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Abstract: With the ever-increasing focus on sustainable development, recycling waste and renewable
use of waste products has earned immense consideration from academics and policy makers. The
serious pollution, complex types, and strong infectivity of medical waste have brought serious
challenges to management. Although several researchers have addressed the issue by optimizing
medical waste management networks and systems, there is still a significant gap in systematically
evaluating the efficiency of medical waste recycling systems. Therefore, this paper proposes a two-
stage data envelopment analysis (DEA) approach that combines the virtual frontier and the global
bounded adjustment measure (BAM-VF-G), considering both undesirable inputs and outputs. In the
first stage, the BAM-G model is used to evaluate the efficiency of medical waste recycling systems,
and the BAM-VF-G model is used to further rank super-efficient medical waste recycling systems.
In the second stage, two types of efficiency decomposition models are proposed. The first type of
models decompose unified efficiency into production efficiency (PE) and environment efficiency (EE).
Depending upon the system structure, the second type of models decompose unified efficiency into
the efficiency of the medical waste collection and transport subsystem (MWCS) and the efficiency
of the medical waste treatment subsystem (MWTS). The novel approach is used to measure the
efficiency of the medical waste recycling systems in China’s new first-tier cities, and we find that
(1) Foshan ranks the highest in efficiency, followed by Tianjin and Qingdao, with efficiency values of
0.386, 0.180, and 0.130, respectively; (2) the EE lacks resilience and fluctuated the most from 2017 to
2022; and (3) the efficiency of MWCSs has always been lower than that of MWTSs and is a critical
factor inhibiting the overall efficiency of medical waste recycling systems.

Keywords: medical waste; global bounded adjusted measure; virtual frontier; efficiency decomposition

1. Introduction

Waste, as the byproduct of human activities, is characterized by diverse types, uncer-
tain origins, vague quantities, and high pollution levels, presenting significant risks and
challenges to social development. In the face of the dual constraints of resource scarcity and
environmental concerns, there is considerable attention from decision makers, companies,
and academic researchers worldwide on recovering value through waste recycling and the
renewable use of waste products.

Medical waste, as a distinct waste category, possesses characteristics such as high
infectivity, substantial contamination, and diverse categories. Notably, hazardous wastes
account for approximately 41% of the total waste volume, a proportion eight times higher
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than that of ordinary waste [1]. With the advancement of China’s socio-economic status,
improved medical insurance services, and the arrival of an aging population era, there is
a gradual increase in medical demands, leading to a rise in the generation and disposal
of medical waste. Over the past five years, the average annual increase in medical waste
volume has been 6.2% [2]. National health, environment quality, and economic well-
being are crucial considerations in any society [3]. The continual growth in medical waste
production poses significant challenges to the effective management of environmental
quality and sustainable resource utilization. Consequently, in-depth studies of the efficiency
of medical waste recycling systems are essential to enhance medical waste management.

Numerous prior studies have concentrated on assessing the efficiency of a specific part
of the medical waste recycling process. Despite this, as evidenced by the literature review
in Section 2, a glaring deficiency persists in research on the evaluation of the efficiency
of medical waste recycling systems. This paper endeavors to bridge this knowledge gap
by utilizing a two-stage bounded adjustment measure–data envelopment analysis (BAM-
DEA) approach.

The characteristics of this study are as follows:

(1) We propose a two-stage BAM-DEA model that combines the virtual frontier and the
global bounded adjustment measure (BAM-VF-G) to rank the super-efficient decision
units. It is the first time that a two-stage problem has been solved using the BAM-VF-G
model, considering both undesirable inputs and outputs.

(2) This paper adopts a new two-stage structure considering the internal network struc-
ture: the medical waste collection and transport subsystem (MWCS) and the efficiency
of the medical waste treatment subsystem (MWTS), which is helpful for distinguish-
ing the effectiveness during different processes and can comprehensively evaluate
efficiency in combination with MWCS efficiency and MWTS efficiency.

(3) The efficiency of the medical waste recycling systems in China’s new first-tier cities
from 2017 to 2021 is revealed, which can support relevant departments to make
scientific decisions in the future.

The technical framework is illustrated in Figure 1. The framework contains three steps.
The first step is preliminary preparation, which includes classical approaches, problem
analysis, and data acquisition and processing. In the second step, the BAM-G model is
used to calculate the efficiency of the medical waste recycling systems and further rank the
efficient decision-making units (DMUs) using the virtual frontier. Two types of efficiency
decomposition models are proposed, which decompose the unified efficiency into PE and
EE and then divide recycling systems into two stages: the MWCS and the MWTS. Finally, a
discussion is conducted based on the results.

The remainder of this paper is structured as follows: Section 2 reviews the literature.
In Section 3, we develop a two-stage BAM-VF-G model for analyzing the efficient DMUs,
and subsequently two types of efficiency decomposition models are proposed. Section 4
evaluates the recycling efficiency of medical waste in China’s new first-tier cities from
2017 to 2021 using the proposed models. Conclusions and future research directions are
provided in Section 5.
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2. Literature Review
2.1. BAM

DEA, a nonparametric frontier efficiency analysis method, uses linear (and non-linear)
programming techniques to assess the relative efficiency of homogeneous DMUs. DEA
models are highly versatile, as they do not require a specific known production frontier
and are well-suited for handling situations involving multiple inputs and outputs. In 1978,
Chams et al. [4] introduced the first DEA model, known as the CCR model, which remains
a classic in the field.

DEA models can be categorized into two groups: radial DEA and non-radial DEA
models. Radial DEA models, including input-oriented, output-oriented, and non-oriented
models, assume that inputs and/or outputs change proportionally. However, in many real-
world scenarios, inputs like labor, energy, and capital cannot change proportionally [5]. This
is where non-radial DEA comes into play, as it relaxes the assumptions of proportionality
and direction, allowing for non-proportional changes in inputs and outputs, making it
particularly suitable for handling undesirable outputs. Classical non-radial DEA models
include the additive DEA [6], the slacks-based measure (SBM) [7], and the range-adjusted
measure (RAM) [8]. While the additive DEA cannot directly generate efficiency scores,
the SBM approach overcomes this limitation. However, efficiency scores calculated by
SBM models may vary depending on the orientation (input-oriented or output-oriented).
Non-oriented SBM models address this issue but require nonlinear programming and often
need to be transformed using the Charnes–Cooper transformation [9]. The RAM approach,
being a non-oriented linear programming model, can directly generate efficiency scores.
However, it still has some limitations, as its parameters are composed of the extremes of
inputs and outputs and it frequently results in efficiency scores ranging between 0.9 and 1,
making it difficult to discriminate highly efficient DMUs.



Sustainability 2024, 16, 4023 4 of 29

To address the above issues, Cooper et al. [10] introduced the bounded adjusted
measure (BAM), which takes into account lower bounds for inputs and upper bounds
for outputs. This approach provides greater discriminatory power in comparison. The
BAM model is a linear programming model, which makes it easy to obtain global optimal
solutions. The BAM model also possesses a strong ability to differentiate DMUs and is
suitable for production situations with economies of any scale [11]. Qin et al. [12] proposed
radial and non-radial BAM-G models based on a virtual efficient frontier to investigate a
specific evaluation of the energy efficiency in China’s coastal areas. Table 1 summarizes
the specific advantages and disadvantages of these models. In this study, we extend the
BAM-VF-G model proposed by incorporating a two-stage model to evaluate the efficiency
of medical waste recycling systems while considering both undesirable inputs and outputs.

Table 1. Comparison of the advantages and disadvantages of the mainstream DEA model.

