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Abstract: The internet of things (IoT) paradigm roles an important play in enhancing smart city
tracking applications and managing city procedures in real time. The most important problem
connected to smart city applications has been solid waste management, which can have adverse
effects on society’s health and environment. Waste management has developed a challenge faced by
not only evolving nations but also established and developed counties. Solid waste management is an
important and stimulating problem for environments across the entire world. Therefore, there is the
need to develop an effective technique that will remove these problems, or at least decreases them to a
minimal level. This study develops a modified cuttlefish swarm optimization with machine learning-
based solid waste management (MCSOML-SWM) in smart cities. The MCSOML-SWM technique
aims to recognize different categories of solid wastes and enable smart waste management. In the
MCSOML-SWM model, a single shot detector (SSD) model allows effectual recognition of objects.
Then, a deep convolutional neural network-based MixNet model was exploited to produce feature
vectors. Since trial-and-error hyperparameter tuning is a tedious process, the MCSO algorithm was
applied for automated hyperparameter tuning. For accurate waste classification, the MCSOML-SWM
technique applies support vector machine (SVM) in this study. A comprehensive set of simulations
demonstrate the improved classification performance of the MCSOML-SWM model with maximum
accuracy of 99.34%.

Keywords: sustainable applications; IoT; solid waste management; cuttlefish swarm algorithm; object
detection; waste classification

1. Introduction

With the rise of smart video surveillance, a large number of people-tracking applica-
tions, autonomous vehicles, facial detection, and fast and accurate object detection methods
are in ever-growing demand [1,2]. The continuing development in the areas of computer
vision (CV), image processing, and deep learning (DL) techniques have changed the way
we think about various characteristics of daily life [3]. The DL methodology has provided
a reliable basis for image recognition with reliable accuracy [4]. The prevalent image
classification, the convolutional neural network (CNN), is a fascinating biological neural
network that is composed of distinct layers, with the neurons of all the layers being strongly
associated with the neuron in the subsequent layer [5]. The benefits of using a CNN are that
they allow an independence between the feature extraction of preceding knowledge and a
minimal design effort. CNN has made greater accomplishments in image recognition and
classification [6]. The popularity and accuracy of CNN for image classification have been
optimized due to the largescale system for learning and image processing, higher-speed
GPUs, and the huge availability of public datasets of an image [7]. The idea of smart waste
classification with waste and trash images has tremendous potential.

Owing to faster urbanization, currently, cities are facing significant challenges [8,9].
Amongst these challenges are those associated with the waste management system as the
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quantity of waste is directly proportional to the group of people living in urban regions.
Waste management technology chiefly concerns the treatment and disposal of various
kinds of waste [10] and therefore protects animals, human beings, and the surrounding
areas [11]. An appropriate waste management technique could save money and result in
less environmental pollution and improved air quality. Advanced regions of the world have
been simultaneously implementing and discovering effective technologies for large-scale
construction and effective waste management [12,13]. It is not possible to handle such a
large quantity of waste in the forthcoming five years of the prevailing situation. Therefore,
it is better to take each essential action needed for the effectual waste management [14]
and to adopt the best practices and techniques to efficiently treat waste and obtain a
healthier environment.

Gokulnath et al. [15] designed a new genetic approach and support vector machine
(GASVM) to predict complex patterns, with the utilization of this approach offering im-
proved results. Salama et al. in [16] developed a learning neural network with an ant
colony optimization (LNNAC) model for the prediction of complex patterns in automated
recognition processes. Next, Yadav et al. [17] have presented a new artificial neural network
with a particle swarm optimization (PSO-ANN) model for resolving Troesch’s problem.
The authors in [18] introduced a new urban waste management technique which makes
use of a cuckoo search-optimized long short-term recurrent neural network (CLST-RNN).

Malik et al. [19] have presented a network by which to classify litter into types
identified from benchmark techniques. The network they utilized to classify litter was
EfficientNet-B0. Their study presents an EfficientNet-B0-based approach to the tuning
of detailed images to specific demographic regions and from there to effective classifica-
tion. This kind of tuning method on transfer learning (TL) offers a modified approach to
classification, one which is extremely optimized for specific regions. Alsubaei et al. [20]
established an approach which mostly concentrates on the identification and categorization
of lesser garbage waste objects in order to support an intelligent waste management system.
In order to recognize an object, an improved RefineDet (IRD) technique with hyperparam-
eter tuning process was employed. Secondly, a functional link neural network (FLNN)
approach is executed to classify waste objects into several classes.

