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Abstract: The increase in the world population and resource scarcity has led to the introduction of
environmental concepts such as sustainability and sustainable supply chain design (SSCD). However,
there is a lack of consensus among researchers on how to measure sustainability in SSCD. There-
fore, the authors propose a novel approach to measuring sustainability in the context of SSCD by
developing an integrated, tractable, and representative metrics framework. The methodology corre-
sponds to a quantitative approach involving bibliographic examination and statistical techniques.
First, the authors conducted a systematic literature review by formulating research questions and
a search protocol, searched for relevant articles, and conducted a quality assessment on full-text
reviews to obtain metrics for measuring sustainability in SSCD from the literature. Then, they defined
aggregation criteria representing their inclusion relationship by merging associated metrics. The
authors then used Cluster Analysis (CA), a multivariate statistical technique, for grouping the metrics.
Consequently, twelve clusters were distinguished from 541 research articles, grouping 51 metrics
from different sustainability dimensions. It shows the strong connection among the sustainability
dimensions, i.e., they must be assessed holistically. Then, we proposed reducing the 51 metrics to 5 to
evaluate sustainability in the SSCD, allowing us to focus on a reduced number of indicators.

Keywords: supply chain design; sustainability; cluster analysis; aggregation criteria; systematic review

1. Introduction

The world population has doubled in the last fifty years, while vital resources have
become increasingly limited [1]. However, several companies contribute more to resource
depletion and environmental problems due to their increased raw material and energy
consumptions [2]. In light of resource scarcity, certain environmental concepts have been
incorporated into the design and management of production systems. One such concept is
sustainability, which refers to the capacity of enterprises to meet their immediate financial
needs while ensuring that they, as well as others, can meet their future needs without
compromise [3]. From a holistic perspective, sustainability denotes a form of development
that fulfills present requirements while ensuring that the capacity of future generations to
fulfill their own needs remains intact [4].

The multidimensional nature of sustainability has been defined in recent literature as
the strategic attainment and integration of an organization’s social, environmental, eco-
nomic, political, and technological aspects [5-11] through the systemic coordination of the
main inter-institutional business processes [12]. Consequently, both governmental and
societal concerns have been raised about environmental protection and corporate social re-
sponsibility, leading to constant pressure on companies to reassess their supply chains—not
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only in terms of economic objectives but also environmental, social, political, and techno-
logical concerns [13,14]. This is reflected in the increase in company sustainability reports
in the last 20 years [15].

This viewpoint introduces novel factors that must be considered when designing sup-
ply chains, a practice now known as sustainable supply chain design (SSCD). SSCD aims to
effectively measure and achieve sustainability dimensions, primarily by aligning with the
Sustainable Development Goals (SDGs) outlined by the United Nations (UN) [16]. Over the
past few years, numerous studies have been conducted across various production sectors,
including applications within the healthcare industry [17], big data [18], fuels [19], en-
ergy [20], textile [21], and water resources [22,23].

In practice, research on SSCD has utilized a wide range of metrics and methodologies to
address each dimension of sustainability [11,24,25]. Several literature reviews have demon-
strated how SSCD could effectively incorporate sustainability [24,26-30]. Table 1 shows that,
among the related literature reviews, those with no details regarding the years considered
or number of articles reviewed correspond to narratives reviews; this means that they are
based essentially on the researcher’s experience [31]. In addition, Table 1 shows that by each
dimension of sustainability, there are several aspects assessed. For example, regarding the
environmental dimension, refs. [29,32] integrate the Eco-indicator 99 and ReCiPe 2008, each
considering different impact category indicators at the midpoint (as acidification potential) or
endpoint levels (as damage to ecosystem quality). On their behalf, ref. [33] assessed the use
of essential resources such as land, water, and materials, as well as air pollution represented
by footprints of NOy and SO, emissions and fine particulate matter (PM, 5) emissions. They
also considered the damage to species richness as a consequence of pollutants, GHG emis-
sions, and the use of land and water. Meanwhile, ref. [34] assessed the pollution emitted into
air and water and considered resource consumption as energy or water. Ref. [35] considered
impact categories and indicators of climate change, biochemical oxygen demand, damage
to human health, and water footprint, as well as performance measures such as residual
waste generated, GHG emissions, energy consumption, and amount of recycled material.
With even more detail, ref. [36] described several footprints as follows. Carbon footprint
or GHG footprint considers carbon dioxide (CO;), methane (CHy), and nitrous oxide (N,O)
emissions to the atmosphere. Water footprint measures both the consumption of freshwater
as a resource (including both blue and green water) and the use of freshwater to assimilate
waste. The latter component refers to a greywater footprint. The ecological footprint mea-
sures land appropriation to produce renewable biomass resources and uptake waste via
CO; sequestration. The land footprint measures the land required to supply food, materials,
energy, and infrastructure, expressed in physical hectares or equivalent land units (global
hectares). The nitrogen footprint measures the emissions of reactive N to the atmosphere
and water bodies. The phosphorus footprint measures P’s use as a resource and P’s losses
to water bodies. The chemical footprint accounts for all chemical substances released into
the environment, which may ultimately lead to ecotoxicity and human toxicity impacts.
The PM;5 and PM; footprints measure particulate matter pollution in the atmosphere.
These are also included in the chemical footprint. The ozone footprint measures the emission
of gases controlled or due to be controlled under the Montreal Protocol in terms of ozone-
depleting potential weighted kilograms. The material footprint measures the use of materials
from a consumption perspective, allocating all globally extracted and used raw materials to
domestic final demand (metal ores, nonmetallic minerals, fossil fuels, and biomass (crops,
wood, wild fish catch, etc.)). Finally, biodiversity loss measures the impact as a result of
different pressures, such as land and water use or chemical pollution.
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Ref
[37]

[28]

[30]

[29]

[38]

[39]

[40]

Years

1997-
2010

January
2008 to
October
2020

1995—
2017

1997 to
July 2016

Up to
Dec.
2019

2000-
2015

Table 1. Related literature review assessment.