Advantages Disadvantages

Radial DEA Simple Not suitable for dealing with undesirable variables

Additive DEA Non-radial linear programming; allows
disproportionate changes in inputs and outputs Does not directly generate efficiency scores

SBM Non-radial and non-linear programing; suitable
for optimization and adjustment For effective DMUs, the discrimination is poor

RAM Non-oriented linear programming; easy to solve;
robustness For effective DMUs, the discrimination is poor

BAM
Non-radial and non-oriented linear programming;
allows direct generation of efficiency scores; strong

differentiation ability for DMUs
Computationally complex

2.2. Medical Waste Efficiency Evaluation

Medical waste recycling is crucial for ensuring public health and environmental
sustainability. Both practitioners and researchers have long recognized the complexity
and challenges involved in assessing the efficiency of medical waste recycling. To the
best of our knowledge, research on the evaluation of medical waste recycling systems has
primarily focused on specific aspects, such as the professionalism of recyclers during the
classification and collection stages, the medical waste treatment equipment and disposal
technology in the disposal stage, as well as the risk assessment of medical waste throughout
the transportation and disposal stages.

Deress et al. [13] conducted a survey of 296 healthcare workers in 12 healthcare
facilities located in a town in the Amhara Prefecture of northwestern Ethiopia. The survey
utilized questionnaires and observation checklists to assess the education, attitudes, and
experience of the healthcare workers. Bivariate and multivariate logistic regression analyses
were performed. The findings revealed that the medical staff in the town had a low level
of education, unfavorable attitudes, and limited experience. Furthermore, they lacked
training in medical waste management, which presented a significant barrier to the effective
recycling of medical waste.

Taghipour et al. [14] conducted a six-month mechanical, chemical, and biological
monitoring of medical waste disinfection equipment in 10 hospitals in Iran. Chemical
monitoring results showed that 38.9% of the autoclaves examined had operational problems
with pre-vacuuming, air leakage, insufficient steam penetration into the waste, and/or
vacuum pumps. Biological indicators showed that about 55.55% of the samples were
positive. Most applications are equipped with equipment that is not suitable for handling
anatomical, pharmaceutical, cytotoxic, and chemical wastes.

Tang et al. [15] developed an integrated model to evaluate COVID-19 medical waste
transportation risk by integrating an extended type-2 fuzzy total interpretive structural
model (TISM) with a Bayesian network (BN). Taking the transportation process of medical
waste in Nanjing as an example, the results show that insufficient personal protection of em-
ployees is a crucial risk factor for controlling the transportation of medical waste. Wang [16]
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used the groundwater flow model software Visual Modflow 4.2 to construct a numerical
simulation model of groundwater flow. The study aimed to determine the diffusion of
leachate pollutants by analyzing their migration in different spatial locations and at various
time intervals. This analysis allowed for an accurate assessment of the pollutants’ impact
on the groundwater environment. Liu et al. [17] used life cycle assessment to determine the
economic, environmental, and health and safety benefits of medical plastic waste recycling
in China. A logistics model for medical plastic waste recycling in China was established,
the output range of medical plastic waste by 2050 was predicted, and the benefits and costs
of the medical plastic waste recycling system were evaluated under three scenarios: low,
medium, and high. Through the analysis of sensitive factors, it was found that the recycling
method used for medical plastics is an important factor restricting their recycling. Al-Sulbi
et al. [18] proposed a method based on the fuzzy Technique for Order Preference by Simi-
larity to Ideal Solution (TOPSIS) method to rank medical waste management and proved
the effectiveness of the method by comparing it with the analytic hierarchy process (AHP).
The results showed that recycling was the most advantageous option. Chemical treatment,
incineration, and landfills rank low due to their higher environmental and financial costs.
Dwivedi et al. [19] analyzed the factors influencing third-party medical waste management
and revealed the salient factors that led to the failure of the medical waste management
system in India. Firstly, the causal relationship between factors was described by the
unique Interval-Valued Intuitionistic Fuzzy Set of the Decision Experiment and Evaluation
Laboratory. Then, the analytic network process was used to estimate the impact ranking
of each factor. The results show that transportation and disposal are important factors
restricting the third-party logistics management of medical waste. Ho [20] employed the
fuzzy analytic hierarchy process to set the objective weights of evaluation criteria and select
the optimal infectious medical waste disposal firm through calculation and sorting.

There are few studies that have evaluated the efficiency of medical waste recycling
systems from a system perspective. DEA can systematically evaluate the efficiency of
medical waste recycling through multiple inputs and multiple outputs, effectively distin-
guishing between efficiency and inefficiency DMUs. It not only assists inefficiency DMUs
in identifying existing problems and deficiencies but also draws on the successful experi-
ences of efficiency DMUs to guide underperforming DMUs in adjusting their development
strategies, optimizing resource allocation, and thereby enhancing overall performance.
But there is no research on the efficiency evaluation of medical waste recycling systems
using the DEA method, and only some scholars have applied the DEA to evaluate the
efficiency of hospital performance [21,22], which is not conducive to the advancement of
medical waste recycling systems. In light of this, we propose the BAM-VF-G model, a DEA
method known for its computational convenience, resilience to outliers, and capacity to
yield more objective and accurate results, for evaluating the efficiency of medical waste
recycling systems.

3. Methods
3.1. Problem Description

The medical waste recycling process is complex, including waste segregation and
collection, primary harmless treatment, transportation, and systematic treatment [23]. It
mainly includes a two-stage structure, as shown in Figure 2. In medical waste collection,
the transportation subsystem (MWCS) includes the sorting and collection of medical
waste, initial harmless treatment, storage, and transportation. A medical waste disposal
subsystem (MWTS) includes the harmless disposal of waste, landfills, and recovery of
available resources. The specific network structure is shown in Figure 3.
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In MWCSs, inputs include two desirable inputs and two undesirable inputs, and
outputs consist of one desirable output and one undesirable output. The desirable inputs
are labor and transportation cost. The undesirable inputs are the medical waste generated
volume and the annual precipitation [24]. The desirable output is the medical waste col-
lected volume, and the undesirable output is CO2 emissions. In MWTSs, inputs include
two desirable inputs and two undesirable inputs, and outputs consist of one desirable
output and one undesirable output. Desirable inputs include energy and operating costs.
The undesirable inputs are the medical waste collected volume and the annual precipi-
tation. In addition, government support is also considered as an undesirable input. The
desirable output and undesirable output are medical waste disposal volume and waste
gas, respectively. The medical waste collected volume, serving as an intermediate variable
commonly referred to as a dual-role variable, can play a role either as a desirable output in
MWCSs or as an undesirable input in MWTSs. Annual precipitation is considered as an
undesirable input in both the MWCS and the MWTS.
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3.2. Modelling Methods
3.2.1. BAM Model

A classical BAM model can be written as model (1) [10]. Suppose that there are J
DMUs (DMUj, j = 1, . . . , J). Each DMU utilizes I inputs to produce R outputs. Let xij
(i = 1, . . . . . . , I) and yrj (r = 1, . . . . . . , R) indicate inputs and outputs, respectively.

