microplastics (MPs). Their findings revealed that Bacillus cereus achieved
weight reductions of 1.6%, 6.6%, and 7.4% for polyphylene, polyphylene terephthalate,
and polystyrene, respectively. On the other hand, Bacillus gotthielii displayed weight
reduction rates of 6.2%, 3.0%, 3.6%, and 5.8% for polyphylene, polyphylene terephthalate,
polypropelene, and polystyrene, respectively [170]. Yang et al. successfully isolated Enter-
obacter asburiae YT1 from plastic-eating waxworms and employed it in the degradation of
polyethylene MPs. After a duration of 28 days, the weight reduction rate of polyethylene
was observed to be 6.1% ± 0.3 [171]. Similarly, Shah et al. isolated a strain of Bacillus
subtilis mza-75 from soil samples and utilized it to degrade polyurethane MPs. Following
a 28-day period, the scanning electron microscope (SEM) image revealed the emergence of
extensive crack formations on the polyurethane surface, while Fourier-transform infrared
(FTIR) spectroscopy indicated a decline in the functional groups of polyurethanes. These
phenomena collectively indicate the efficacy of Bacillus subtilis mza-75 in the degradation of
polyurethane MPs [172]. Furthermore, Yoshida et al. isolated a strain of ideanella sakaiensis
201-f6 from contaminated samples and employed it in the degradation of polyethylene
and polyethylene terephthalate MPs. Remarkably, after a duration of 60 days, the SEM
image confirmed the capability of ideonella sakaiensis 201-f6 to degrade polyethylene and
polyethylene terephthalate MPs [173]. In conclusion, the bacteria-mediated degradation
of MPs represents a widely utilized treatment technology in the management of MPs.
However, this approach is not without its drawbacks, including the complexity of bacterial
culture, the stringent environmental conditions required for bacterial degradation, and
the substantial time investment involved. In future studies, researchers should simplify
the steps of bacterial culture and train more adaptable bacteria. On the one hand, the
processing cost is reduced, and on the other hand, the anti-risk capability of this method is
enhanced. At the same time, it is also necessary to pay attention to other hazards to the
environment caused by bacteria that may leak during the treatment process.

3.3.4. Fungal Degradation Method

Fungi have been frequently employed for the degradation of hazardous
pollutants [174,175]. Presently, numerous researchers have embarked on employing fungi
for the degradation of microplastics (MPs) [176–178]. For instance, Yamada-Onodera et al.
employed Penicillium simplicissimum YK fungi to degrade polyethylene MPs, leading
to the subsequent observation of polyethylene MPs with reduced molecular weight af-
ter a 3-month period of liquid culture. These findings unequivocally demonstrate the
remarkable proficiency of Penicillium simplicissimum YK fungi in degrading polyethylene
MPs [179]. Volke-Sepúlveda et al. isolated and cultivated Aspergillus niger and Penicillium
pinophilum fungi, which were then employed for the degradation of low-density polyethy-
lene (TO-LDPE) MPs. After 31 months, Aspergillus niger and Penicillium pinophilum
achieved weight reduction rates of 0.57% and 0.37% for TO-LDPE, respectively [180].
Devi et al. isolated and cultured Aspergillus tubingensis VRKPT1 and Aspergillus flavus
VRKPT2 from discarded polyethylene waste, subsequently utilizing them for the degra-
dation of high-density polyethylene (HDPE) MPs. After 30 days, Aspergillus tubingen-
sis VRKPT1 and Aspergillus flavus VRKPT2 demonstrated weight reduction rates of
6.88 ± 0.1% and 9.34 ± 0.2%, respectively, for HDPE MPs [181]. El-Shafei et al. isolated and
cultivated VRKPT1 and VRKPT2 fungi from the Nile Delta, employing them for the degra-
dation of high-density polyethylene (HDPE) MPs. After 30 days, VRKPT1 and VRKPT2
achieved weight reduction rates of 6.02 ± 0.2% and 8.51 ± 0.1%, respectively [182]. In
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conclusion, these fungi possess remarkable capabilities for the in vitro degradation of MPs.
Nonetheless, this approach has certain limitations, such as the need for intricate bacterial
culture, demanding environmental prerequisites for fungal degradation, and time-intensive
processes. Consequently, further refinement is imperative for the fungal-mediated degra-
dation of MPs. In future studies, researchers should optimize the conditions for fungi to
process microplastics, so that fungi can treat microplastics in complex environments with
the shortest time, the lowest cost, and the highest efficiency.