Verma et al. [21] have presented a DL-based intelligent garbage recognition method.
An objective purpose of their work was to manage garbage efficiently. In order achieve
this, automation was developed utilizing two CNN techniques and images of solid waste
that were taken by drones. Both of the CNN techniques were trained on the gathered
image dataset at distinct rates of learning, optimization, and periods. Yang et al. [22]
have examined a new incremental learning structure, GarbageNet, in order to address the
abovementioned challenges. Firstly, weakly-supervised transfer learning guarantees the
ability of feature extraction. Secondly, to classify types of garbage, GarbageNet embeds
them as anchors for reference and classifies the test instances by finding their nearest
neighbors from the latent space. Thirdly, a considered collection of trained data were
employed to suppress the negative outcomes of mislabeled data.

Kumar and Buelaevanzalina [23] have provided a visual geometry group–neural
network (VGG16-NN) technique that is dependent upon the procedure of attention to
classified recyclable waste. Their attention module was established in order to model
the important data from the feature map and provide increased detail. This technique
automatically extracts classification features, namely organic, recyclable and non-recyclable
waste. Kumar et al. [24] have examined a new technique to waste segregation in order to
achieve their effective recycling and disposal by employing a DL technique. The YOLOv3
technique was employed from the Darknet structure to train a self-made dataset.

In [25], the authors employ a DL-based classification and CC system for realizing
higher accuracy waste classification, beginning with garbage collection. To assist the subse-
quent waste disposal, the authors subdivide recyclable waste into glass, plastic, cardboard
or paper, fabric, metal, and other recyclable wastes. DL-based A CNN is employed to
realize the task of classifying garbage. Uganya et al. [26] presented an automatic system
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for achieving an effectual and intelligent waste management scheme utilizing the IoT by
forecasting the probability of waste items. The gas level, metal level, and wastage capac-
ity were observed while utilizing IoT-based dustbins that could be located anywhere in
city. Afterward, the authors presented techniques that had been tested by ML classifier
approaches such as LR, linear regression, SVM, RF, and DT techniques. Though several
models for waste classification are available in the literature, there is still a need to improve
the performance of detection. At the same time, the trial-and-error hyperparameter tuning
of the DL models is a tedious process. Therefore, metaheuristic optimization algorithms
can be used for automated hyperparameter tuning.

This study develops a modified cuttlefish swarm optimization with machine learning-
based solid waste management (MCSOML-SWM) in smart cities. In the MCSOML-SWM
model, a single shot detector (SSD) model allows effectual recognition of objects. Then, a
deep convolutional neural network (DCNN)-based MixNet model is applied to produce
feature vectors and the hyperparameter tuning process is carried out by the MCSO algo-
rithm. For accurate waste classification, the MCSOML-SWM technique applies a support
vector machine (SVM) in this study. A comprehensive set of simulations were carried out
to demonstrate the improved classification performance of the MCSOML-SWM model. In
summary, the key contributions of the study are given as follows.

• An intelligent MCSOML-SWM technique composed of an SSD object detector, a
MixNet-based feature extraction, an MCSO-based parameter tuning, and an SVM
classifier is presented. To the best of our knowledge, the MCSOML-SWM model has
never been presented in the literature.

• A novel MCSO algorithm is derived for hyperparameter tuning of the MixNet model.
• Hyperparameter optimization of the MixNet model using MCSO algorithm using

cross-validation helps to boost the predictive outcome of the MCSOML-SWM model
for unseen data.

2. The Proposed Model

In this study, a new MCSOML-SWM algorithm was established to identify different
categories of solid waste to enable smart waste management. In the MCSOML-SWM model,
the SSD model allows the effectual recognition of objects. Then, the DCNN-based MixNet
model is applied to produce feature vectors and the hyperparameter tuning process is
carried out by the MCSO algorithm. For accurate waste classification, the MCSOML-SWM
technique applied SVM in this study.