N articles
36

354

54

188

146

112

over 20,000

Economic
Total cost, net revenue

Total annualized supply
chain cost, annualized
profit, total profit, rev-
enue, NPV

Overall costs, NPV, raw
material availability and
energy potential, payback
period calculation, prices,
energy potential

Total cost, risks on invest-
ment, efficiency, NPV,
total profits, financial
revenue, total transporta-
tion cost, logistics cost of
raw material collection,
transport distance, unit
cost, economic potential,
conditional value-at-risk,
marginal delivery cost
Resource productivity in-
dicator, total costs

Cost of production

Sustainability Dimensions
Social

Profit sharing, employ-

ment, and income distri-

bution

Customer service level,
attendance to demand,
and reduction of work ac-
cidents

Accrued jobs, land use
changes, traffic annoyance

Incomes, calorie consump-
tion, energy access, peo-
ple in water stressed areas,
child deaths, employment,
health and safety

Job opportunity, social im-
pact, number of workers,
total service level

Job creation

Food security, human

health

Environmental
LCA-based environmen-
tal impacts: energy de-
mand and CO, emissions,
natural capital, or re-
sources
CO; emission, use of en-
ergy and/or the number
of tailings

GHG emissions, Eco-
Indicator 99, non-
renewable energy use,
water use, pollution, CO,
emissions, Impact 2002+
Eco-indicator 99; ReCiPe,
GHG emissions, cumu-
lated energy demand,
global warming potential,
acidification ~ potential,
primary energy use, land
use efficiency, energy
consumption,  particle
emissions,  agriculture
land use, climate change.
GHG emissions, total
GHG emission savings,
net energy out, environ-
mental impact, global
warming potential

Waste and emissions
related, CO, emis-
sions, GHG emissions,

Eco-Indicator 99, non-
renewable energy use,
water use and pollution,
Impact 2002+

GHG emissions, air qual-
ity (non-GHGs emissions),
soil resources, land use
change, water resources
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Ref
[41]

[32]

[33]

[35]

[42]

[24]
[36]

[43]

Years

2000 to
2014/2015

2008—
2019

2000-
2015
2012—-
2015
2006—
2016

Table 1. Cont.

N articles

132

78

190

979

85

Economic

Net income from sales,
productivity in primary
feedstock  production,
number, and capacity of
routes for critical distribu-
tion systems, capacity use
and flexibility, gross value
added, energy diversity

Economic performance, fi-
nancial performance

Production performance
metrics

Total supply chain cost,
net revenue, profit
Profitability, cost,
enues, NPV

rev-

Sustainability Dimensions
Social
Employment created, inci-
dences of occupational in-
jury, illness and fatalities
in the production process,
uncertainty of tenure and

land rights

Employment, occupa-
tional accidents, unem-
ployment, hazardous
work, vulnerable em-
ployment, social security,
access to clean water

Human rights, commu-
nity development

Product work

safety

safety,

Job generation, food se-
curity, respects for prop-
erty land rights, social ac-
ceptability, working condi-
tions

Environmental
GHG emissions in produc-
tion, soil organic carbon
maintained, non GHG
emissions, water with-
drawn, pollutant loadings
to waterways and bodies
of water related to raw
material obtention, area
and percentage of lands
of high biodiversity con-
verted for production, net
energy ratio in individual
process steps, the change
in diversity of total pri-
mary energy supply
GHG emissions and the
use of basic resources,
air pollution, damage to
species richness, energy
consumption, waste pro-
duction, CO; emissions
Pollution, soil degrada-
tion, product losses and
waste, GHG emission,
resources consumption,
environmental damage
or stress
Carbon footprint, water
footprint, ecological foot-
print, land footprint, ni-
trogen footprint, phos-
phorus footprint, chemi-
cal footprint, PM2.5 and
PM10 footprints, ozone
footprint, material foot-
print, biodiversity loss
Low-carbon  products,
low-carbon logistics,
low-carbon production,
energy consumption
Ecological footprint, emis-
sions, pollution
GHG emissions

GHG emission, waste
management, wastewater
management, biodiversity
conservation and protec-
tion, energy efficiency
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Ref
[44]

[27]

[45]

[46]

[29]

[47]

Years

1997-
2012

1999
to May
2016

1995-
2018

2000-
2017

1900-
2018

Table 1. Cont.