As elucidated earlier, Table 1 succinctly delineates the merits and demerits of various
methodologies employed for the treatment of microplastics (MPs). Consequently, it is
evident that substantial progress is yet to be made in the realm of eradicating MPs.

Table 1. Advantages and disadvantages of MP treatment methods.

Method Advantages Disadvantages Reference

Physical
methods Filtration Simple operation, high

efficiency, high volume
Poor structural stability of adsorbent

(membrane) and high cost [183]

Physical
methods Adsorption Simple operation, simple

equipment, high efficiency

Poor structural stability
of adsorbent and the risk of

introducing secondary pollution
[184]

Physical
methods Extraction Simple operation, simple

equipment, high safety operation

The cost of this method was high and it
was difficult to separate the solute after

dissolving it in the extraction solvent
[185]

Physical
methods Magnetic separation Less waste sludge, high

efficiency, high volume

Surface agglomeration of magnetic
seeds, MPs, and other

lipophilic/oleophobic substances
[161]

Physical
methods Oil film separation Simple operation, moderate

cost, independent from density
A hydrophobic surface is required,
organic contaminant entrainment [110]

Chemical
methods Fenton oxidation Simple operation, high

efficiency, high volume

The equipment is easily blocked by a large
amount of sludge, and the utilization rate

of hydrogen peroxide is low
[186]

Chemical
methods Electrochemical oxidation

Mild reaction conditions,
no secondary pollution,

flexibility, simple operation,
and controllability

Low mass transfer efficiency
and low current efficiency [187]

Chemical
methods Photocatalytic oxidation Simple operation, simple

equipment, high safety operation

The absorption range of photocatalyst is
narrow, the utilization rate of light energy
is low, some suspended solids and darker

chroma will have a great impact, it is
difficult to recover, and the electron–hole

pair is easy to inactivate

[188]

Chemical
methods

Persulfate advanced
oxidation

Simple operation, simple
equipment, high safety

operation, low cost

The pH requirement is high, the catalyst
recovery is difficult, and the generated
redox potential of hydroxide is not as

high as that of sulfate

[189]

Chemical
methods Coagulation Simple operation, simple

equipment, short treatment time

pH has a great influence on this
method, and many coagulants have

reducibility and color. If the dosage is
large, it can easily cause high chroma

and low removal rate

[190]

Chemical
methods Electrocoagulation No requirement for chemical

coagulants, less sludge

High electricity and conductivity
are required, and oxidation

is caused by electrodes
[132]

Chemical
methods Foam flotation

Simple operation, simple
equipment, high safety

operation, low cost

The repeatability of the experiment
was very poor, and the temperature

has a great influence
[191]

Biological
methods

Anaerobic–anoxic–aerobic
activated sludge

Low cost, high volume,
simple operation

Time-consuming, low removal
efficiency, easy death of bacteria, and a

large amount of sludge
[192]
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Table 1. Cont.

Method Advantages Disadvantages Reference

Biological
methods Enzymatic degradation High efficiency and specificity Complex operation process, high cost,

and harsh reaction conditions [175]

Biological
methods Bacterial degradation High safety, low cost,

and simple operation

Complex bacterial culture, high
environmental requirements for bacterial

degradation, high time consumption
[193]

Biological
methods Fungal degradation High safety, low cost, and

simple operation

Complex bacterial culture, high
environmental requirements for fungi
degradation, high time consumption

[172]

4. Challenges, Future Research, and Research Limitations

In this paper, a large number of existing studies on the characterization and treatment
techniques of microplastics are reviewed. However, these characterization and treatment
techniques have some shortcomings: their universality is poor, and it is difficult to use a
single method to properly characterize and treat microplastics. In view of the current waste
production, the pollution of microplastics in the environment may become more and more
serious, and the difficulty of detecting and disposing of microplastics will become more
and more difficult. Therefore, we need to pay more attention to the source of microplastics,
the transfer route, the toxicity of degradation intermediates, and other aspects in future
research processes.