2.1. Object Detection Using SSD Model

Primarily, the MCSOML-SWM model exploits the SSD model for the effective recog-
nition of objects. Single shot multi-box detector is an SSD with a single and one-phase
DNN intended for detecting objects in real time [27]. In contrast, the advanced method in
two-phase processing, the fast region convolutional neural network (RCNN), makes use
of the presented network to generate object proposals and categorize objects for real-time
recognition rather than utilizing an external model, however, the entire procedure operates
at seven frames per second. SSD improves the speed of the run time when compared with
the preceding detector by removing the necessity for a proposal network. As a result, it
creates some drops in mean average precision, which SSD compensates for by employing
some developments involving default boxes and multi-scale features. This improvement
allows SSD to obtain the fast RCNN using low resolution images which later accelerate
the processing of SSD. Likewise, SSD is composed of a convolution filter to detect objects
and to extract feature maps. SSD applies VGG16 as a base network for the extraction of
feature maps. Next, it integrates six convolution layers in order to make predictions. Every
prediction comprises an N + 1 score and bounding box for all the classes, whereby N refers
to the class count and +1 to the additional classes with no objects. Rather than utilizing an
RPN for box generation and for feeding the classifications to compute the class scores and
object locations, SSD employs a smaller convolutional filter. Afterward, the VGG16 base
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network extracts features from the feature map, while SSD employs 3 × 3 convolutional
filters for all the cells for predicting object. Every filter provides an output with N + 1 score
for all the classes and four attributes for single boundary boxes. SSD is simultaneously
different from previous methods in that it can predict multi-scale feature maps for inde-
pendent detection instead of using one final layer. As explained above, SSD makes use of
lower input images for object detection and therefore a lower resolution layer to identify
largescale objects, while the initial layer is used to identify smaller objects gradually. In
addition, SSD employs distinct scales of default boxes for instinctive visualization and
distinct layers.

2.2. Feature Extraction

In this study, a MixNet model was applied to produce feature vectors. The Mixnet
structure changes single convolution kernels with distinct kernels of various sizes, which
led to an optimal accuracy and efficacy [28]. In the conventional method, the kernels
are 3 × 3 in size, however, studies have demonstrated that integrating several kernels
with sizes of 3 × 3, 5 × 5, 7 × 7, and 9 × 9 potentially enhances performance. Superior
kernels do not always attain optimum outcomes, as the accuracy is dependent upon the
dataset and the class of objects. Another thing to keep in mind is whether greater kernel
sizes significantly improve the model size with further parameters, thus increasing the
computation time.

The presented CNN structure, termed MixNet, offers an important benefit with respect
to scalability. It is assumed that the general method seeks a balance amongst the accuracy
and energy consumption of DL hardware. The kernel sizes utilized from every model begin
with 3 × 3 and enhance by two every time they generate a division on the tensor in order
to apply a novel kernel. For instance, when it is necessary to execute three distinct kernel
sizes from the convolutional network, the sizes are 3 × 3, 5 × 5, and 7 × 7. For each of the
kernels on a layer, the network can utilize the subsequent Equation (1) to determine the
size of the kernels.

Kernel size = 2i + 1 (1)

where i adds 1 to group size.
Next, the MCSO algorithm performs the hyperparameter tuning process [29]. Cuttle-

fish utilize three cell layers for altering the color of their skin, and the proposed technique
was dependent upon these as the suggested cuttlefish algorithm CFA utilizes these proce-
dures (visibility and mirror). It can thus be described as utilizing reflection and visibility
for locating a novel solution (new).

newq = re f lection + visibility (2)

Q[k].points [s] = random ∗(upperLimit) + lowerLimit i = 1, 2 . . . N; j = 1, 2 . . . d (3)

Whereas upper and lower limits represent the problem domain upper as well as lower
boundaries, respectively, and random implies the arbitrary integer amongst Equations (2)
and (3).