N articles
71

10 Reviews
+ 188 arti-
cles

220

198

50

40

Economic

Overall cost, overall profit,
NPV, financial revenue,
risk on investment, trans-
port cost

Cost reduction, profit,
NPV, expected return,
economic output, finan-
cial risk, total value of
purchasing

Cost, profit, NPV, risk

Profit, cash flow, delivery
lead time, customer satis-
faction, trade level, bud-
get variance, total cost, ca-
pacity utilization, produc-
tion effectiveness, product

quality

Total cost, total profit,
inventory, routing costs,
product waste cost

Sustainability Dimensions
Social
Number of jobs, social

footprint

Service level, number of
accrued jobs, hours of em-
ployment, injury rate, sat-
isfaction levels of stake-
holders and customers, so-
cial risks

Job creation, safety, health,
number of working hours,
discrimination, satisfac-
tion, and poverty aspects

Number of jobs created by
the supply chain, number
of workdays missed by
employees due to health
problems, ethical supply
chains, equitable treat-
ment of stakeholders, edu-
cation and training, social
justice, and diversity.
Employment,  occupa-
tional health and safety,
local communities, food
to energy competition,
jobs created, job oppor-
tunities created, social
benefits

Storage and distribution
of infectious medical
waste and hazardous
material, customer dissat-
isfaction

Environmental
GHG emissions, maxi-
mize energy return in the
conversion facility, mini-
mize energy used in the
supply chain, maximize
net energy profit
GHG emissions, energy
consumption and water
consumption, waste
production, CO; equiv-
alent, CO;, emission per
capita, embodied carbon
footprint, air pollution,
global warming
Global warming, LCA im-
pacts, waste reduction, re-
cycling, biodiversity, re-
newable energy consump-
tion
CO, emissions, natural
resources utilization,
and product recovery

Eco-Indicador 99, Recipe
2008, Impact 2002+, global
warming potential, pol-
lution, CO, emissions,
NO, emission, CO emis-
sion, volatile organic
compounds, water usage,
green appraisal scores,
carbon trading, new tech-
nologies, new material for
products, water quality,
fossil fuel consumption
Total carbon emissions
from logistics operations,
carbon emissions by pric-
ing them, reducing waste
generation, collection
of waste
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Table 1. Cont.
. Sustainability Dimensions
Ref  Years N articles : . c
Economic Social Environmental
[48] Net cash flow generated =~ Employment Net GHG emissions, emis-
sions from carbon stock
change due to land use,
potential environmental
risk, land use intensity, en-
ergy use, materials use,
fertilizer and pesticide
use, chemicals used for
raw material obtention,
water use, wastewater to
be treated
[49]  2015- 113 Reliability, — responsive- Work condition, human Environmental manage-
2018 ness, flexibility, financial health and safety, societal ment (environmental
performance, quality, commitment, customer is- certification owned by
transportation costs and sues, business practices the company), use of
establishment costs of resources (use of raw
facilities, logistics activity or recycled material,
costs, purchasing, carbon water, and energy from
emission cost, profit, total the surrounding area),
cost, NPV pollution (methane
(CH4) and nitrous oxides
(NOx), carbon dioxide
COy)), dangerousness,
natural environment
[34] 1990- 87 Cost of facility investment, Work conditions, social Methods (Eco-Indicator
2014 feedstock purchase and commitment, customer 99, Impact 2002+, CML92,
transportation, pollution issues, human rights, Recipe), Impact category
cost, logistics costs, total and business practice and indicators
annual cost, wastewater
treatment costs
[50] 2005- 333 Total cost, service quality =~ Customer service level CO, emission
2016
[51] Food versus fuel debate, Poverty reduction poten- GHG emission, water re-
efficiency, and energy bal- tial, land and crop indirect sources quality, soil degra-
ance, and increasing bio- impacts, and effects on so- dation and loss of biodi-
fuel budget programs cial resources, such as wa- versity
ter utility systems
[26] 1987 to 247 Total cost, profit, NVP Food quality and safety, Carbon footprint and
March food security, social wel- emissions, biomass en-
2019 fare, job generation and ergy production, waste

equality, supporting small
enterprises, public and di-
etary health, consumer
price fairness, food dona-
tion, corporate social re-
sponsiveness investment,
social cost of GHG emis-
sions

disposal and food loss,
land use and erosion, en-
ergy consumption, water
use and contamination,
LCA impacts, freshness-
keeping effort, green
effort, organic agriculture

Note that frequently up to one metric is assessed by sustainability, which varies de-
pending on the research [37,50]. It implies several possible metric combinations for the
SSCD, considering the large number of metrics that can be evaluated for each sustainability
dimension [37,50]. Thus, it should be emphasized that there is currently a lack of consensus
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among researchers regarding the optimal metrics to accurately represent each sustainability
dimension and how to depict the overarching concept of sustainability within the frame-
work of supply chain design. This research tendency has implied different approaches
and metrics to assess sustainability and, then, the following question emerges: How do you
measure sustainability in sustainable supply chain design (SSCD)?

It leads to the need for a comprehensive and integrated framework to depict the
sustainability measure in the SSCD, evidence of at least two new significant problems
to be addressed [52-55]. First, adopting multiple metrics to evaluate each sustainability
dimension could search for a feasible solution, ideally optimal, by any resolution method
approach. Second, a particular solution from a limited set of metrics could have substantive
differences in terms of results in comparison with another metric’s selection, seeking an
isolated goal and avoiding a comprehensive vision of sustainability and the relationships
of its components [50]. In addition, similar metrics could be considered in more than one
dimension. For instance, both logistic cost (from the economic dimension) and greenhouse
gas (GHGs) emissions by transport (from the environmental dimension) require distance
between the supply chain actors as a parameter for their computation. Another example is
total carbon emission (from the environmental dimension) and the carbon emission cost
(from the economic dimension), where the former, weighted by the carbon cost parameter,
provides the latter.