4.1. Challenges and Suggestions

(1) MPs come from a wide range of sources, and the challenge remains of whether
researchers can take certain measures from the time of plastic production to avoid the
subsequent generation of MPs.

(2) There are many ways in which MPs are transferred, which forms a cycle in the
environment; it is important that we dispose of MPs at the stage where we are most
likely to dispose of them.

(3) Current research is mainly concerned with the removal rate of MPs, but it is ignored
that MPs may produce toxic substances during the treatment process and cause other
impacts on the environment.

(4) The removal rate of MPs mentioned in the literature is very high, but whether the
treated MPs are transformed into other substances that are still harmful to the envi-
ronment is unknown. And there is no standardized way to judge the extent to which
a treatment is environmentally friendly.

(5) For biodegradable MPs, whether the degradation process has an impact on microor-
ganisms, thereby causing harm to biological groups, and whether it will indirectly
affect the environment are unknown.

4.2. Future Recommendations

(1) It is recommended to link a variety of characterization and treatment technologies to
find a more universal characterization and treatment technology to solve the complex
MP pollution situation.

(2) Toxicity studies are recommended to assess the toxicity of MPs’ degradation interme-
diates and degradation products.

(3) At present, it seems that it may be easier to treat MPs in water, but they are more
difficult to treat soil or the atmosphere, and it is recommended to develop a method
that can deal with MP pollutants in soil and the atmosphere.

(4) It is recommended to establish a set of evaluation methods to systematically evaluate
the degradation efficiency and toxicity of the degradation products of MPs.

(5) It is recommended to improve the classification of waste at the source and
plastic recycling.
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4.3. Research Limitations

The number of research papers on MPs has soared in recent years, but overall MPs
are still understudied. Although many methods for characterizing and treating MPs have
been summarized in this paper, there are still many methods that we have not summarized.
Some of the methods described in this paper only describe a single characterization and
treatment technology, and do not combine multiple methods to study MPs. As the study of
MPs deepens, more and more technologies can be used to characterize and remove MPs,
and more and more advanced methods will be derived.

5. Conclusions

The development of effective, sustainable, and uncomplicated methodologies for the
eradication of microplastics (MPs) holds paramount significance in the amelioration of plas-
tic pollution. In this study, we conducted a systematic appraisal of the techniques employed
for characterizing and removing MPs. At the same time, according to the technical gaps
not involved in the literature, some suggestions for future research are put forward. The
characterization of MPs proved invaluable in discerning their diverse typologies. Moreover,
we conducted a comprehensive evaluation of the merits and demerits associated with
various removal technologies, encompassing filtration, adsorption, extraction, magnetic
separation, oil film separation, Fenton oxidation, electrochemical oxidation, persulfate ad-
vanced oxidation, photocatalytic oxidation, coagulation, electrocoagulation, foam flotation,
anaerobic–anoxic–aerobic activated sludge, enzymatic degradation, bacterial degradation,
and fungal degradation. Drawing upon the findings of our research team, we proposed
a viable and efficacious degradation system for the elimination of MPs. Each approach
has its own advantages, but there are also major limitations. These physical methods
have the advantages of simple operation and low cost, but they have certain limitations
on the treatment effect of microplastics. Chemical methods have a good effect on the
treatment of microplastics, but can easily to produce other substances that harm the en-
vironment. Biological methods are a new approach; they have the advantages of high
efficiency and environmental protection, but their mechanism is not sufficient, and they
need further research and development. However, it is imperative to note that numerous
experiments have thus far been confined to laboratory settings, with limited exploration of
removal techniques for minute MPs. Hence, expanding the scale of experimentation and
devising strategies for the elimination of diminutive MPs emerge as the focal points for
future researchers.
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