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Abstract: Nutrients, organic matter (OM), and heavy metals (HMs) in lake sediments are critical
elements contributing to water pollution. In April 2019, surface sediments from Wanghu Lake
were collected, and the nutrient, organic matter, and heavy metal content of the sediments were
determined. We mainly evaluated the sediment pollutants through four evaluation methods to
assess pollution and provide a reference for pollution control in Wanghu Lake. The results indicated
that the averages of total phosphorus (TP) and total nitrogen (TN) were (1045.74 ± 190.17) mg/kg,
(945.27 ± 203.56) mg/kg; most of them showed serious pollution and moderate pollution, respec-
tively. OM was (32.31 ± 5.11) g/kg. Among them, TP and OM in the northwestern Wanghu Lake
were significantly higher than those in the eastern lake (p < 0.05). It shows that nutrients are greatly
affected by historical aquaculture and urban human activities. TP was the most serious in the center
of the lake, and the source of pollution was mainly the historical deposition. The average of Cd, Cr,
Cu, Ni, Pb, Zn, Hg, and As in the sediments were 2.15, 1.09, 1.93, 1.37, 1.28, 1.49, 2.60, 1.77 times
that of the soil background values of Hubei Province, respectively. Hg and Cd were the main factors
contributing to the surface sediments, with levels at considerable and moderate risks, respectively.

Keywords: surface sediments; nutrients; organic matter; heavy metals; pollution evaluation

1. Introduction

Sediment is an important component of lake ecosystems. It can provide a living
environment for aquatic macrophytes, benthic animals, and other organisms in the lake and
is also the carrier and destination of pollutants in the aquatic ecosystem environment [1,2].
Sediments receive sands and pollution inflow from atmospheric deposition, surface runoff,
and soil erosion in the basin, thus sediment is the “sink” of lake pollution [3]. Nevertheless,
when the environmental conditions (temperature, dissolved oxygen (DO), and pH) change,
nutrients and organic matter (OM) in sediments are released into overlying water by the
ways of decomposition, diffusion, and resuspension, causing secondary pollution [4,5].
Heavy metals (HMs) can also be released into the overlying water through interstitial water
by changing the speciation of heavy metals, dissolution, and concentration diffusion [6–8].
Therefore, the surface sediments of lakes are both the “source” and “sink” of nutrients
and pollution [9]. Urbanization and industrialization have aggravated lake pollution. The
discharge of domestic sewage has increased the sources of nitrogen (N) and phosphorus
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(P) in sediments, and fence breeding aggravates P pollution [10]. While industrial and
agricultural production produce N, P, and OM pollution, HMs also accumulate in sediments,
which is arguably a more serious issue, making the ecological environment more fragile [11].

Endogenous pollution caused by the release of N, P, and OM is a critical factor in lake
eutrophication, and sediments are a useful way to study this [12]. The HMs pollution in
sediments will endanger the health of humans and aquatic organisms [13,14]. The eastern
part of Meixi Lake in Changsha City was severely polluted with nutrients and OM closely
related to N and P pollution [15]. TP pollution in the surface sediments of Longyang and
Moshui Lake in Wuhan was more severe than that of TN, and Cd pollution was also a
problem. In the sediments of Nansi Lake, the proportion of Cd pollution in RI was up to
76% [16]. Lakes such as Ulansuhai Nur, Dongting, Gehu, and Luoma Lake was affected
by agricultural nonpoint source pollution to varying degrees, and the contents of TP, TN,
Cd, As, and Hg were relatively high [17–19]. In recent decades, N, P, and OM in lakes have
increased to varying degrees, and the level of OM pollution has increased [20]. The content
of HMs in lots of lakes in China are more than the background values of soil, and there
is a serious ecological risk [20]. Currently, methods used to evaluate nutrient pollution
are those such as the comprehensive pollution index and organic index [1,12,21], whereas
HMs were evaluated by the potential ecological risk (RI), geo-accumulation (Igeo), Nemero
comprehensive, and pollution load index [14,22,23]. In addition, correlation, factor, and
hierarchical cluster analyses have been recommended to analyze pollution sources [1,15,19].
As an internationally important habitat for migratory birds, many birds feed and reproduce
in Wanghu Lake annually. Therefore, sediment pollution of the lake not only affects water
quality, but also affects the habitat and reproduction of migratory birds. At present, due to
the rapid development of agriculture, aquaculture, and urbanization, the diffuse pollution
in Wanghu Lake basin has increased. It caused eutrophication of Wanghu Lake, and it also
destroyed the ecological environment. In the past, most of the studies on Wanghu Lake
basin focused on the evaluation of the water quality or nutrient occurrence and pollution
assessment within the lake basin [10,24]. In the evaluation of sediment pollution, most of
the analysis and evaluation were carried out from the perspective of the release fluxes of
N and P pollution in sediments at different depths [25]. For heavy metals in sediments,
a single evaluation method was used to evaluate the vertical distribution characteristics,
source analysis, and risk of heavy metals in sediments [11]. In this study, a variety of
analytical methods was used to study the nutrients, organic matter, and heavy metals in
surface sediments through a number of indicators in order to carry out a comprehensive
understanding of the surface sediment pollution of the lake.