Max
I

∑
i=1

Bt
i0dt

i0 +
R
∑

r=1
Bt

r0dt
r0

s.t.
J

∑
j=1

xijλj + dt
i0 = xi0 i = 1, . . . . . . , I

J
∑

j=1
yrjλj − dt

r0 = yr0 r = 1, . . . . . . , R

J
∑

j=1
λj = 1 j = 1, . . . . . . J

dt
i ≥ 0, dt

r ≥ 0, λj ≥ 0

(1)

3.2.2. BAM-G Model

To make the distance function in different periods comparable [25], based on previous
studies [12,24], we extended the BAM model considering undesirable inputs and outputs us-
ing the global benchmark technology (GBT), and each DMU uses xt

i1 j = (xt
1j, xt

2j, . . . , xt
I1 j) ∈

LI1 j undesirable inputs and xt
i2 j = (xt

1j, xt
2j, . . . , xt

I2 j) ∈ LI2 j desirable inputs to produce

yt
r1 j = (yt

1j, yt
2j, . . . , yt

R1 j) ∈ LR1 j desirable outputs and yt
r2 j = (yt

1j, yt
2j, . . . , yt

R2 j) ∈ LR2 j
undesirable outputs, over time period t, t = 1, . . . . . . T. The production possibility set,
PPSt, can be defined as follows:

PPSt =
{(

xt
i1 j, xt

i2 j, yt
r1 j, yt

r2 j

)
:
(

xt
i1 j, xt

i2 j

)
can produce

(
yt

r1 j, yt
r2 j

)}
(2)

This novel DEA model is constructed as follows:



Sustainability 2024, 16, 4023 8 of 29

Max
IF
1

∑
iF
1=1

Bt
iF
1 0

dt
iF
1 0
+

IF
2

∑
iF
2=1

Bt
iF
2 0

dt
iF
2 0

+
IS
1

∑
iS1=1

Bt
iS1 0

dt
iS1 0

+
IS
2

∑
iS2=1

Bt
iS2 0

dt
iS2 0

+
RF

2
∑

rF
2 =1

Bt
rF

2 0
dt

rF
2 0
+

RS
1

∑
rS

1=1
Bt

rS
1 0

dt
rS

1 0
+

RS
2

∑
rS

2=1
Bt

rS
2 0

dt
rS

2 0

s.t.
J

∑
j=1

xt
iF
1
λt

j − dt
iF
1 0

= xt
iF
1 0

J
∑

j=1
xt

iF
2
λt

j + dt
iF
2 0

= xt
iF
2 0

J
∑

j=1
xt

iS1
λt

j + dt
iS1 0

= xt
iS1 0

J
∑

j=1
xt

iS2
λt

j + dt
iS2 0

= xt
iS2 0

J
∑

j=1
yt

rF
2
λt

j + dt
rF

2 0
= yt

rF
2 0

J
∑

j=1
yt

rS
1
λt

j − dt
rS

1 0
= yt

rS
1 0

J
∑

j=1
yt

rS
2
λt

j + dt
rS

2 0
= yt

rS
2 0

J
∑

j=1
xt

iF
1
λt

j ≤ xiF
1

J
∑

j=1
xt

iF
2
λt

j ≥ xiF
2

J
∑

j=1
xt

iS1
λt

j ≤ xiS1

J
∑

j=1
xt

iS2
λt

j ≥ xiS2

J
∑

j=1
yt

rF
2
λt

j ≥ y
rF

2

J
∑

j=1
yt

rS
1
λt

j ≤ yrS
1

J
∑

j=1
yt

rS
2
λt

j ≥ y
rS

2

T
∑

t=1

J
∑

j=1
λt

j = 1

λt
j ≥ 0, dt

iF
1
≥ 0, dt

iF
2
≥ 0, dt

iS1
≥ 0, dt

iS2
≥ 0, dt

rF
2
≥ 0, dt

rS
1
≥ 0, dt

rS
2
≥ 0

j = 1, . . . . . . , J; iF
1 = 1, . . . . . . , IF

1 ; iF
2 = 1, . . . . . . , IF

2 ; iS
1 = 1, . . . . . . , IS

1 ;
iS
2 = 1, . . . . . . , IS

2 ; rF
2 = 1, . . . . . . , RF

2 ; rS
1 = 1, . . . . . . , RS

1 ; rS
2 = 1, . . . . . . , RS

2 ;
t = 1, . . . . . . T

(3)

where i1 and i2 stand for undesirable and desirable inputs, respectively, and r1 and r2
represent the desirable and undesirable outputs, respectively. The total inputs are rep-
resented by i = i1 ∪ i2, and the total outputs are represented by r = r1 ∪ r2. iF

1 and iF
2

represent the undesirable and desirable outputs of the MWCS, and iS
1 and iS

2 represent
the undesirable and desirable outputs of the MWTS. rF

1 and rF
2 represent the desirable

and undesirable outputs of the MWCS; rS
1 and rS

2 represent the desirable and undesirable
outputs of the MWTS; λt

j represents the intensity variable associated with each DMU; dt
i1

,
dt

i2
, dt

r1
, and dt

r2
are the slack variables of undesirable inputs, desirable inputs, desirable
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outputs, and undesirable outputs, respectively; and the subscript “0” represents the DMU
to be evaluated. BAM considers lower-sided ranges for inputs and upper-sided ranges for
outputs, whereas the BAM model determines bounds based on upper and lower ranges
for each input and output [24]. xiF

2
, xiS2

, y
rF

2
, and y

rS
2

denote the minima among the ith

desirable inputs and the rth undesirable outputs, respectively, and xiF
1
, xiS1

, and yrS
1

denote
the maxima among the ith undesirable inputs and the rth desirable outputs. It is important
to note that the lower-sided ranges for each desirable input and undesirable output depend
only on the lower bounds of the desirable input, the undesirable output, and DMU0. In
contrast, the upper-sided ranges for each undesirable input and desirable output depend
only on the upper bounds of the undesirable input, the desirable output, and the DMU0.
That is why Cooper et al. [10] called the model the BAM. Additionally, Bt

iF
1
, Bt

iF
2
, Bt

iS1
, Bt

iS2
,

Bt
rF

2
, Bt

rS
1
, and Bt

rS
2

are the bounds of the model. Bt
iF
2

and Bt
iS2

and Bt
rF

2
and Bt

rS
2

depend on the

lower-sided ranges for desirable inputs and undesirable outputs, respectively, whereas
Bt

iF
1
, Bt

iS1
, and Bt

rS
1

depend on the upper-sided ranges for undesirable inputs and desirable
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(4)

3.2.3. Virtual Frontier Data Envelopment Analysis

However, the traditional BAM model is the result of a DMU comparing its production
capacity with the optimal true frontier production capacity. When the input data and output
data of some DMUs are very close, this can result in multiple DMUs having efficiency
values of 1, and the BAM-G model cannot distinguish between these DMUs [26,27]. To
address this issue, Andersen and Petersen [28] proposed the Super DEA method. The
principle behind it is to exclude the evaluated DMU0 in which the efficient DMUs have
scores greater than 1, thus enabling a more refined ranking. For illustration, let us consider
four DMUs, as shown in Table 2. When the Super DEA model evaluates DMUB, the inputs
of the reference DMUs are {2,7,4} and the outputs are {7,5,3}, resulting in a reference frontier
of ACD. However, when the Super DEA model evaluates DMUD, the inputs of the reference



Sustainability 2024, 16, 4023 10 of 29

set are {2,9,7}, and the outputs are {7,4,5}, which leads to a reference frontier of ACB. The
issue here is that the reference sets and reference frontiers vary for different units being
evaluated, which can result in less consistent or reasonable results.

Table 2. The example.

DMUs Inputs Outputs

A 2 7
B 9 4
C 7 5
D 4 3

To address the aforementioned disadvantages, the concept of virtual frontier data
envelopment analysis (virtual frontier DEA) was first introduced by Bian and Xu [29]. In
this model, the virtual frontier is established by adjusting inputs and outputs in a specific
proportion, ensuring that the efficiency values fall between 0 and 1, unlike the traditional
DEA model. As shown in Figure 4, the efficiency values of entities A, B, C, and D are
all 1 in the traditional DEA model, making it unable to distinguish between them. The
virtual frontier DEA, on the other hand, constructs virtual frontiers F, G, H, and I as the
optimal reference frontiers for entities A, B, C, D, and E. This allows for differentiation of
the efficiencies of A, B, C, D, and E, all of which are considered DEA-inefficient.
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The reference DMU set and the evaluated DMU set are two different sets in this
method, and the reference DMU set remains unchanged so that its results may be more
reasonable than those of existing models [26]. Qin et al. [12] combined the virtual frontier
with BAM to further sequence the evaluation units. In this paper, we propose a two-
stage DEA approach that combines the virtual frontier and the BAM-G, considering both
undesirable inputs and outputs. The proposed model is as follows:
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+
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(5)

Set xt
i0 = min

j

{
xt

ij

}
and yt

r0 = max
j

{
yt

rj

}
, j = 1, 2, . . . , J. For the reference set of DMUj,

both inputs and outputs are stochastically generated. Referring to previous studies [30], the
inputs are set as XXt

i0λt
j = [0.9xt

i0, xt
i0]λ

t
j and the outputs are set as YYt

r0λt
j = [yt

r0, 1.1yt
r0]λ

t
j.