The researchers established a novel approach by integrating chromatophore cell stretch
and shrink procedures, reflectivity in iridophores cells, and the visibility of images utilized
by cephalopods to suit their backdrop.

re f lections = A ∗ I1[k]· Points [s] (4)

visibility = W ∗ (Bestpoints [s]− G1[k]· Points[s] (5)

Gl refers to the group of chromatophore cells utilized to mimic a condition from the
equation above. Afterward, the Ith cell from the Gl group is i. Points [j] signifies the jth
element of ith cell. Best points were utilized to indicate optimum solution points. Were the
cell muscle to lengthen or rest, the reflection degree (R) was employed to determine the
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stretch range of scales. The pattern’s ultimate visibility level was represented by letter V.
Subsequently, the R and V values were computed:

A = random ( ) ∗ (a1 − a2)a2 (6)

W = random( ) ∗ (w2 − w2) + w2 (7)

The random (0, 1) approach was utilized to find numbers amongst zero and one,
which were picked at random.

2.3. Waste Classification Using SVM Model

For accurate waste classification, the MCSOML-SWM technique was applied SVM in
this study [30]. An SVM is a binary classification, where the class label contains two values
+1 and −1 and where several real time problems are allocated in various classes. Therefore,
we employed a multiple class SVM. We created a set of binary classifiers f 1, f 2 . . . jN for 1.
Additionally, N classes were trained to distinguish a single class from the others. Multi-
class classification was attained by integrating the classes based on the highest output that
had previously employed the sign function argmax gk(x).

gk(x) =
n

∑
i=1

yiα
k
i k(x, xi) + bk (8)

where k = 1 . . . N. Thusly, gk(x) returns the signed real values indicating the distance from
the hyperplane to the point x. These values are represented as confidence values. The
higher the value, the more confidence there is that point x belongs to the positive class.
Therefore, we should allocate x to the class which has the higher confidence value. Assume
the standard dataset χ = {x1, x2 . . . xm} ∈ Rd, that r represents the radius of hypersphere
and that c ∈ Rd is the center. The optimization issue is resolved by defining the minimal
enclosing hypersphere.

Minimize r2 (9)

Subjected to ||Φ
(
xj
)
− c||2 ≤ r2, j = 1, . . . m

L(c, r, α) = r2 +
m

∑
j=1

αj{||Φ
(
xj
)
− c||2 − r2} (10)

Set the derivative ∂L(c,r,α)
∂c = 2 ∑n

j=1 αj
(
Φ
(
xj
)
− c

)
= 0. We attain the subsequent

formula,
m

∑
j=1

αj = 1 and c =
m

∑
j=1

αjΦ
(
xj
)

(11)

Thus Equation (10) becomes,

L(c, γ, α) =
m

∑
j=1

αjk
(
xj, xj

)
−

m

∑
i,j=1

αiαjk
(
xi, xj

)
(12)

which is the binary form of Equation (10).
The binary form of α is attained by resolving the optimization issue,
Maximize,

W(α) =
m

∑
i=1

αjk
(
xi, xj

)
−

m

∑
i,j=1

αiαjk
(
xi, xj

)
(13)

Subjected to
∑m

i=1 αi = 1 and αi ≥ 0, i = 1 to m.
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Note that the Lagrange multiplier is non-zero as long as inequality constraints are
equal for the solution. The complementarity condition is fulfilled by the optimum solution
for α, (c, γ) as follows,

αi{||Φ(xi)− c||2 − r2}, i = 1 . . . m (14)

Therefore, this shows that the training instances xi lie on the surface of the optimum
hypersphere respective to αi > 0.

f (x) = sgn(r2 − ||Φ(x)− c||2)

This denotes,

= sgn (r2 − {Φ(x)·Φ(x))− 2 ∑m
i=1 αiΦ(x)·Φ(xi))

+
m

∑
i,j=1

αiαj
(
Φ(xi)·Φ

(
xj
))
})

= sgn (r2 − {k(x, x)− 2 ∑m
i=1 αik(x, xi)

+
m

∑
i,j=1

αiαjk
(
xi, xj

)
})

(15)

Hence, the purpose of attaining a minimal enclosing hypersphere comprising each
trained sample is fulfilled.