An aim of this study is to explore the distribution and pollution evaluation of nutrients,
organic matter, and heavy metals in the surface sediments of Wanghu Lake. Simultaneous
determination of TN, TP, OM, and eight heavy metals elements was conducted. The
comprehensive pollution index and organic index method were used to evaluate the
nutrients and OM of the sediments. Additionally, RI and Igeo were used to evaluate the
distribution characteristics and hazard risks of the corresponding eight heavy metals in the
lake basin. We proposed three hypotheses: (1) Due to the fact that the northwest was close to
the Wanghu Lake aquaculture area and human accumulation areas, TN and OM pollution
caused by aquaculture and human activities over here may were higher than other areas.
(2) Whereas the central lake has a relatively stable sedimentary environment, nutrients,
organic matter and heavy metal pollution are easy to accumulate here, consequently,
pollutions were easy to accumulate here. (3) The northeast of Wanghu Lake is the port
channel connecting the Yangtze River; the water has a strong exchange capacity over there.
The pollution was difficult to deposit here, so the pollution degree was light. This study
provides targeted measures and schemes for pollution identification, control, and ecological
restoration in specific areas of lake.
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2. Materials and Methods
2.1. Study Area

Wanghu Lake (115◦14′00′′–115◦25′42′′ E, 29◦45′11′′–29◦56′38′′ N) is located in Yangxin
County (114◦43′–115◦30′ E, 29◦30′–30◦09′ N), Huangshi City, Hubei Province (Figure 1). It
is adjacent to the Yangtze River in the east, Fushui River in the south, and Xingguo Town,
north is adjacent to Taogang Town and Banbishan Management Area [10]. Wanghu Lake
is connected to the densely populated Yangxin County through the Lianhua Lake Group.
Saiqiao Lake district and Xiasi Lake in the northwest of Wanghu Lake are the main sites
of the state-owned aquaculture in Yangxin. Lianhua Lake district, including Zhulintang,
Daquan Lake, and Shihuisai Lake are located in the west of Wanghu Lake, which is the
pearl breeding area for surrounding farmers. Wanghu Lake is in a subtropical monsoon
climate with a humid climate and abundant precipitation. The average annual tempera-
ture of Yangxin Station is 16.3~17.6 ◦C, and the annual average precipitation is between
883.5~1888.9 mm [26]. Wanghu Lake is a part of the Fushui river system and receives
abundant precipitation. Atmospheric precipitation and surface runoff are the main sources
of lake recharge. The basin area is wide, the water area is about 33.2 km2, the average
elevation of water in Wanghu Lake is 15.5 m, and the average depth is 3.51 m [24,25]. In
2018, the Wanghu Wetland Nature Reserve was included in the “International Important
Wetland List”, with a total protected area of 204.95 km2 [11].
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Figure 1. Map of Study area.

2.2. Sample and Determination Methods

On 11 April 2019, considering the morphological characteristics of Wanghu Lake and
the surrounding land use, 10 sample points were evenly selected (Table 1). At each point,
approximately 1500 g of surface sediment (0–10 cm) was collected three times using the
Peter mud snapper and placed in a clean, dry, sealed bag, separately. After transporting
the samples back to the laboratory, the samples were mixed and weighed. A total of 200 g
of sediment was dried in an oven until reaching a constant weight. Next, impurities were
removed, then the sediment was ground to fine particles and passed through an 80-mesh
sieve for the determination of TP, TN, OM, and HMs (Table 2) [11,27,28].
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Table 1. Surface sediment sampling sites.