3.2.4. Efficiency Decomposition Models

To study technological levels and environmental emission capacities, it is necessary to
calculate PE and EE. PE focuses on input utilization and desirable outputs, while it does
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not consider desirable outputs, such as carbon dioxide and waste gas. EE only considers
environmental impacts, measuring inputs and undesired outputs. PE and EE can be defined
as follows:

PE = 1 −
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∑
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Bt
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1 0dt
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1 0 +
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∑
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∑
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∑
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∑
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 (6)
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∑
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 (7)

3.2.5. A Two-Stage BAM-G Model

Medical waste recycling systems are complex, encompassing various stages, such
as segregation and collection, preliminary harmless treatment, storage, transportation,
harmless disposal of waste, landfill, and recovery of available resources. It is important to
note that the “black box” DEA method does not account for the internal network structure
of systems, and, as a result, it cannot accurately reflect the internal efficiency of these
systems [31]. To address this limitation, we consider the classification, collection, and
transportation of medical waste as the first stage, referred to as the MWCS, and the disposal
of medical waste as the second stage, known as the MWTS. By examining the intermediate
outputs between the two stages, we can “open the black box” to identify the specific
segments that affect the efficiency of the medical waste recycling system [32]. The MWCS
efficiency of DMUj can be evaluated by model (8).
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In the MWTS, annual precipitation needs to be invested again. MWTS efficiency can
be evaluated by model (9).
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4. Empirical Study
4.1. Variables and Data

China’s new first-tier cities, as identified by First Financial News since 2013, are
assessed based on five major indicators: commercial resource aggregation, urban hub,
human activity, lifestyle diversity, and future potential. This evaluation involves data
from 170 well-known enterprises, user behavior data from 19 internet companies, and data
institutions, covering 337 prefecture-level and above cities in China [33]. The efficiency
of medical waste recycling systems in these cities can be seen as a microcosm of the
urbanization process in China, which is crucial for understanding the level of China’s
medical waste recycling systems.

DEA is designed to determine the relative efficiency of each DMU compared to
other DMUs and to classify them as either efficient (on the boundary of the production
possibility set) or inefficient (within the boundary). Smaller data discrepancies among
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DMUs can provide a more precise efficiency assessment. If the data discrepancies are large,
this can lead to increased volatility in the assessment results, and outliers may have a
disproportionate impact on the determination of the efficiency frontier, thereby distorting
the efficiency scores. The differences in socio-economic factors and demographic variables
among China’s new first-tier cities are relatively small [34]. Selecting these cities as the
DMUs can help to minimize the differences and ensure the accuracy of the efficiency results.
To the best of our knowledge, there are no existing studies that have evaluated the efficiency
of medical waste recycling systems, nor has there been any research that has assessed the
efficiency of medical waste recycling systems in China’s new first-tier cities.

This paper selects 15 cities in the list of New First-Tier Cities since 2022, which includes
Chengdu, Chongqing, Hangzhou, Xi’an, Wuhan, Suzhou, Zhengzhou, Nanjing, Tianjin,
Changsha, Dongguan, Ningbo, Foshan, Hefei, and Qingdao, as the DMUs. By employ-
ing a two-stage BAM-G model to calculate the efficiency of the medical waste recycling
systems, the study aims to explore which subsystems are more sensitive to the medical
waste recycling systems in these cities, thereby providing feasible recommendations for
local improvements.

As shown in Figure 5, the medical waste generated volume in these cities showed
an upward trend from 2017 to 2019, slowed down from 2019 to 2021, and then increased
in 2022. This phenomenon is mainly attributed to the outbreak of COVID-19 in 2019 and
the surge in medical activities caused by the shift in China’s epidemic prevention policies
from “preventing infection” to “protecting health and preventing severe cases” in 2022.
Figure 6 displays a heat map of the medical waste volumes generated in these cities from
2017 to 2022.
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Table 3 summarizes the descriptive statistics of the inputs and outputs of medical waste
recycling systems. The variables of inputs and outputs are defined as follows. Due to the
lack of direct data sources for some indicators, we estimated the relevant indicators based
on previous research studies [35–37], and the specific estimation method was as follows.

Medical waste generated volume. Domestically and internationally, the medical waste
generated volume was primarily estimated based on a certain medical waste production
coefficient. Referring to the forecasting method proposed by Li [35], this paper derived the
following formula for the medical waste generated volume.

Medical waste generated volume = Outpatient medical waste generated volume ×
inpatient medical waste generated volume

Outpatient medical waste generated volume = The number of medical treatments
provided by health and medical institutions × Medical waste generation per patient visit

Inpatient medical waste generated volume = The actual number of hospital beds in
the city × Bed occupancy rate × Medical waste generation per bed

For cities that did not disclose the number of medical beds, the inpatient medical waste
generated volume was estimated using the total annual number of hospital admissions
and the average length of hospital stays per year. The formula used for this estimation is
as follows:

Inpatient medical waste generated volume = Total annual number of hospital ad-
missions × The average length of hospital stays per year × Medical waste generation
per bed

Referring to the assessment by the United Nations Planning Agency on waste gen-
eration rates from various parts of the world [38], it is indicated that hospitals produce
approximately 0.5 to 1 kg of waste per bed per day. Therefore, the medical waste generation
per bed is arbitrarily taken to be between 0.5 and 1 kg. For outpatient departments, the
daily waste generation is about 1 kg for every 20 to 30 people. Hence, the medical waste
generation per patient visit is arbitrarily taken to be between 0.03 and 0.05 kg.

Annual precipitation. The data on annual precipitation was obtained from the China
Statistical Yearbook on the Environment.

Labor. Manual skilled personnel are responsible for skilled operations and main-
tenance, logistical support, and services. Therefore, this paper selected manual skilled
personnel as the labor input for the MWCS.

Transportation cost. In this paper, we estimated the transportation costs using the
following formula.

Transportation cost = The price of gasoline × City’s fuel consumption × Medical
waste collected volume accounts for the proportion of road transportation

Degree of government support. There are currently no direct data available regarding
specific investments by the municipal government in MWTS disposal projects. How-
ever, there are concrete data regarding the completion of investment in provincial solid
waste management projects. The amount of investment by the government in solid waste
management also reflects the government’s level of attention to the disposal of medical
waste. Therefore, this article selected the completed investment in provincial solid waste
management projects as a representative of the government’s level of support.

Energy. The data on energy were obtained from the China Electric Power Yearbook.
Operating costs. Medical waste is primarily disposed of through disinfection and high-

temperature incineration, with operational costs ranging from 0.15 to 0.23 ten thousand
CNY per ton [39]. Therefore, this paper calculated the operational costs by multiplying the
medical waste disposal volume by a randomly generated factor between 0.15 and 0.23.

Medical waste collected volume. The Municipal Bureau of Ecology and Environment
issues annual announcements regarding information on the prevention and control of solid
waste pollution.

Medical waste disposal volume. According to the survey, the centralized disposal rate
for medical waste in China currently stands at 100%. Hence, the medical waste disposal
volume is equivalent to the medical waste collected volume.
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Table 3. Statistical description of input and output indicators from 2017 to 2022.

Indicators Unit Max Min Mean Std. Dev.