3. Performance Validation

The proposed model was simulated using Python 3.6.5 tool on PC i5-8600k, GeForce
1050Ti 4 GB, 16 GB RAM, 250 GB SSD, and 1 TB HDD. The parameter settings are given as
follows: learning rate, 0.01; dropout, 0.5; batch size, 5; epoch count, 50; and activation, ReLU.
In this study, the waste classifier results of the MCSOML-SWM method were tested using
the TrashNet dataset [31], which includes 2527 samples under six classes as represented in
Table 1. The class labels are glass, paper, cardboard, plastic, metal, and trash. The pictures
were captured by placing the object on a white posterboard and using sunlight and/or
room lighting. The pictures were resized to 512 × 384 pixels and the devices used were
Apple iPhone 7 Plus, Apple iPhone 5S, and Apple iPhone SE.

Table 1. Dataset details.

Class No. of Samples

Glass 501

Paper 594

Plastic 482

Cardboard 403

Trash 137

Metal 410

Total Number of Samples 2527

A set of confusion matrices formed by the MCSOML-SWM technique under diverse
epochs are represented in Figure 1. The figure shows that the MCSOML-SWM system
demonstrated improved waste classifier results under all epochs.
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Table 2 and Figure 2 highlight the waste classification outcomes of the MCSOML-SWM
model on 200 epochs. The result shows that the MCSOML-SWM technique has provided
improved outcomes under all classes. For example, in the glass class, the MCSOML-SWM
method has offered outcomes for accuy, precn, recal , Fscore, and Jaccardindex of 98.54%,
94.62%, 98.20%, 96.38%, and 93.01%, respectively. Additionally, for the paper class, the
MCSOML-SWM approach provided outcomes for accuy, precn, recal , Fscore, and Jaccardindex
of 97.74%, 95.43%, 94.95%, 95.19%, and 90.82%, respectively. Furthermore, for the plastic
class, the MCSOML-SWM method has provided outcomes for accuy, precn, recal , Fscore, and
Jaccardindex of 98.42%, 95.29%, 96.47%, 95.88%, and 92.08%, respectively.

Table 2. Result analysis of MCSOML-SWM algorithm with distinct class labels under 200 epochs.

Epoch-200

Labels Accuy Precn Recal Fscore Jaccardindex

Glass 98.54 94.62 98.20 96.38 93.01

Paper 97.74 95.43 94.95 95.19 90.82

Plastic 98.42 95.29 96.47 95.88 92.08

Cardboard 98.73 96.96 95.04 95.99 92.29

Trash 98.54 91.67 80.29 85.60 74.83

Metal 98.54 95.16 95.85 95.50 91.40

Average 98.42 94.85 93.47 94.09 89.07
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Table 3 and Figure 3 highlight the waste classification outcomes of the MCSOML-
SWM method on 400 epochs. The results demonstrate that the MCSOML-SWM method
has provided enhanced outcomes under all classes. For instance, in the glass class, the
MCSOML-SWM model has offered outcomes for accuy, precn, recal , Fscore, and Jaccardindex
of 99.25%, 97.07%, 99.20%, 98.12%, and 96.32%, respectively. Furthermore, for the paper
class, the MCSOML-SWM model has given outcomes for accuy, precn, recal , Fscore, and
Jaccardindex of 99.13%, 98.81%, 97.47%, 98.14%, and 96.34%, respectively. Moreover, in
the plastic class, the MCSOML-SWM model has provided outcomes for accuy, precn, recal ,
Fscore, and Jaccardindex of 99.37%, 97.94%, 98.76%, 98.35%, and 96.75%, respectively.

Table 4 and Figure 4 highlight the waste classification outcomes of the MCSOML-SWM
method on 600 epochs. The results show that the MCSOML-SWM approach has provided
better outcomes under all classes. For example, in the glass class, the MCSOML-SWM
technique has provided outcome for accuy, precn, recal , Fscore, and Jaccardindex of 98.73%,
95.36%, 98.40%, 96.86%, and 93.90%, respectively. Furthermore, for the paper class, the
MCSOML-SWM model has given outcomes for accuy, precn, recal , Fscore, and Jaccardindex
of 97.90%, 95.77%, 95.29%, 95.53%, and 91.44%, respectively. Furthermore, for the plastic
class, the MCSOML-SWM model has given outcomes for the accuy, precn, recal , Fscore, and
Jaccardindex of 98.73%, 95.92%, 97.51%, 96.71%, and 93.63%, respectively.

Table 3. Result analysis of MCSOML-SWM algorithm with distinct class labels under 400 epochs.