Point Location

W1 115.306293◦ E, 29.882947◦ N
W2 115.268325◦ E, 29.875496◦ N
W3 115.323389◦ E, 29.870880◦ N
W4 115.294078◦ E, 29.921601◦ N
W5 115.383743◦ E, 29.880354◦ N
W6 115.341942◦ E, 29.850387◦ N
W7 115.355005◦ E, 29.871430◦ N
W8 115.306719◦ E, 29.858454◦ N
W9 115.374597◦ E, 29.852024◦ N

W10 115.335075◦ E, 29.853131◦ N

Table 2. The main index determination method.

Index Method

TP Potassium persulfate oxidation spectrophotometer
TN Alkaline potassium persulfate oxidation ultraviolet spectrophotometer
OM Potassium dichromate volumetric method

Cu, Cr Flame atomic absorption spectrophotometry
As, Hg Atomic fluorescence spectrophotometry (AFS)
Ni, Zn Atomic absorption spectrometry (ABS)
Cd, Pb Graphite furnace atomic absorption spectrophotometry

2.3. Pollution Assessment Method
2.3.1. Evaluation of Pollution Index

The comprehensive pollution index has been used to evaluate the pollution status of
nutrients in sediments [1,14,21]. The formula is as follows:

Si =
Ci
Cs

(1)

F =
STN + STP

2
, Fmax = Max(STN,STP) (2)

FF =

√
F2 + F2

max
2

(3)

In the above formula, Si is the single-factor evaluation index; i is the evaluation factor;
Ci represents the measured value; Cs denotes the standard. The standard for TP and TN
were 550 and 600 mg/kg, respectively. F represents the average of Si, and Fmax is the
maximum of Si. The pollution levels are shown as follows (Table 3):

Table 3. Pollution levels of lake sediments [1,14,21].

STN STP FF Level

<1.0 <0.5 <1.0 Clean
1.0–1.5 0.5–1.0 1.0–1.5 Mild Pollution
1.5–2.0 1.0–1.5 1.5–2.0 Moderate Pollution

>2.0 >1.5 >2.0 Serious Pollution

2.3.2. Organic Index

The organic index (OI) can identify the degree of pollution of N and OM by calculating
organic nitrogen (ON) and organic carbon (OC). The organic index can reflect the pollution
of nutrients in sediments, and organic nitrogen can evaluate the degree of nitrogen pollution
in sediments [12,15,27]. The formula is as follows:
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ON (%) = TN (%) × 0.95 (4)

OC (%) = OM (%) ÷ 1.724 (5)

OI = ON (%) × OC% (6)

where ON, OC, and OM are the content of ON, OC, and OM, respectively. The evaluation
criteria have shown in Tables 4 and 5.

Table 4. Evaluation criteria of organic index [27].

Organic nitrogen

<0.033 0.033–0.066 0.066–0.133 >0.133

Level
Clean Mild pollution Moderate pollution Organic nitrogen pollution

I II III IV

Table 5. Evaluation criteria of organic index [12].

Organic index

<0.05 0.05–0.20 0.20–0.50 >0.50

Level
Clean Mild pollution Moderate pollution Organic pollution

I II III IV

2.3.3. Geo-Accumulation Index

Geo-accumulation index was used to measure the enrichment degree of heavy met-
als, which compare the measured value with the background concentration in Hubei
Province [9,29]. The formula is as follows:

Igeo = log2

(
Ci
kBi

)
(7)

Ci is the mass fraction of element i in the sediment; k is the change in rock caused by
weathering in different places, generally taking 1.5 as the coefficient; Bi is the geochemical
average natural background level of element i. The environmental background of heavy
metals (Table 6) and the level of the Igeo pollution index are as follows (Table 7).

Table 6. Soil background values and toxicity coefficients of HMs in Hubei Province [30].

Standard Cd Cr Cu Ni Pb Zn Hg As

Background (mg/kg) 0.17 86 30.7 37.3 26.7 83.6 0.08 12.3
Toxicity coefficient 30 2 5 5 5 1 40 10

Table 7. Geo-accumulation index coefficient and pollution level [5].