Our Contribution

In this paper, the objective is to propose an integrated, tractable, and representative
metrics framework to measure the five sustainability dimensions: Economic, Social, Envi-
ronmental, Political, and Technological, which allows us to address the problems related to
measuring sustainability in the sustainable supply chain design (SSCD). This research is
based on a quantitative approach involving mainly bibliographic examinations and multi-
variate relational and statistical techniques. To our best knowledge, this report describes a
novel approach that has not been followed in previous research in a sustainable setting.
Formally, our contributions are threefold: First, we conduct an exhaustive literature review
to analyze the measuring of each of the five sustainability dimensions. This process follows
a systematic literature review process through a practical and methodological analysis,
distinguishing temporal trends, countries, the main production sectors, methodologies,
decision-making levels, and metrics considered to measure each sustainability dimension
from 541 published papers available in the Web of Science (WoS) database, until the year
2020. Second, we work on the above-obtained results and develop an integrated metrics
framework based on aggregation criteria and Cluster Analysis (CA) methods. It allows
for the representation and identification of the relations among different parameters and
metrics to be computed/optimized in each of the five sustainability dimensions in SSCD
from the literature. In addition, it provides a systemic scheme to incorporate other new
metrics from future research. In practice, we propose 12 clusters and a reduced group of
metrics to measure sustainability as a basis for novel decision-aid models for production
systems and logistics design. It will support and facilitate sustainability management in
supply chain design for decision makers in the industry. Third, we discuss our findings
and their theoretical and managerial implications, leaving open questions to be addressed
in future work about sustainability in SSCD and providing insights from our results to
guide answers from research and practice perspectives.

The paper is structured as follows, Section 2 introduces the proposed methodology
by integrating a literature review and statistical analysis. Section 3 presents relevant
results regarding trends in supply chain scientific literature and sustainability measure
identification. Then, Section 4 describes the implications of those results on measuring
sustainability in supply chain design. Finally, Section 5 presents an overview of the main
results and their implications as well as future research questions.
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2. Materials and Methods
2.1. Literature Review

To conduct our exhaustive and systematic literature review, we adopted the search
methodology for a systematic literature review presented by [56] because it generalizes the
stages and steps for a successful literature review. This methodology includes three major
stages: (i) planning the review, (ii) conducting the review, and (iii) reporting the review.
The initial phase involves recognizing the need for a review, determining research queries,
and constructing a review protocol. The subsequent stage entails identifying and selecting
primary studies and extracting, analyzing, and synthesizing pertinent data. Lastly, the third
stage involves the dissemination of the resultant findings.

In particular, the research questions for the initial phase are defined as follows:

¢  What methodologies have been used to measure sustainability in the SSCD?
¢ At what decision-making level has sustainability been measured in the SSCD?
*  How has sustainability been measured in the SSCD?

Then, the review protocol considers as keywords the concepts related to these ques-
tions, which are formulated as the search string: ((“Green Supply Chain” OR “Sustainable
Supply Chain”) AND (Design OR Conception)) OR ((“Supply Chain Design”) AND (Sus-
tainable OR Sustainability)). Note that the search string does not include decision making or
metric-related keywords in order to not restrict the search.

In the second stage, we establish a search strategy corresponding to search articles
available in the Web of Science (WoS) database, which is widely regarded as the foremost
scientific citation search and analytical information platform [57]. This search strategy
focuses on articles published up to December 2020, utilizing keywords that are searched
for within the database’s Title, Abstract, and Keywords sections. Note that no initial date
was selected to identify the first related literature. The inclusion criteria involve evaluating
whether the research articles identified are relevant to the research queries. Furthermore,
the screening procedure involves the initial review of the titles and abstracts to identify
articles that satisfy the inclusion criteria, as Figure 1 shows. Then, in the third stage, we
performed a refined quality assessment on a full-text review to select the articles for data
extraction. After the literature search and selection, the literature assessment focused on
the research questions defined for the data analysis, particularly to obtain the metric used
for measuring the sustainability in SSCD from the literature.

Literature assessment
Trends in related literature: Methodologies, Decision-making
levels, Sustainability, and Production sectors, among others

Searching literature

i Metrics describing sustainability in SCCD
Titles and abstract Articles
N —» [ |
screening excluded i 1 =

v L 2 v

Articles i i iecti i
Full-text review Relationships ?ssessmejn.t Ob?ectlve function as a

excluded among the metrics describing particular case of another

sustainability in SCCD objective function

Articles in the scope for

II Aggregation criteria analysis
data extraction |
1

and reduction rules

N Aggregation criteria and
: Cluster Analysis

Integrated, tractable, and representative metrics

Literature search and selection framework to depict the sustainability measure in the SSCD

Figure 1. Methodology followed to develop an Integrated, tractable, and representative metrics
framework to depict the sustainability measure in the SSCD.