Medical waste collection,
transportation subsystem

(MWCS)

Medical waste generated volume 10 thousand tons 6.334 0.848 2.846 1.201
Annual precipitation mm 2062.700 459.200 1225.650 445.963

Labor 10 thousand people 9.380 0.810 4.893 2.282
Transportation cost 10 thousand tons 833.154 16.528 151.953 162.680

Medical waste collected volume * 10 thousand tons 3.590 0.633 1.813 0.710
CO2 emissions 10 thousand tons 0.313 0.007 0.064 0.067

Medical waste treatment subsystem
(MWTS)

Degree of government support 10 thousand CNY 13,167.900 0.000 1353.944 2682.078
Annual precipitation mm 2062.70 459.20 1224.91 458

Energy Million kwh 7.973 0.806 4.034 2.249
Operating costs 10 thousand CNY 1775.637 341.785 724.672 318.658

Medical waste collected volume * 10 thousand tons 5.900 0.633 2.084 1.247
Medical waste disposal volume 10 thousand tons 5.900 0.633 1.917 0.949

Waste gas 10 thousand tons 0.536 0.022 0.186 0.110

Note: * indicates intermediate variable.
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CO2 emissions. Medical waste is transported via road; hence, this paper estimated the
CO2 emissions generated by the transportation of medical waste by considering indicators
such as the proportion of the medical waste collected volume to the total road freight
volume and the CO2 emissions produced by road transportation. The specific formula is
as follows.

CO2 emissions = The proportion of medical waste collected volume to the total road
freight volume × CO2 emissions produced by road transportation

Waste gas and residue. This paper estimated the waste gas and residue by considering
the proportion of the medical waste disposal volume to the total volume of municipal
solid waste.

Waste gas and residue = The proportion of medical waste disposal volume to the total
volume of municipal solid waste × The total amount of urban waste gas and residue

The data used in the study cover the period from 2017 to 2022. They were collected
from various sources: the Health Commission; Annual Statistics on the Environment
in China; the China Electric Power Yearbook; the China Statistical Yearbook; the China
Energy Statistical Yearbook; the maximum retail prices of gasoline and diesel in provinces;
municipalities and central cities; Local Statistical Bureaus; the Municipal Bureau of Ecology
and Environment; and the China CO2 Accounting Database. Table 4 reports the detailed
data sources.

Table 4. Sources of statistics.

Index Source

Medical waste generated volume Health Commission
Annual precipitation Annual Statistics on the Environment in China

Labor Health Commission

Transportation cost
China Statistical Yearbook, China Energy Statistical Yearbook,

maximum retail prices of gasoline and diesel in provinces,
municipalities and central cities

Degree of government support Local Statistical Bureaus
Energy China Electric Power Yearbook

Operating costs China Energy Statistical Yearbook
Medical waste collected volume Municipal Bureau of Ecology and Environment
Medical waste disposal volume Municipal Bureau of Ecology and Environment

CO2 emissions Annual Statistics on the Environment in China, China CO2
Accounting Database

Waste gas and residue Annual Statistics on the Environment in China

4.2. Empirical Results

This section begins by employing the BAM-G and BAM-VF-G models to evaluate
China’s new first-tier cities’ medical waste recycling systems’ efficiency between 2017
and 2022. Subsequently, PE and EE are calculated to analyze the technological level and
environmental emission capacity. Finally, the efficiencies of MWCSs and MWTSs are
calculated to examine the internal factors influencing systems efficiency.

4.2.1. The Efficiency of BAM-G and BAM-VF-G

We use the BAM-G model to estimate the efficiency of these cities’ medical waste
recycling systems. Table 5 summarizes the system efficiency scores from 2017 to 2022. It
can be observed that Hangzhou has been the least efficient city in terms of medical waste
recycling, with an average efficiency score of a mere 0.432 between the years 2017 and 2022.
Suzhou, Zhengzhou, Nanjing, Tianjin, Dongguan, Foshan, Hefei, and Qingdao all have
efficiency scores of 1, indicating that the medical waste recycling systems established in
these cities are relatively rational and that they have taken a leading position in medical
waste recycling compared to other cities, such as Chengdu, Chongqing, and Hangzhou.
These inefficient cities can learn from the successful experiences of cities like Suzhou
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and Zhengzhou to identify directions for improvement and enhancement. However,
unfortunately, this analysis does not identify the differences among these eight efficient
cities. To further rank Suzhou, Zhengzhou, Nanjing, Tianjin, Dongguan, Foshan, Hefei,
and Qingdao specifically, the BAM-VF-G model was employed for efficiency measurement.

Table 5. The efficiencies of medical waste recycling systems in selected cities from 2017 to 2022
obtained from the BAM-G model.

CNFCs 2017 2018 2019 2020 2021 2022 Mean

Chengdu 0.751 1.000 1.000 0.658 1.000 1.000 0.901
Chongqing 1.000 1.000 0.541 0.660 0.740 0.339 0.713
Hangzhou 0.581 0.449 0.535 0.369 0.275 0.381 0.432

Xi’an 1.000 1.000 0.693 1.000 1.000 1.000 0.949
Wuhan 0.575 1.000 1.000 0.460 1.000 1.000 0.839
Suzhou 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Zhengzhou 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Nanjing 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Tianjin 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Changsha 0.719 1.000 1.000 0.444 1.000 0.642 0.801
Dongguan 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Ningbo 1.000 0.675 1.000 0.501 0.296 0.461 0.655
Foshan 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Hefei 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Qingdao 1.000 1.000 1.000 1.000 1.000 1.000 1.000

The principle of the virtual frontier is to set the input intervals for the DMUs as [0.9, 1]
and the output intervals as [1, 1.1], thereby generating a new set of reference DMUs through
random production. Since the efficiency of the reference DMUs produced randomly is
higher than that of the evaluated set of DMUs, it is easier to differentiate between the
efficiencies of effective DMUs. The efficiency scores obtained through the virtual frontier
will also be lower than those derived from the BAM-G model. The results are shown in
Table 6. It can be observed that none of the DMUs has an efficiency score of 1, and all are
lower than the efficiency scores obtained from the BAM-G model. A comparison of the
efficiency scores and rankings calculated by the BAM-G model and the BAM-VF-G model
is presented in Table 7. The DMUs with efficiency scores of 1, as calculated by the BAM-G
model, are ranked in the following order: Foshan, Tianjin, Qingdao, Dongguan, Hefei,
Suzhou, Zhengzhou, and Nanjing.

Table 6. The efficiencies of medical waste recycling systems in selected cities from 2017 to 2022
obtained from the BAM-VF-G model.

CNFCs 2017 2018 2019 2020 2021 2022 Mean

Chengdu 0.032 0.035 0.033 0.035 0.025 0.027 0.031
Chongqing 0.029 0.020 0.021 0.019 0.213 0.103 0.067
Hangzhou 0.015 0.016 0.017 0.017 0.061 0.023 0.025

Xi’an 0.036 0.105 0.045 0.101 0.114 0.018 0.070
Wuhan 0.016 0.020 0.019 0.019 0.114 0.115 0.050
Suzhou 0.094 0.096 0.097 0.093 0.027 0.103 0.085

Zhengzhou 0.044 0.033 0.028 0.045 0.112 0.111 0.062
Nanjing 0.054 0.038 0.044 0.026 0.024 0.027 0.036
Tianjin 0.199 0.101 0.110 0.108 0.329 0.324 0.195

Changsha 0.026 0.051 0.024 0.027 0.118 0.223 0.078
Dongguan 0.106 0.104 0.099 0.102 0.110 0.220 0.124

Ningbo 0.018 0.021 0.019 0.016 0.100 0.024 0.033
Foshan 0.441 0.436 0.440 0.437 0.052 0.110 0.319
Hefei 0.118 0.100 0.095 0.113 0.113 0.112 0.109

Qingdao 0.113 0.111 0.222 0.107 0.111 0.114 0.130
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Table 7. The efficiencies of medical waste recycling systems in selected cities obtained from the
BAM-G model and the BAM-VF-G model.