Igeo Level

<0 Uncontaminated
0~1 Slight pollution
1~2 Moderate pollution
2~3 Moderate to heavy pollution
3~4 Heavy pollution
4~5 Severe pollution
≥5 Extreme pollution

Cite: Toxicity coefficient is a unified standard method and scale for representing and
comparing the toxicity of poisons, that is, reference values or indicator values.
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2.3.4. Potential Ecological Risk Index

Potential ecological risk index was used to evaluate the potential hazards of heavy met-
als in the sediments to aquatic environments (Table 8). Compared with geo-accumulation
index, this method introduces the toxicity coefficient to evaluate the potential ecological
risk of HMs [14]. The formula is as follows:

RI =
n

∑
i=1

Ei
r =

n

∑
i=1

Ti
r × ci

f =
n

∑
i=1

Ti
r ×

ci

ci
B

(8)

In the above formula, RI is the potential ecological risk index of heavy metals; Ei
r is

the potential risk coefficient of the element i. Ti
r is the toxicity coefficient corresponding to

the element i. ci
f represents the pollution index of the element i. ci represents the measured

value; ci
B denotes the background value. The potential ecological risk is known according

to the sediment heavy metals Er and RI.

Table 8. Classification of potential ecological risk index criteria [14].

Ei
r RI Potential Ecological Risk

<40 <150 Low risk
40~80 150~300 Moderate risk

80~160 300~600 Considerable risk
160~320 ≥600 High Risk
≥320 / /

2.4. Data Processing

The study area and interpolation maps were created using ArcGIS 10.2 (Esri, Redlands,
CA, USA). SPSS Statistics 23 (IBM, Armonk, NY, USA) was used for statistical analysis, and
the data mapping was completed using Origin 2021 (OriginLab). Data are expressed as
mean ± SD.

3. Results
3.1. Distribution and Pollution Evaluation of Nutrients and Organic Matter
3.1.1. Distribution of Nutrients and Organic Matter

There were spatial differences in the average contents of nutrients and OM (Figure 2).
TP content was 664.73–1333.22 mg/kg, the average was (1045.74 ± 190.17) mg/kg. The
average of TN was (945.27 ± 203.56) mg/kg. Compared with TP, the spatial difference in
TN content was relatively large, with a coefficient of variation (CV) of 0.216. The content of
OM was 18.29–37.16 mg/kg, the average value was (32.31 ± 5.11) g/kg, and the CV was
0.157. Therefore, the spatial differences in TN and TP content were significantly greater
than that of OM (p < 0.05). In terms of spatial distribution, the contents of TP, TN, and OM
were the lowest in the northeast of Wanghu Lake. Particularly, OM levels were significantly
lower than those of others (p < 0.05). The highest TN and OM contents were observed in
the northwestern part of the lake, and the most severe TP pollution was distributed in the
middle of the lake area.

3.1.2. Nutrient Pollution

The STP was 1.108–2.222 (Figure 3), with an average of (1.74 ± 0.32). Spatially, the
northeastern part of Wanghu lake (W5) and western part (W2) had moderate pollution,
and the rest of the sample points had severe pollution. The STN was 0.959–2.525, with an
average of (1.72 ± 0.37). The north-eastern part of the lake, which was clean, had the lowest
degree of pollution, whereas the north-western part (W1), which was severely polluted, had
the most serious pollution. The comprehensive pollution index (FF) of Wanghu Lake was
1.036–2.133, with an average of (1.74 ± 0.30). Except for the northeast of the downstream
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outlet (W5), which had mild pollution, the northwest (W1) and middle of the lake (W4)
had serious pollution, and other areas had moderate pollution.
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3.1.3. Organic Pollution

Organic nitrogen was between 0.05 and 0.13, with an average of (0.09 ± 0.02). The
surface sediments had moderate pollution (III) except for W5, which experienced mild
pollution (II). The evaluation results of OI were basically consistent with the evaluation
results of ON (Figure 4). The maximum and minimum values of OI and ON were dis-
tributed in the northwest and northeast of the lake, respectively. The average OI index was
(0.17 ± 0.05), and the CV was 0.311. Among them, the pollution level of W1 and W4 was
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level III, which the organic pollution level was higher than other areas of the lake. Organic
index pollution in Wanghu Lake was always higher than organic nitrogen pollution.
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3.2. Distribution and Pollution of Heavy Metals in Sediments of Wanghu Lake
3.2.1. Distribution of Heavy Metals