2.2. Aggregation Criteria, Cluster Analysis (CA), and Reduction Rules

Specifically, we determined parameters and metrics from the literature assessment
and defined aggregation criteria to represent the inclusion relationship between them. It is
formally defined as follows: “An element (A) aggregates another element (B) if and only if
the element (B) correspond to the previous calculations required to obtain the value of the
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element (A)”. For example, profit maximization (A) integrates the total supply chain costs
(B1) and the revenues (B;) by adding them. This reduction follows similar initiatives in
other research communities, such as the scheduling setting, where the reduction allows the
representation and identification of the relations among different parameters and objective
functions of the scheduling problems (see the “scheduling zoo” initiative in [58] for details).
To our best knowledge, this report describes a novel approach that has not been followed
in previous research in a sustainable setting. In this case, we formally identify and define
sets of parameters, auxiliary metrics, and final metrics from the measuring analysis of
sustainability in SSCD provided by the literature review, stating the relationships between
them based on the defined aggregation criteria. We remark that the final metrics are stated
from the metrics recognized from the literature review, merging other associated metrics.
The parameters and auxiliary metrics are identified from the considered final metrics.

This procedure allows for assessing the relationship among the different metrics, as
Figure 1 presents, to analyze the interrelationship among the sustainability dimensions. To
analyze it, we consider the multivariate statistical technique, Cluster Analysis (CA), which
groups elements to achieve the maximum homogeneity within each group and the highest
difference between groups based on the relationships among the metrics [59]. CA can be
performed in Gephi open-source software for graph and network analysis [60]. The obtained
results allow the construction of a set of directed acyclic graphs, where a directed arrow
represents the aggregation criteria to a single metric from the aggregated metric. In this
representation, we remark that many metrics can aggregate a metric, and the node size of
each metric is directly defined by its number of aggregated metrics. In practice, we obtain an
interconnected network among all parameters and metrics used to measure sustainability in
the SSCD. In this network, the sustainability dimensions integrated into each cluster and the
relationships among the clusters would lead to understanding the interrelationship among the
sustainability pillars.

Furthermore, to introduce the reduction rules, consider pollution generation and the
pollution cost. In this case, one metric is contained in the other because a pollution cost
factor is multiplied by the pollution production. Then, the pollution cost can be understood
as a more complex metric or integrated at a higher level. Therefore, the objective is to
identify the metrics at the higher level of integration. It would lead us to understand which
metrics are a particular case of another metric. Finally, the more complex metrics or objec-
tive functions could be selected to measure sustainability in SSCD from five dimensions:
Economic, Social, Environmental, Political, and Technological, since they all integrate other
metrics.

3. Results
3.1. Literature Assessment

Following the review protocol, we found and scrutinized 1147 articles, of which only
541 research articles met the refined quality standards required for data extraction. Dur-
ing the initial screening, 422 articles were excluded, of which 63 were review articles, 82 did
not involve supply chain design, 152 evaluated sustainability drivers, and 125 performed
sustainability effects evaluations. The latter two categories involved ex post assessments,
which were not within the scope of this research focusing on ex ante assessments. Addi-
tionally, 184 articles were excluded from the full-text review, of which four were review
articles, 32 did not perform supply chain design, 85 evaluated sustainability drivers, and 63
assessed sustainability effects.

This section details the data extracted from the 541 research articles to solve the
research questions presented in the previous section.

3.1.1. Trends in Related Literature

What methodologies have been used to measure sustainability in the SSCD?
The analysis of research articles based on methodology reveals that the majority,
62.85%, employ optimization models (O), followed by evaluation studies (Ev) with 17.01%,
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and simulation (S) with 10.91%. These details are depicted in Figure 2. The combined use
of optimization and simulation (O-S) amounts to 3.14%, while only three articles employ
optimization, simulation, and evaluation (O-S-Ev) jointly [61-63].

0O-S-R (o)

2 340 O-S-Ev Ev

S 9 3 92
50 0 |
Ev-R

S-R Y - 1 05

1€ 5 e 17

S-Ev O-R
‘ ° 4 2 O
(* ] Q

Figure 2. Assessing the methodologies applied for SSCD. Optimization (O), evaluation (Ev), simula-
tion (S), literature review (R).

Most of the research articles classified as optimization developed mixed-integer linear
programming models [64-67]. However, mixed-integer nonlinear programming models were
also presented [68—70]. Research articles integrating several decision-making levels mainly
develop two-stage models to incorporate uncertainty [70-74]. Even though stochastic mixed-
integer linear fractional programming models to tackle multiple uncertainties regarding
feedstock supply and product demand were developed [75]. Furthermore, research arti-
cles that assessed several sustainability dimensions frequently integrated multiple objective
functions [65,73,74,76-78]. These multi-objective models have been solved with the Epsilon-
constraint method [79,80]; particle swarm [67]; weighted sum methods, such as weighted
Tchebycheff and augmented weighted Tchebycheff [66,77]; genetic algorithms [67,70], such
as non-dominated sorting genetic algorithm [81], non-dominated sorting genetic algorithm-
I1[82], and tabu search [83], among others. In addition, game-theoretic approaches seeking
optimal supply chain configurations were found [84,85]. Furthermore, DEMATEL methodol-
ogy [86] and intuitionistic fuzzy-TOPSIS [87] have been applied to evaluate the suppliers’
characteristics for its selection. Besides, other evaluation research articles address the envi-
ronmental impacts of the supply chain through the Life Cycle Assessment [88]. The method-
ologies applied in the simulation research articles include Multi-agent-based simulation [89],
Discrete Event Simulation [90], and System Dynamics [91]. Furthermore, the research articles,
including optimization and simulation, applied Monte Carlo to address uncertainty effects
on supply and demand [92,93]. Even when optimization is the most used methodology to
integrate sustainability in the supply chain design, future research should include uncertainty
studies through evaluations or simulations.