Epoch-400

Labels Accuy Precn Recal Fscore Jaccardindex

Glass 99.25 97.07 99.20 98.12 96.32

Paper 99.13 98.81 97.47 98.14 96.34

Plastic 99.37 97.94 98.76 98.35 96.75

Cardboard 99.41 98.02 98.26 98.14 96.35

Trash 99.49 97.69 92.70 95.13 90.71

Metal 99.41 98.29 98.05 98.17 96.40

Average 99.34 97.97 97.41 97.67 95.48
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Figure 3. Average analysis of MCSOML-SWM methodology under 400 epochs.

Table 4. Result analysis of MCSOML-SWM algorithm with distinct class labels under 600 epochs.

Epoch-600

Labels Accuy Precn Recal Fscore Jaccardindex

Glass 98.73 95.36 98.40 96.86 93.90

Paper 97.90 95.77 95.29 95.53 91.44

Plastic 98.73 95.92 97.51 96.71 93.63

Cardboard 98.93 96.77 96.53 96.65 93.51

Trash 98.50 96.26 75.18 84.43 73.05

Metal 98.42 94.05 96.34 95.18 90.80

Average 98.54 95.69 93.21 94.22 89.39
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Figure 4. Average analysis of MCSOML-SWM approach under 600 epochs.

Table 5 and Figure 5 highlight the waste classification outcomes of the MCSOML-SWM
system on 800 epochs. The results show that the MCSOML-SWM algorithm has provided
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better outcomes under all classes. For example, in the glass class, the MCSOML-SWM
technique has offered outcomes for the accuy, precn, recal , Fscore, and Jaccardindex of 98.85%,
95.38%, 99%, 97.16%, and 94.48%, respectively. Moreover, for the paper class, the MCSOML-
SWM model has given outcomes for the accuy, precn, recal , Fscore, and Jaccardindex of 97.78%,
96.38%, 94.11%, 95.23%, and 90.89%, respectively. Furthermore, for the plastic class, the
MCSOML-SWM model has presented outcomes for the accuy, precn, recal , Fscore, and
Jaccardindex of 98.73%, 96.11%, 97.30%, 96.70%, and 93.61%, respectively.

Table 5. Result analysis of MCSOML-SWM algorithm with distinct class labels under 800 epochs.

Epoch-800

Labels Accuy Precn Recal Fscore Jaccardindex

Glass 98.85 95.38 99.00 97.16 94.48

Paper 97.78 96.38 94.11 95.23 90.89

Plastic 98.73 96.11 97.30 96.70 93.61

Cardboard 98.85 96.98 95.78 96.38 93.01

Trash 98.65 93.28 81.02 86.72 76.55

Metal 98.58 94.31 97.07 95.67 91.71

Average 98.58 95.41 94.05 94.64 90.04
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Figure 5. Average analysis of MCSOML-SWM algorithm under 800 epochs.

Table 6 and Figure 6 highlight the waste classification outcomes of the MCSOML-
SWM algorithm on 1000 epochs. The results show that the MCSOML-SWM method
has provided enhanced outcomes under all classes. For instance, in the glass class,
the MCSOML-SWM model has presented outcomes for accuy, precn, recal , Fscore, and
Jaccardindex of 98.93%, 95.75%, 99%, 97.35%, and 94.84%, respectively. Furthermore, for the
paper class, the MCSOML-SWM model has provided outcomes for accuy, precn, recal , Fscore,
and Jaccardindex of 97.98%, 95.48%, 95.96%, 95.72%, and 91.79%, respectively. Moreover,
for the plastic class, the MCSOML-SWM model has given outcomes for accuy, precn, recal ,
Fscore, and Jaccardindex of 98.77%, 96.30%, 97.30%, 96.80%, and 93.80%, respectively.

The training accuracy (TRA) and validation accuracy (VLA) accomplished by the
MCSOML-SWM methodology on the test dataset are demonstrated in Figure 7. The results
demonstrate that the MCSOML-SWM algorithm has accomplished the highest values of
TRA and VLA. Additionally, the VLA seemed to be improved over the TRA.
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Table 6. Result analysis of MCSOML-SWM algorithm with distinct class labels under 1000 epochs.