In different areas, Wanghu Lake was polluted by heavy metals to varying degrees (Figure 5).
The average contents of Cd, Cr, Cu, Ni, Pb, Zn, Hg, and As were (0.37 ± 0.07) mg/kg,
(93.48 ± 24.87) mg/kg, (59.23 ± 13.62) mg/kg, (51.00 ± 16.81) mg/kg, (34.11 ± 9.24) mg/kg,
(124.20 ± 41.27) mg/kg, (0.21 ± 1.99) mg/kg, and (21.75 ± 7.51) mg/kg, respectively. The
lowest content of eight HMs was distributed northeast of Wanghu Lake, whereas the high-
est content differed in spatial distribution. Among them, the Cr, Hg, and As levels were
significantly higher in the middle of the lake compared to the sides of the lake (p < 0.05).
Additionally, the Cu content was significantly higher in the northwest area of the lake
than in others regions (p < 0.05), with a high value of 84.6 mg/kg. The distribution of As
was special, and the pollution tends to decrease from the center to the east and west sides.
The southern part of the lake had the highest Ni content. Regarding spatial distribution,
the pollution distribution characteristics of Pb and Zn were similar. Two high-value areas
appeared in the northwest and middle of Wanghu Lake, whereas the degree of pollution
was significantly lower in the southwest and northeast areas of the lake (p < 0.05).
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3.2.2. Evaluation of Geo-Accumulation Index

The degree of heavy metals pollution in sediments was Hg > Cd > Cu > As > Ni
> Zn > Pb > Cr, and Igeo was 0.044~1.101, −0.073~0.749, −0.375~0.877, −0.419~0.419,
−0.539~−0.001, −0.564~0.163, −0.976~−0.050, −0.863~−0.340 (Figure 6). Cr, Ni, and Pb
were uncontaminated. Hg had moderate pollution in the north bank of the center (W3)
and the south bank west of the lake (W8), whereas the rest had slight pollution. The
distributions of Cd, Cu, and As pollution were similar, except for the northeast (W5), which
was uncontaminated, and the remaining areas showed slight pollution. Approximately
70% of Wanghu Lake area was slightly polluted by Zn, while the northeast and southwest
were uncontaminated; Hg pollution was the most serious.
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3.2.3. Evaluation of Potential Ecological Risk Index

Based on potential ecological risk index (RI) evaluation results (Figure 7a), the risks of
heavy metals were as follows: Hg (103.88) > Cd (64.60) > As (17.68) > Cu (9.65) > Ni (6.84)
> Pb (6.39) > Cr (2.17) > Zn (1.49). The contributions of Hg and Cd were 54% and 34%,
respectively, of which the two heavy metals contribute the most to the risk of RI (Figure 7b).
Cd was at a moderate risk and Hg was at a moderate risk in the northeastern part of
Wanghu Lake, but others were at a considerable risk. Except for Cd and Hg, the single
hazard coefficients for the other six heavy metals were low. Owing to the high toxicity of
Cd and Hg, the sediments were at a strong risk by these HMs. The RI of eight HMs was
between 133.26 and 243.88, with an average of (212.68 ± 98.65). The RI of the northeastern
part of Wanghu Lake, which was a low-risk area, was 135.25; others were more than 150,
indicating moderate risk.
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4. Discussion
4.1. The Source of Nutrients and Heavy Metals in Sediments