CNFCs BAM-G Rank (BAM-G) BAM-VF-G Rank
(BAM-VF-G)

Chengdu 0.901 10 0.031 14
Chongqing 0.713 13 0.067 9
Hangzhou 0.432 15 0.025 15

Xi’an 0.949 9 0.070 8
Wuhan 0.839 11 0.050 11
Suzhou 1.000 1 0.085 6

Zhengzhou 1.000 1 0.062 10
Nanjing 1.000 1 0.036 12
Tianjin 1.000 1 0.180 2

Changsha 0.801 12 0.078 7
Dongguan 1.000 1 0.124 4

Ningbo 0.655 14 0.033 13
Foshan 1.000 1 0.386 1
Hefei 1.000 1 0.109 5

Qingdao 1.000 1 0.130 3

These fifteen cities are categorized into two groups: efficient DMUs and inefficient
DMUs, as depicted in Figure 7. Among them, Foshan, Tianjin, and Qingdao are the three
cities with efficient scores, while Hangzhou, Chengdu, and Ningbo are the three cities with
inefficient scores. Analyzing the efficiency scores of these two groups of cities from 2017
to 2022, it can be observed that during the years 2017 to 2019, there was an upward trend
in the efficiency scores for both groups of cities. However, in the years 2020 to 2021, there
was a decline in the efficiency scores of all cities to varying degrees. What is distinct is that
in the year 2022, the efficiency scores for the group of efficient cities increased, while the
efficiency scores for the group of inefficient cities decreased.
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The COVID-19 pandemic has had a profound impact on China, the year 2020 being
marked as the most challenging in terms of the speed of transmission, the extent of con-
tagion, and the difficulty of prevention and control since the founding of the People’s
Republic of China. The pandemic has led to a surge in medical activities, resulting in a
continuous increase in the medical waste generated volume. In 2020, a total of 1.26 million
tons of medical waste was produced nationwide, a year-on-year increase of 6.8%. In 2021,
the total amount of medical waste generated nationwide reached 1.4 million tons (including
201,000 tons of epidemic-related medical waste), representing an increase of 18.6% and
11.1%, respectively, compared to the years 2019 and 2020. The disposal of medical waste in
China mainly relies on the incineration capacity of domestic waste incineration enterprises.
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As the amount of domestic waste increases annually, the disposal capacity for medical
waste is increasingly being squeezed. The sharp increase in the medical waste generated
volume during the pandemic has put immense pressure on the already limited capacity
for the recycling and disposal of medical waste, significantly reducing the efficiency of
the recycling system. The outbreak has exposed the shortcomings of the medical waste
recycling system.

On 26 February 2020, ten departments, including the National Health Commission,
the Ministry of Ecology and Environment, and the Ministry of Housing and Urban–Rural
Development, issued the “Comprehensive Management Work Plan for Medical Waste
from Medical Institutions”. The plan provides specific guidelines for strengthening the
comprehensive management of medical waste from medical institutions to achieve reduc-
tion, resource utilization, and harmless treatment of waste. On 25 March 2020, cities such
as Foshan and Heyuan were urged to accelerate the construction of new medical waste
facilities and to put them into operation as soon as possible. On 26 March, Shandong
Province passed the first provincial-level local regulation on medical waste management,
establishing a comprehensive system for the collection, transportation, and disposal of
medical waste. The regulation also calls for increased financial investment and the consid-
eration of geographical location and population served in setting up regional facilities for
the collection, storage, and disposal of medical waste.

With the reclassification of COVID-19 from a “Class B infectious disease managed as
Class A” to “Class B managed as Class B”, there was a resurgence in medical activities,
leading to a peak in the medical waste generated volume. Cities including Foshan, Tianjin,
and Qingdao were able to mitigate the impact on their medical waste recycling systems due
to the bolstering of their previously identified shortcomings in recycling capabilities. The
enhancements made to these systems allowed them to maintain their operational efficiency
despite the increased demand. In contrast, cities like Hangzhou, Chengdu, and Ningbo
did not take the necessary steps to improve the efficiency of their medical waste recycling
systems prior to the rise in medical activities in 2022. This lack of preparation left their
recycling systems vulnerable and ill-equipped to handle the surge, leading to a significant
setback in their performance throughout the year. This is also one of the reasons why these
cities’ medical waste recycling systems are considered inefficient.

According to the classification standards of the National Bureau of Statistics, China is
divided into four major regions: the eastern, central, western, and northeastern regions.
Since the new first-tier cities evaluated in this paper do not include those from the north-
eastern region, Table 8 categorizes the efficiency of the medical waste recycling systems
of the new first-tier cities in the eastern, central, and western regions. It can be observed
that the majority of new first-tier cities are concentrated in the eastern region, and the cities
with efficient scores are all located in the eastern region. The efficiencies of the central
and western regions are comparable, indicating that the development level of China’s
medical waste recycling systems is not balanced and that there is still significant room for
development in the central and western regions.

Table 8. Regional distribution of efficiency grades of medical waste recycling systems.

Grade Eastern Central Western

Efficient Foshan, Tianjin, Qingdao,
Dongguan, Hefei

Mid-efficient Suzhou, Changsha, Zhengzhou Xi’an, Chongqing

Inefficient Nanjing, Ningbo,
Hangzhou Wuhan Chengdu

4.2.2. Production Efficiency and Environment Efficiency Obtained from BAM-G

The average PE and EE scores are shown in Figure 8. Zhengzhou, Qingdao, Dongguan,
Nanjing, Suzhou, Foshan, and Tianjin all have PE and EE scores of 1, indicating a high
technological level and environmental emission capacity. It is worth noting that Hangzhou
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still maintains low PE and EE scores, with the lowest scores at 0.334 and 0.281, respectively.
PE and EE in these cities are closely correlated. This phenomenon can be attributed to
two factors. First, cities with higher levels of waste disposal technology have stricter envi-
ronmental requirements for waste management, leading to a strong correlation between
production and environmental emission capacity. Second, environmentally friendly com-
panies have a higher appeal to customers, contributing to the close relationship between
production and environmental emission capacity.
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As shown in Figure 9, the new first-tier cities’ medical waste recycling systems had
inefficient scores (the highest is only 0.942) over the entire sample period. Unified efficiency,
PE, and EE show an increasing trend from 2017 to 2018, followed by a slight decline in
2019. They reach their lowest point in 2020 and gradually recover in 2021. When medical
activities surged again in 2022, overall efficiency, PE, and EE decreased once more, revealing
a significant deficiency and severe lack of resilience in the medical waste recycling systems
of these cities. In particular, EE was the most severely affected, suggesting the need for
additional attention to environmental protection in medical waste recycling systems.
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Incineration disposal technology can achieve the objectives of harmlessness, reduction,
stabilization, and complete destruction of medical waste, demonstrating good applicability
to various types of waste, which is why it has been widely applied. However, the process
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of disposing of medical waste can produce substances such as dioxins and heavy metals,
especially when the input of waste is unstable, leading to numerous issues in tail gas
purification and significant environmental risks. Particularly during the pandemic period,
the sudden surge in the generation of medical waste increased the difficulty of disposal,
making it challenging to ensure the quality of tail gas treatment. The improvement in EE is
closely related to the technology used for the disposal of medical waste. Limited by disposal
technology, using a combination of various treatment methods (such as incineration and
high-temperature treatment technologies) can enhance environmental efficiency. Different
types of waste require the integration of different disposal technologies. However, the
unfortunate reality on a global scale is that a large amount of healthcare waste is not
disposed of using the correct technology. The enhancement of EE undoubtedly requires the
investment of more human, material, and financial resources, which can impact production
efficiency. Balancing EE with cost will be a topic that urgently needs to be discussed.