At what decision-making level has sustainability been measured in the SSCD?

In the literature, three levels of supply chain decision making are distinguished ac-
cording to the time horizon, the uncertainty, and the activities involved [94]. The strategic
level at the base of the decision-making structure covers decisions such as facility location,
storage capacity, production capacity, and supplier selection, among others [95]. These are
long-term decisions taken with high levels of uncertainty, and they are the basis of tactical
and operational decisions, designing the principal supply chain structure [96]. The tactical
level covers aspects such as production and distribution planning, production allocation,
transport capacities, inventories, and the management of safety stocks [97]. Finally, at the top
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is the operational level, integrating short-term or daily decisions, such as job execution, vehi-
cle loading, unloading, and order delivery [98]. These decisions involve lower uncertainty
degrees than the other decision-making levels. Consequently, we classify the research articles
selected by the following criteria. A document accounting for the strategic decision-making
level must address a long planning cycle of several years. Furthermore, a research article
considering the tactical decision-making level deals with a shorter planning cycle (6 months
to a year). Meanwhile, the research articles on the operational decision-making level involve
weekly or daily planning tasks.

Figure 3 shows the number of publications assessing the different decision-making
levels, either individually or integrated. Although it exhibits that the authors have focused
mainly on the strategic aspects, in percentage terms, 41.96% of the research articles studied
consider only decisions at the strategic level mainly related to supplier selection [99-102] and
facility location [78,103], 5.18% involve decisions from the tactical level related to inventory
strategies [104-106] and 18.11% only assess decisions from the operational level, devoted to
scheduling [107], pricing [108-111], and transportation decisions [109,112,113], among others.
The above reflects the essential importance of the strategic decision-making level in the supply
chain. Furthermore, only 27 research articles consider the three decision-making levels, such
as in [114-124], mainly developing models with more than one stage. This reduced the
number of research articles due to the requirements for complex models and significant
computational calculations, compared with the integration of one decision-making level,
in the search for an optimal supply chain, considering optimization is the main approach
used in the SSCD, as Figure 2 shows.

L
STR-TAC I
str-ope
TAC-OPE [

Short-Term
(Weekly and Daily)

Medium-Term
(Six months to one year)

Long-Term

STRATEGIC
(Several years)

AL

0 20 40 60 80 100 120 140 160 180 200 220 240

Articles

Figure 3. Decision-making levels. Strategic (STR); tactical (TAC); operational (OPE).

Related to the supply chain decision-making levels considered in the SSCD, we ob-
served that at least 34% of the research articles integrate more than one level. Moreover,
they provide interesting proofs in an integrated SC design, considering different planning
horizons, indicating the need for uncertainty inclusion in the SSCD.

How has sustainability been measured in the SSCD?

Figure 4 shows the distribution of research articles according to the dimension of
sustainability covered. Furthermore, 28% of the research articles integrate economic and
environmental aspects; 17% focus on economic, social, and environmental dimensions
(a set of dimensions called triple bottom line (TBL)); 11% corresponds to research articles
devoted only to environmental aspects; the economic dimension is studied in isolation by
9%; and 5% of the research articles focus only on social aspects. It shows that environmental
and economic aspects lead the sustainability studied in SSCD.

Only seven research articles integrate the extended definition of sustainability (i.e., envi-
ronmental, economic, social, political, and technological), published between 2010 and 2020.
Dev and Shankar [115] extend the knowledge of the limits of green supply chain management
(GSCM) elaborated by [125] by finding a hierarchy of interactions between the sustainable
boundary enablers with interpretive structural modeling methodology. The boundaries in-
clude environmental, economic, cultural, legal, political, technological, and temporal aspects.
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Then, in the context of energy transition policy, ref. [126] investigate whether reframing
the bioenergy supply chain design can allow sustainable regional development targets.The
enablers studied include environmental factors, such as reduced agricultural fertilizer
use, economic aspects such as biogas filling station installation, social aspects such as
satisfying biogas demand, political aspects such as converting public sector vehicles to
biogas, and technological aspects, such as stabilizing manure processing. Finally, ref. [127]
focused on supporting managerial decision making based on a Delphi with domain experts
and literature synthesis in the same trend. The supply chain activities ranked include the
reduction of pollution to air, water, and land, minimizing energy and material consump-
tion, reducing noise levels, utilizing renewable and alternative forms of inputs, and the
discussion, investigation, and selection of alternative methods/options.

Ref. [128] developed a model for SSCD based on the ANP (analytic network process)
methodology. It presents a case study applied to the electrical goods industry in Germany
assessing environmental criteria (ISO 14001), windows for delivery, occupational health and
safety (ISO 45001), corporate social responsibility (CSR), demand volume customers influence
on distribution and manufacturing orders, and the duration of the product lifecycle.

Furthermore, ref. [82] focuses on Phase III biorefineries (mix feedstock and multiple
products) in the Colombian context and develops a multiobjective optimization model
solved with an adapted non-dominated sorting genetic algorithm II (NSGA II). It assesses
the property concentration of cultivable lands, the net present value and transportation
costs, the potential workstations, the governmental subsidies for the industry, and compare
production technologies.