Nutrients and OM in sediments are mostly derived from production, agricultural
nonpoint source pollution, surface runoff, and aquatic macrophytes [6]. The most serious
TN and OM pollution in the northwest and west of Wanghu Lake may be due to its low
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terrain, which is affected by drainage in Yangxin County. At the same time, the northwest
and west are connected to the Saiqiao Lake and Lianhua Lake groups, respectively [25].
Lianhua Lake is close to Yangxin County. In recent years, with the increase of urban
population in Yangxin County, the point source pollution of production and living emissions
has increased. Sewage discharge causes nutrients and OM in the water to accumulate in
sediments [31]. Although sewage treatment plants have been built in towns in the basin,
domestic sewage has been largely intercepted. However, the coverage of the sewage
treatment plant pipe network is not comprehensive enough, and this means the sewage
cannot be completely intercepted. The Saiqiao Lake group has a history of reproductive
activity. In the sediments, nutrient sources and OM may be fertilizers and agricultural
fertilizers produced by aquaculture [32]. The high TP content in the center of the Wanghu
Lake area may be related to long-term fertilization and breeding. At the same time, due to its
unique geographical location and relatively stable sedimentary environment, pollutants are
easily deposited here and cause serious pollution [15]. Surface sediment pollution in lakes
is also closely related to aquatic macrophytes. Decline in aquatic macrophytes results in a
large amount of litter, which increases the accumulation of nutrients in sediments, resulting
in endogenous pollution [33]. Wanghu Lake is rich in aquatic macrophytes in some areas,
such as Myriophyllum verticillatum, Nymphoides peltatum, Trapa, and Phragmites australis [34].
Although aquatic macrophytes can purify water quality and adsorb nutrients, in the period
of plant decline, plant residues will also become an important source of nutrients and OM.
An increase in nutrient and OM contents in sediments caused by the corruption of aquatic
macrophytes was also observed in Taihu Lake and Honghu Lake [35,36].

Heavy metals are related to the discharge of sediment parent materials and anthro-
pogenic emissions from basins in sediments [22]. As heavy metals are persistent and
difficult to decompose, they easily accumulate in sediments, causing heavy metal pollu-
tion [32]. Wanghu Lake is a habitat for migratory birds, therefore, bird feeding and the
large input of bird droppings are also sources of HMs in sediments. In Tongli wetland,
Poyang Lake migratory bird habitat, the South China Sea Islands, and other polar regions,
HM pollution was also affected by bird manure input [37–40]. In Wanghu Lake, the results
of the Igeo were the same as RI. The high risk of HMs in sediments was mainly related to
Hg and Cd [41], which was 2.4 and 2.8 times the soil background, respectively. On the one
hand, the toxicity coefficient of Hg and Cd was higher [41]; on the other hand, it showed
that Hg and Cd were mainly derived from human activities. The area surrounding the
lake was less affected by industrial pollution, and the pollution mainly originates from
production activities such as planting, agriculture, and aquaculture [42]. In the process
of agricultural production, chemical fertilizers and pesticides containing Hg, Cd, and Zn
has increased dramatically, and these can enter lakes through atmospheric precipitation,
surface runoff, and underground leakage, resulting in non-point source pollution [43].
Studies have shown that in general, heavy metals with strong migration abilities flow into
lakes with runoff, whereas those with weak migration abilities only have a small amount of
elements with surface runoff or sediment into lakes [32]. Hg has a relatively high migration
and conversion rate and can be enriched in aquatic macrophytes, thereby exacerbating
pollution. The low pollution level of Cr and its weak migration ability may be attributed
to the emissions of parent lake materials [44]. Sediment accumulation mainly occurred in
the center of Wanghu Lake and showed a decreasing outward trend, which was related
to the low migration and transformation ability of As [5]. In addition, the migration and
transformation of HMs are closely related to their chemical forms, environmental pH, redox
conditions, and the presence of OM and microorganisms [45]. Wanghu Lake is one of the
main fish-producing areas in Yangxin County, China. Aquaculture was mainly concen-
trated on the northwest and south banks. The bait contained HMs such as Zn, Cu, and Cd.
Unfed bait is directly deposited in the sediment, and the ingested portion is excreted and
discharged through aquatic macrophytes, resulting in the enrichment of HMs [32]. The
higher Cd content in the southeast may be due to the diversion of the Fuhe River into the
lake during the wet season; Pb may come from the discharge of nonferrous metal smelting,
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manufacturing, and ore- or lead-containing industries, and daily sewage discharges may
also contribute small amounts of Pb [23]. Atmospheric deposition affected the production
and enrichment of Ni and As. Agricultural irrigation water, rock weathering, and decay
of animal and plant residues also affect the Ni content of sediments, whereas As may be
produced by the application of arsenic-containing pesticides, residues, and coal burning [5].