4.2.3. The MWCS Efficiency and the MWTS Efficiency Obtained from a Two-Stage BAM-G

Table 9 illustrates the efficiency of MWCSs and MWTSs in CNFCs from 2017 to 2022.
Suzhou, Tianjin, Dongguan, Foshan, and Qingdao have higher efficiency in MWCSs and
the MWTSs, indicating that these five cities have certain reference values for other cities in
medical waste recycling. However, Hangzhou has the lowest MWCS and MWTS efficiencies
for the past five years, at 0.493 and 0.440, respectively.

As shown in Figure 10, the efficiencies of MWCSs show a gradual increase from
2017 to 2018, with 10 cities achieving a score of 1 in 2018. The efficiencies of MWTSs
continue to increase from 2017 to 2019, with 12 cities achieving a score of 1 in 2019. Both
the MWCSs and the MWTSs experienced their lowest efficiencies in 2020, with a gradual
recovery observed in 2021. It is important to highlight that even though the overall
efficiency and the efficiencies of MWTSs experienced a decline in 2022, there has been an
observed improvement in MWCSs. This indicates that the resilience of the MWCSs has
been significantly improved since the year 2020.
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Table 9. The efficiencies of medical waste collection, transportation subsystems (MWCSs), and medical waste treatment subsystems (MWTSs) in selected cities.

CNFCs
MWCS MWTS

2017 2018 2019 2020 2021 2022 Mean Rank 2017 2018 2019 2020 2021 2022 Mean Rank

Chengdu 0.849 0.789 0.836 0.772 0.772 0.761 0.834 10 0.735 1.000 1.000 0.674 1.000 1.000 0.901 10
Chongqing 0.640 0.556 0.607 0.643 0.643 0.498 0.586 14 1.000 1.000 0.595 0.670 0.801 0.878 0.824 11
Hangzhou 0.496 0.414 0.633 0.523 0.523 0.529 0.493 15 0.618 0.453 0.564 0.372 0.260 0.374 0.440 15

Xi’an 1.000 1.000 0.821 1.000 1.000 1.000 0.970 6 0.789 1.000 0.710 1.000 1.000 1.000 0.916 9
Wuhan 0.745 0.859 0.721 0.465 0.465 0.613 0.659 12 0.512 1.000 1.000 0.474 1.000 1.000 0.831 12
Suzhou 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1

Zhengzhou 1.000 1.000 1.000 1.000 1.000 1.000 0.913 9 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1
Nanjing 1.000 1.000 1.000 1.000 1.000 1.000 0.956 7 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1
Tianjin 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1

Changsha 0.680 1.000 0.692 0.563 0.563 0.592 0.691 11 0.731 1.000 1.000 0.438 1.000 0.640 0.802 5
Dongguan 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1

Ningbo 0.688 0.675 0.634 0.620 0.620 0.640 0.611 13 1.000 0.652 1.000 0.497 0.281 0.427 0.643 14
Foshan 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1
Hefei 1.000 1.000 1.000 1.000 1.000 1.000 0.950 8 0.647 0.696 1.000 0.606 1.000 1.000 0.825 13

Qingdao 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1
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Figure 11 illustrates a strong correlation between the overall efficiency and the effi-
ciency of MWCSs and MWTSs. The efficiency evaluation of MWCSs stands at 0.844, which
is 0.035 lower than that of MWTSs. The inefficiency of MWCSs exposes the existing chal-
lenges in China’s medical waste segregation, collection, preliminary harmless treatment,
storage, and transportation processes.

Sustainability 2024, 16, x FOR PEER REVIEW 27 of 33 
 

As shown in Figure 10, the efficiencies of MWCSs show a gradual increase from 2017 
to 2018, with 10 cities achieving a score of 1 in 2018. The efficiencies of MWTSs continue 
to increase from 2017 to 2019, with 12 cities achieving a score of 1 in 2019. Both the MWCSs 
and the MWTSs experienced their lowest efficiencies in 2020, with a gradual recovery ob-
served in 2021. It is important to highlight that even though the overall efficiency and the 
efficiencies of MWTSs experienced a decline in 2022, there has been an observed improve-
ment in MWCSs. This indicates that the resilience of the MWCSs has been significantly 
improved since the year 2020. 

 
Figure 10. Comparisons of the efficiencies of MWCSs and MWTSs from 2017 to 2022. 

Figure 11 illustrates a strong correlation between the overall efficiency and the effi-
ciency of MWCSs and MWTSs. The efficiency evaluation of MWCSs stands at 0.844, which 
is 0.035 lower than that of MWTSs. The inefficiency of MWCSs exposes the existing chal-
lenges in China’s medical waste segregation, collection, preliminary harmless treatment, 
storage, and transportation processes. 

 
Figure 11. The average efficiency scores for BAM-G, MWCSs, and MWTSs from 2017 to 2022. Figure 11. The average efficiency scores for BAM-G, MWCSs, and MWTSs from 2017 to 2022.

4.3. Discussion

Through the above analysis, our main findings are summarized as follows:

1. According to the results obtained from the BAM-VF-G model, Foshan is the most
efficient in terms of medical waste recycling and stayed ahead of Qingdao. Similar
to when the BAM-G model was used, Hangzhou, Ningbo, and Chengdu were again
found to be the most inefficient provinces. Suzhou, Tianjin, Dongguan, Foshan, and
Qingdao have efficiencies of 1 in PE, EE, and both substages. This is closely linked to
the government’s policy support, the application of relevant advanced technologies,
and the improvement in personnel quality.

2. EE remains a significant factor contributing to the inefficiency of the medical waste
recycling systems and it lacks resilience significantly. Figure 9 indicates that EE has
consistently been lower than the overall efficiency and PE. With the advancement of
science and technology, the medical waste generated volume can now be fully man-
aged by existing medical waste disposal centers. However, addressing the pollution
from exhaust gases and waste residues produced during the disposal process remains
a formidable challenge. Therefore, the government should intensify its research and
development investment in medical waste disposal to reduce the environmental
pollution caused by medical waste in MWTSs.

3. The COVID-19 pandemic led to a surge in the generation of medical waste, posing
challenges to the collection and disposal of medical waste and resulting in a decline
in the efficiency of medical waste recycling. In the new first-tier cities, the unified
efficiency of medical waste recycling decreased by 2.52% in 2019 and further declined
by 12.18% in 2020. There was a brief recovery in 2021, but after the adjustment
of epidemic prevention policies in 2022, the medical waste generated saw another
peak, and the overall efficiency decreased by 3.67%. To enhance the efficiency of the
medical waste recycling system and strengthen its resilience, it is important to adhere
to and implement the “Green Development of China in the New Era”, strengthen
environmental protection, and resolutely fight the critical battle against pollution; the
government and relevant entities must continue to focus on medical waste recycling.
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4. MWCSs have consistently been the primary bottleneck in the efficiency of the medical
waste recycling system. On one hand, the medical waste collection process is not
standardized, and there is a lack of professional recycling personnel. On the other
hand, the medical waste recycling system network is irrational, leading to high
transportation costs and posing challenges to transportation safety. Especially after
the outbreak of the COVID-19 pandemic, with the surge in the generation of medical
waste, medical waste recycling efficiency has significantly declined, highlighting the
poor resilience of the MWCSs.

5. Conclusions and Policy Recommendations
5.1. Conclusions and Limitations

Resource utilization and environmental governance have become hot topics of current
research. Waste recycling is a key measure in the current situation, receiving widespread
attention and calls from all sectors of society. As a special waste, scientific recycling and
proper treatment of medical waste can avoid secondary pollution and promote resource
reuse. The medical waste recycling system encompasses two stages: MWCSs and MWTSs.
Unlike other inputs, where the expectation is to achieve the maximum output with the
minimum input, the medical waste collected volume, precipitation levels, and the degree of
government support are considered input indicators (harmful inputs or naturally occurring
conditions that are non-cost inputs), and it is desired to have as much of these inputs as
possible, hence they are referred to as undesirable inputs. To evaluate the efficiency of
the medical waste recycling systems, this paper proposes a two-stage G-BAM model that
considers both non-desired inputs and outputs. To address the situation where multiple
DMUs have an efficiency value of 1, we extend a virtual frontier to rank efficient DMUs
and propose the BAM-VF-G model. Secondly, by calculating PE and EE, the production
and environmental efficiencies of CNFCs are explored. Finally, the efficiency of the medical
waste recycling system is decomposed into MWCSs and MWTSs to further understand the
internal operations of the medical waste recycling system. The conclusions are as follows.