Epoch-1000

Labels Accuy Precn Recal Fscore Jaccardindex

Glass 98.93 95.75 99.00 97.35 94.84

Paper 97.98 95.48 95.96 95.72 91.79

Plastic 98.77 96.30 97.30 96.80 93.80

Cardboard 98.93 97.47 95.78 96.62 93.46

Trash 98.77 94.92 81.75 87.84 78.32

Metal 98.69 95.86 96.10 95.98 92.27

Average 98.68 95.96 94.32 95.05 90.75
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The training loss (TRL) and validation loss (VLL) attained by the MCSOML-SWM
methodology on the test dataset are portrayed in Figure 8. The results illustrate that the
MCSOML-SWM method has accomplished minimum values of TRL and VLL. Particularly,
the VLL shows lower values than the TRL.
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A clear precision–recall assessment of the MCSOML-SWM approach on the test dataset
is depicted in Figure 9. The figure shows that the MCSOML-SWM methodology has resulted
in improved values of precision–recall values under each class.
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A brief ROC investigation of the MCSOML-SWM approach on the test dataset is
depicted in Figure 10. The results signify that the MCSOML-SWM methodology has shown
its capability in classifying distinct classes on the test dataset.
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Figure 10. ROC analysis of MCSOML-SWM methodology.

A wide ranging comparison study of the MCSOML-SWM technique with other waste
classifier models is portrayed in Table 7 and Figures 11 and 12. The comparison study
demonstrated that the MCSOML-SWM model shows superior outcomes over other tech-
niques. With respect to accuy, the MCSOML-SWM method has demonstrated higher accuy
of 99.34% whereas the GA-SVM, LNNAC, PSO-ANN, CLST RNN, and CNN models have
depicted lower values for accuy of 85.08%, 90.58%, 95.20%, 98.58%, and 98.09%, respec-
tively. Meanwhile, with respect to precn, the MCSOML-SWM model has established a
high value for precn of 97.97% while the GA-SVM, LNNAC, PSO-ANN, CLST RNN, and
CNN methods have portrayed lower values for precn of 88.18%, 88.68%, 92.95%, 97.08%,
and 97.76%, respectively. Ultimately, with respect to recal , the MCSOML-SWM model has
demonstrated high outcomes for recal of 97.41% while the GA-SVM, LNNAC, PSO-ANN,
CLST RNN, and CNN models have shown lower values for recal of 84.15%, 90.13%, 94.20%,
97.28%, and 96.15%, respectively. Finally, with respect to Fscore, the MCSOML-SWM model
has established a high value for Fscore of 97.67% while the GA-SVM, LNNAC, PSO-ANN,
CLST RNN, and CNN models have portrayed lower values for Fscore of 88.85%, 91.45%,
93.93%, 97.35%, and 95.09%, respectively.

Therefore, the MCSOML-SWM model has surpassed all the other waste classification
models in the smart city environment.

Table 7. Comparative analysis of MCSOML-SWM attitude with existing methodologies [15–18].

Methods Accuy Precn Recal Fscore

MCSOML-SWM 99.34 97.97 97.41 97.67

GA-SVM [15] 85.08 88.18 84.15 88.85

LNNAC Model [16] 90.58 88.68 90.13 91.45

PSO–ANN Model [17] 95.20 92.95 94.20 93.93

CLST RNN Model [18] 98.58 97.08 97.28 97.35

CNN Model [18] 98.09 97.76 96.15 95.09
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4. Conclusions

In this study, a new MCSOML-SWM system was established to identify different
categories of solid waste to enable smart waste management. In the MCSOML-SWM model,
the SSD model allows for the effective recognition of objects. A DCNN- based MixNet
model is then applied to produce feature vectors and a hyperparameter tuning process
is carried out by the MCSO algorithm. For accurate waste classification, the MCSOML-
SWM technique applied SVM in this study. A comprehensive set of simulations were
carried out to demonstrate the improved classification performance of the MCSOML-SWM
algorithm. This widespread comparison study pointed out the improved performance of
the MCSOML-SWM method over other DL algorithms. Thus, the presented MCSOML-
SWM method may be exploited for effective waste management. In the future, hybrid DL
classifiers may be integrated into the presented approach for improved performance.
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