4.2. The Correlation between Nutrients and Heavy Metals in Sediments

Studies have shown that OM was closely related to the mobility, transformation, and
bioavailability of HMs [46]. The correlation between pollutants in Wanghu Lake (Table 9)
indicates that the sources of pollution may be similar. OM was significantly positively
correlated with TN (p < 0.01, r = 0.769) and TP (p < 0.05, r = 0.748), indicating that OM in
sediments may be homologous to N and P [47,48]. This may be due to the growth, the
decay and decomposition of plant residues, resulting in an increase in the OM and TN
content in sediments [48]. The correlation between TN and TP was insignificant (p > 0.05),
indicating that N and P may have originated from different sources.

Table 9. The correlation of nutrients, organic matter, and heavy metals.

Cd Cr Cu Ni Pb Zn Hg As TP TN OM

Cd 1.00
Cr 0.882 ** 1.00
Cu 0.770 ** 0.671 * 1.00
Ni 0.864 ** 0.991 ** 0.63 1.00
Pb 0.937 ** 0.920 ** 0.705 * 0.894 ** 1.00
Zn 0.924 ** 0.970 ** 0.748 * 0.968 ** 0.956 ** 1.00
Hg 0.61 0.770 ** 0.47 0.762 * 0.675 * 0.695 * 1.00
As 0.779 ** 0.964 ** 0.52 0.960 ** 0.852 ** 0.898 ** 0.857 ** 1.00
TP 0.812 ** 0.837 ** 0.50 0.846 ** 0.832 ** 0.850 ** 0.771 ** 0.818 ** 1.00
TN 0.787 ** 0.60 0.796 ** 0.54 0.800 ** 0.703 * 0.24 0.44 0.42 1.00
OM 0.870 ** 0.861 ** 0.651 * 0.824 ** 0.952 ** 0.867 ** 0.751 * 0.825 ** 0.748 * 0.769 ** 1.00

** and * represent significant correlations at 0.01 and 0.05 levels (double tail), respectively.

The correlation between heavy metals may be related to similar long-term sedimentary
environments and sources [45]. The correlation between Hg and other elements was low,
indicating that the source of Hg was not homologous to that of other elements. OM was
significantly correlated with Pb, Cd, Zn, Cr, As, and Ni (p < 0.01). OM pollution in the
northwest, middle, and south of the lake was more serious, which may have been owing to
the presence of these HMs in OM. Studies have found strong correlations between HMs
concentrations and OM. There was a significant correlation between OM, Pb, and As in
Houguan Lake [41] and between TOC and Pb in sediments in the Liaohe River [49].

4.3. Comparison of Pollution in Surface Sediments of Different Areas

According to the comparison results of N, P, OM, and HM in sediment from different
areas (Table 10), the contents of TN and TP in Wanghu Lake were higher than those in
Hongze Lake and Dongping Lake [50,51] and also higher than those in Changdang Lake
and Dongting Lake, which are both located in the middle and lower reaches of the Yangtze
River [6,17]. However, the TN content was lower than that of Baiyangdian Lake, Ulansuhai
Nur, Qingshan Lake, Wuhu Lake, and Yilong Lake significantly [1,52,53]. The content of
TP was higher than that of other lakes while it was lower than that of Ulansuhai Nur in the
northern region and Qingshan Lake in the same area [1,52]. The OM content was also at a
high level, only lower than that of the plateau lake Yilong Lake, urban lake Qingshan Lake,
and Dongping Lake [51,53], and the difference between the content of Baiyangdian was
small [5]. Therefore, compared to other lakes in China, the nutrients and OM in Wanghu
Lake were relatively high.

Compared with other lakes in China, the contents of Cu, Ni, Cr, and Zn in Wanghu
Lake were at a high level, as far as Hg and As were at a general level [54–60], and Cu and
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Ni were second only to those of Gehu Lake [18]. The pollution levels of Cd and Pb were
relatively low, but Pb was 5.82 times that of Ulansuhai Nur, and Hg was 10.5 times higher
than Ulansuhai Nur [1]. Therefore, in the process of protection and restoration of Wanghu
Lake, it is necessary to control the main pollution sources, and combine ecological dredging,
reasonable planting of aquatic plants, and other measures to reduce the degree of pollution.

Table 10. Comparison of nutrient, organic matter, and heavy metal contents in surface sediments
from different study areas.