1. From 2017 to 2019, the efficiency of the medical waste recycling systems in new
first-tier cities, as well as all subsystems, saw significant improvements. Although
the overall efficiency declined in 2020 due to the impact of the COVID-19 pandemic,
it gradually increased after 2021. In recent years, in accordance with the “Com-
prehensive Management Plan for Medical Institution Waste”, local authorities have
strengthened the comprehensive management of medical institution waste, achieving
waste reduction, resource utilization, and harmless treatment, resulting in fruitful
outcomes in the governance of medical waste and environmental protection.

2. The PE is higher than the EE. With the continuous development and application
of medical waste disposal technologies, the disposal efficiency is sufficient to meet
the growing demand for the medical waste generated volume. However, due to
the complexity and polluting nature of medical waste of various types, it poses a
risk of environmental pollution. On the other hand, existing technologies still face
insurmountable challenges, and the treatment of medical waste generates a significant
amount of emissions, such as smoke and gases, which may contain harmful substances,
causing pollution to the environment and reducing air quality.

3. The MWCS exhibits a lower level of efficiency. On one hand, the MWCS involves
multiple stages and requires collaboration and coordination with various stakehold-
ers, including medical institutions, government departments, and waste management
enterprises. Its management encompasses several aspects, including regulation, oper-
ation, and technical support. If the management system is not robust, with inadequate
supervision and unclear responsibilities, this can lead to operational inefficiencies and
impact the effectiveness of the MWCS. On the other hand, medical waste originates
from a wide range of sources, including hospitals, clinics, and pharmacies. However,
during the initial stages of waste management and recycling system construction,
there may not have been sufficient consideration of the medical waste generated
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volume and the characteristics of each stage, leading to an irrational layout and
incomplete coverage, which affects the overall efficiency of the MWCS.

The limitations of this paper are primarily manifested in two aspects.

1. Data Limitations: The four-year period from 2019 to 2022, which encompasses China’s
fight against the COVID-19 pandemic, constitutes two-thirds of the data in this paper.
The evaluation results are influenced by objective factors such as policies. It would be
possible to continue tracking the medical waste recycling systems of these cities to
explore the efficiency of medical waste recycling under normalized conditions.

2. Model Limitations: The use of the virtual frontier method, which requires the random
generation of a set of reference DMUs, adds complexity to the model and calculations.
The handling of uncertainty and the more complex mathematical form mean that the
virtual frontier method requires more computational resources and time.

5.2. Policy Recommendations

Building upon the aforementioned conclusions, policy recommendations have been
proposed to enhance the efficiency of medical waste recycling systems.

1. Improve the efficiency of the MWCSs. On one hand, it is essential to promote the scien-
tific construction of the medical waste recycling network, which includes optimizing
the recycling process, selecting facilities for recycling nodes, and planning routes for
medical waste transportation vehicles, thereby improving the efficiency and quality
of recycling. On the other hand, the government should formulate and refine relevant
regulations and standards for medical waste recycling, clarifying the management
requirements and division of responsibilities for medical waste recycling.

2. Reduce environmental pollution. On the one hand, the medical waste recycling
network should be optimized to minimize the exhaust pollution generated during
the transportation of medical waste. On the other hand, medical waste disposal
enterprises should introduce new technologies to maximize the reduction in medical
waste generation and the release of emissions. At the same time, the government
should implement incentive mechanisms, encouraging continuous innovation and
the application of relevant technologies through R&D subsidies and tax incentives, to
achieve waste reuse and resource utilization.

3. The increasing generation of medical waste and the potential for various major disas-
ters should be addressed, and enhancing the resilience of the medical waste recycling
network is essential. On the one hand, it is necessary to properly classify and manage
waste within medical institutions, ensuring that all medical waste is thoroughly sorted
and traceable. Encouraging leading medical institutions to guide and implement
integrated waste classification and management within their medical consortia is
advisable. On the other hand, strengthening the construction of centralized disposal
facilities is crucial, including the establishment of at least one centralized medical
waste disposal facility that meets operational requirements in each city above the
prefecture level and the development of a medical waste collection, transportation,
and disposal system in every county (city). Most importantly, the construction of
medical waste disposal facilities must be capable of responding to emergencies.
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Nomenclature
Symbol Definition
DMU0 The DMU under evaluation
j = 1, . . . J Number of DMUs
i1 = 1, . . . I1 Number of undesirable inputs
i2 = 1, . . . I2 Number of desirable inputs
i = i1 ∪ i2 Number of inputs
r1 = 1, . . . R1 Number of desirable outputs
r2 = 1, . . . R2 Number of undesirable outputs
r = r1 ∪ r2 Number of outputs
iF
1 = 1, . . . IF

1 Number of undesirable inputs in MWCS
iS
1 = 1, . . . IS

1 Number of undesirable inputs in MWTS
i1 = iF

1 ∪ iS
1 Number of undesirable inputs, i1 = 1, . . . I1

iF
2 = 1, . . . IF

2 Number of desirable inputs in MWCS
iS
2 = 1, . . . IS

2 Number of desirable inputs in MWTS
i2 = iF

2 ∪ iS
2 Number of desirable inputs, i2 = 1, . . . I2

rF
1 = 1, . . . RF

1 Number of desirable outputs in MWCS
rS

1 = 1, . . . RS
1 Number of desirable outputs in MWTS

r1 = rF
1 ∪ rS

1 Number of desirable outputs, r1 = 1, . . . R1
rF

2 = 1, . . . , RF
2 Number of undesirable outputs in MWCS

rS
2 = 1, . . . RS

2 Number of undesirable outputs in MWTS
r2 = rF

2 ∪ rS
2 Number of undesirable outputs, r2 = 1, . . . R2

dt
ix ith slack variables of input variable in year t

dt
rz rth slack variables of intermediate variable in year

dt
ry rth slack variables of output variable in year t

dt
iF
1

ith input shortfall in MWCS

dt
iF
2

ith input excess in MWCS

dt
rF

1
ith output shortfall in MWCS (ith input shortfall in MWTS)

dt
rF

2
ith output excess in MWCS

dt
iS
2

ith input excess in MWTS

dt
rS

1
ith input shortfall in MWTS

dt
rS

2
ith input excess in MWTS

xt
i0 ith input of DMU0 in year t

zt
r0 rth output(input) of DMU0 in year t

yt
r0 rth output of DMU0 in year t

xt
iF
1

ith undesirable input of DMUj in MWCS

xt
iF
2

ith desirable input of DMUj in MWCS

zt
rF

1
ith desirable output (undesirable input) of DMUj in MWCS (MWTS)

yt
rF

2
ith undesirable output of DMUj in MWCS

xt
iS
2

ith desirable input of DMUj in MWTS

yt
rS

1
ith desirable output of DMUj in MWTS

yt
rS

2
ith undesirable output of DMUj in MWTS

λt
j Determinant of best practices for DMU0

xiF
1

The maximum among the ith undesirable inputs in MWCS
xiF

2
The minimum among the ith desirable inputs in MWTS

xiS
1

The maximum among the ith undesirable inputs in MWCS
xiS

2
The minimum among the ith desirable inputs in MWTS

y
rF

2
The minimum among the rth undesirable outputs in MWCS

https://www.stats.gov.cn/sj/ndsj/
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yrS
1

The maximum among the rth desirable outputs in MWCS
y

rS
2

The minimum among the rth undesirable outputs in MWTS
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