Meanwhile, ref. [129] investigates the impact of information sharing on the decisions
and profits of the manufacturer and the retailer. The developed game theory models aim for
the equilibrium of both the manufacturer and the retailer profits, including aspects such as
the environmental impact of a product, promotional campaigns to capture the consumers’
attention, expected consumer surplus, subsidy policies to encourage consumers to purchase,
and new technology to manufacture green product introduction by the manufacturer.
Finally, ref. [130] developed research for hydrogen fuel cell vehicles applied to the Occitania
Region in France, seeking an optimal hydrogen supply chain with the sequential application
of an optimization strategy and a multi-criteria decision-making tool. The optimization
model presents a social cost-benefit analysis, including CO, and pollution emissions,
platinum depletion, externality costs and net present value, noise, a subsidy policy scenario
assessment, and the evaluation of different production technologies.

1 2%\ | 1% 1% oy,
1% \ A
«‘\ 9%
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Figure 4. Sustainability dimensions. Economic (EC), social (SO), environmental (EN), political (PO),
technological (TE).
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The Supplementary Materials shows the research articles’ classification in detail ac-
cording to the methodological analysis performed in this work.

3.1.2. Metrics Describing Sustainability in SCCD

Considering most of the research articles related to the SSCD are approached by opti-
mization, the metrics describing sustainability could be represented as objective functions.
Thus, Figure 5 presents a detailed description of the 51 objective functions to be optimized
from the 541 research articles studied. Note that a number is given for each objective
function (metric) in the second column, this number facilitates the relationship between the
definition and the acronym presented in the Appendix B.

The main objective functions and optimization criteria considered to assess the eco-
nomic aspect are minimizing total costs, maximizing profits, and minimizing transportation
costs. Likewise, the main objectives sought in the social dimension are the maximization of
job opportunities and social welfare. Regarding the environmental dimension, the main
aim is to minimize CO, emissions, environmental impact, GHG emissions, and water use.
Finally, for the political and technological aspects, it is sought to increase the high-quality
green products in the market, assure food security, maximize the desired effects of the
regulations, and minimize the related cost of innovative production technologies.

It is worth noting that economic functions constitute the majority (16 objective func-
tions), followed by environmental functions (15 objective functions). Additionally, seven
objective functions can be categorized into more than one dimension of sustainability,
denoted by an asterisk in Figure 5. For instance, reducing taxes paid corresponds to the
economic dimension, while it is also related to tax collection in the political dimension.
Besides, maximizing high-quality green goods and/or services could be classified into
social or political sections. Finally, the cost and net present value related to technologies
could be classified in the economic section.

It should be noted that the objective functions described in this study apply to a general
SSCD. Hence, some objective functions may be more suitable for a particular SSCD than
others. Furthermore, the analysis identified 51 objective functions, leading to a many-objective
optimization problem. Solving such a problem results in a set of nondominated solutions
known as a Pareto-optimal set (POS) or Pareto front [131]. However, solvers for such problems
are sensitive to the number of objectives considered, as computational costs increase with
more objectives, making solution visualization and analysis more complex [45,132]. Therefore,
considering the large number of sustainability metrics and the need for an integrated approach
to SSCD, it is crucial to develop efficient many-objective models and dimensionality reduction
techniques that effectively address different aspects of sustainable development [51].