Study Area
Nutrients and OM

References

Heavy Metal
(Unit: mg/kg)

References
TN

(mg/kg)
TP

(mg/kg)
OM

(g/kg) Cd Cr Cu Pb Zn Hg Ni As

Taihu Lake - - - - 0.610 68.85 35.53 29.70 109.32 0.145 36.19 16.99 [54]
Hongze

Lake 985 276 10.93 [48] 0.23 66.78 25.35 27. 20 74. 77 - 33.89 16.55 [55]

Changdang
Lake 995 695 24.7 [6] 0.37 83.6 39.5 32.8 136.5 0.05 44.9 11.41 [6]

Dongping
Lake 647 336 87.658 [50] 0.23 80.67 37.28 26.14 68.52 - 40 17.53 [56]

Gehu Lake 2207.94 708.62 - [18] 2.34 307.98 59.54 168.97 766.59 0.41 122.67 350.66 [18]
Baiyang

Lake 3300 700 36.1 [5] 0.30 79.8 30 45.4 93.8 0.07 33.5 12.7 [5]

Ulansuhai
Nur 7910 1890 - [1] 0.43 43.11 53.74 5.86 94.69 0.02 46.33 3.64 [1]

Shijiu Lake 776.45 585.12 30.25 [57] 0.17 94.92 38.42 35.92 124.33 0.05 41.25 16.48 [57]
Dongjiang

Lake - - - - 2.25 67.58 33.01 47.4 113.9 - 33.66 80.80 [61]

Dongting
Lake 1029 697 - [17] 1.913 93.47 37.98 36.05 147.2 0.317 34.47 21.234 [17]

Qingshan
Lake 3476 3279 112.38 [51] 59.17 201.16 82.48 300.18 - 46.26 - [62]

Wuhu Lake 3517 935 31.8 [63] 0.42 103.7 40.76 42.27 113.38 0.083 50.73 16.33 [58]
Tangxun

Lake 2093.13 716.46 - - 0.66 85.28 51.28 41.60 145.01 0.17 40.49 - [58]

Qinghai
Lake - - - - 0.21 45.44 18.02 35.1 109 - 43.9 - [59]

Yilong Lake 4250 590 157.42 [53] 0.58 77.6 22.6 41.8 80 0.06 28.8 20.4 [60]
Meixi Lake 1654.68 512.6 28.4 [15] - - - - - - - - -

Wanghu
Lake 1045.74 945.27 32.31 - 0.37 93.48 59.23 34.11 124.20 0.21 51.00 21.75 -

5. Conclusions

In the pollution evaluation results, the TP of the surface sediment of Wanghu Lake was
severely polluted, while the organic pollution and the comprehensive pollution evaluation
results were consistent. Both the RI and Igeo evaluation results showed that Hg and
Cd levels were at considerable and moderate risks, respectively. However, due to the
large number of evaluation indicators, the source of each pollutant was not analyzed in
sufficient depth.

(1) Due to the effect of aquaculture water, the TN and OM in the northwest were
always higher than other areas. There were high concentrations of Cd, Cu, Pb, and Zn,
which may be related to the aquaculture wastewater and uneaten bait. The connected
channel connected to the Yangtze River in the east makes the water exchange capacity
stronger here. The sedimentary environment was unstable, and the pollution was difficult
to deposit, so that the pollution of nutrients, organic matter, and heavy metals was light.
So we need to take the northwest of the lake as the key for the control of pollution and
ecological restoration area in the future.

(2) Compared with other lakes in China, TN in the surface sediments of the Wanghu
lake was at a medium level, and the content of TP and OM was at a high level. In terms of
heavy metals, Ni, Cu, As, and Hg were at a high level, Cr and Zn were at a medium-high
level, while Cd and Pb were at a medium-low level.

(3) According to the evaluation results, TP pollution was serious. Organic pollution
and organic nitrogen pollution showed mild pollution and moderate pollution, respectively.
Igeo in the surface sediments was Hg > Cd > Cu > As > Ni > Zn > Pb > Cr. Similar to the sin-
gle risk factors (Er), Hg and Cd were the main factors contributing to the surface sediments,
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with levels at considerable and moderate risks, respectively. Therefore, it is necessary to
control the sources of TP, Hg, and Cd in Wanghu Lake to prevent further pollution.
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