Other topics such as the distribution of research articles focused on SSCD by year, the num-
ber of related research article applications in the SSCD by country, and the main production
sectors in SSCD development are analyzed from the literature review. These allow us to
evidence the SSCD as a relevant topic worldwide with the constant growth of related research
articles. Furthermore, the leading countries are Iran and China, who focus on goods production,
such as automotive and manufacturing products. However, Latin America, the Caribbean,
and Africa were left behind. In the same vein, much remains to be done related to using
residues in producing new products, fuels, and energy. See details in Appendix A.
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Dimensions Objective function (n°) Description
Economic Min number of facilities (1) It seeks to minimize the number of production plants, warehouse locations, among other facilities type
(EC) Max production (2) Pursues to maximize the production of goods and/or services, considering productive factors
Max capacity use (3) Seeks to maximize the use of productive capacity of the implemented plants
Max revenue (4) Maximize the enterprise incomes
Min taxes« (5) Minimize the taxes paid by
Min the dstance (6) Minimize the distance among the organizations in the SC
Min costs. @ Minimize the freight P cost related to di among the org inthe SC
Min logistics costs (8) Seeks to minimize the freight transportation cost and warehousing cost
Min maintenance Seeks to minimize maintenance costs, both of hinery and infi depending on technology and
costs (9) production capacity
Min production Seeks to minimize unit p costs, de ding on raw | acquisition cost, besides the
costs (10) nology and prod n ca for raw material transformation
Min waste costs (11) Seeks to minimize costs associated with waste treatment, for example disposal costs
Min emissions costs (12) Minimize costs associated with the release of pollutant emissions
Min environmental Seeks to minimize the costs related t utant emissi nd waste tre t
costs (13) eks to minimize the costs related to pollutant emissions and waste treatmen
. It seeks to minimize the total costs related to the producti release, and sale
Min total costs (14) of the good and/or service. It is worth mentioning that it does not include investments
Max profit (15) Maximize the gross profit margin. Revenues, costs, and taxes are wnsxdered
Max Net Present Maximize the discounted NPV at a given interest rate. This includs and profits (;
Value (NPV) (16) costs, and taxes)
. Seeks to obtain the highest possible financial retums. This includ and profits (
Max profitability (17) costs. andtaxes)
Social Max job opportunities (18) Seeks to maximize the fixed and variable employment opportunities eneraled _
(SO) Max local job opportunities (19) iec::i :; maximize the fixed and variable employment opportunities g din geographical
. 2 Seeks to reduce occupational accidents related
Min workplace injuries (20) to the technology implemented in the facilities
Min days lost due Seeks to have the least number of days with leaves for accidents caused in the work environment related
iden | to the production technologies implemented in the facilities
It covers four dimensions, related by weights that reflect their relative imp The first ds to
ma)umlze ﬁxed and vanable employment opportunities and reduce work damages related to productlon
Sy it the facilities’ imp impact through indicators like GDP,
Max social impact (22) Gml mdex level of unemplovment and i income by zone. Finally, it seeks to reduce the number of
d into th and the food safety impacts related to raw material
type consumption
Seeks to maximize consumer benefits in social and economic terms. It is the difference between the
Max consumer surplus (23) highest price that a consumer tends to pay for certain and the actual market price of those goods
. : . Seeks to reduce consumer waiting times d with delivery, d ding on the ge delivery time
Min delivery time (24) 1o each client
Max Cust(%nslir) ?;g\]nce Level CSL is defined as the prop of d d that will be met
It considers several aspects reialed by weights that reflect their relative imp Itinclud
ofa s the service in less time, geoc ge, the distance between communities and
Max customer satisfaction (26) irable facilities impl ing the d d (CSL), and maximize the high-quality goods or
services delivered to the customer
Social welfare mainly includes consumer surplus (CS), producer surplus (PS), environmental benefits
(EB), and economic benefits (EI) of green products. PS refers to the difference between the lowest supply
price of the production factors and the actual market price.
. EB refers to the total benefit of green products in reducing global warrnmg _among other environmental
Max social welfare (27) lmpads El refers to the budqet surplus f of the financial policy as
and the fits for the |ndustry h , some hers include in social
welfare measure aspects as job creation, customer satisfaction or socnal impact. Therefore, social welfare
relates these aspects by weights that reflect their relative importance or risk aversion coefficients
Seeks to reduce the components or machine number while enhancing system reliability. Redundancy i is
Min dismissals (28) denoted as the use of functionally similar ther, so thatif a fails, the redt
part would be available to carry out the required task without failure toward enhancing system reliability
Envi | Min €02 (29) Seeks to reduce the emission of CO: released into the atmosphere
(EN) Min GHG emissions (30) Seeks to minimize the greenhouse gases emissions such as C0. €0, Nz0. CH: and 0,
Min fuel consumption (31) Seeks to minimize fuel consumption throughout the SC
Min energy consumption (32) | Seeks to minimize the energy consumed by the entire SC
Max performance h |
raw materials (33) Seeks to increase the
Min water consumption (34) | Seeks to reduce water use in the SC
Min wastewater production (35) | Seeks to reduce wastewater production in the SC
Max sustainable . L ) "
suppliers in SC (36 Seeks to increase the choice of sustainable suppliers to the SC
Min waste (37) Seeks to minimize waste generated throughout the SC
Min hazardous materials (38) | Seeks to reduce the use of hazardous materials required for production
Max recycled water (39) Seeks to maximize water recovered from the SC
Max waste recovery (40) Seeks to i increase waste recovery, whelher in the same SC or another
Seeks to mini gas ons (C0zeq), f of fine p
. jssi (PM2seq), or phosphorus (P eq) release in fresh producing hication il
Min pollutant e ons (41) are related to fuel ¢ and waste prod llution related to i
implementation, and raw material related Mlunon conssdenng the SC entirely
Min transport impact (42) Seeks to reduce the impact of transportation in terms of environmental pollution related to fuel combustion
Min Environmental Seeks to minimize the environmental |mpact generated by the release of pollutant emissions, shortage of
Impact (43) fossil resources and water d by Life cycle assessment applying methods as
0 the Recipe. Eco-Indicator 99. CML, Carbon lootmm Water footprint, among others
Technological Max Technology Itp a greater incorporation of technological tools or producti hnologies, such as soft
(TE) implementation (44) hardware methodologies, among others
Min Costs in iotod with & dq ol
Technologiesr (45) Seeks to reduce costs with p gi
in Ma’; pwd':‘ds wnhd Seeks to increase the production of goods and/or services with emerging technology
Max the net present
value (NPV) of technology Seeks to maximize net present value by idering the i in technol
investmentss (47)
Political Max Tax Revenue or Seeks to understand the associated effects when the g seeks to tax or
(PO) Collections (48 collection

Min Government

Expenditure (49)
Max green quality products

productions (50)

Seeks to minimize state expenditures, mainly related to public policy as subsidies and tax reduction, and
understand the effects when trying to reduce the government spending
Pursues to maximize the production of high quality green good and/or services, considering productive
factors

Seeks for food security for the community reducing the food related raw

Is use due to g

Max food security= (51)

requirements

Figure 5. Detailed objective functions found in the research articles reviewed. The objective functions

that can be categorized into more than one dimension of sustainability are denoted by an asterisk.
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3.2. The Aggregation Criteria and Cluster Analysis (CA)

From the above literature review, 51 objective functions (metrics) are recognized to be
considered in the measure of sustainability in the SSCD by the decision maker.

To start the aggregation criteria, we initially merge the objective functions n° 16 and
n° 47 associated with the net present value (NPV) (see Figure 5). Thus, we formally con-
sider 50 final objective functions (metrics) and identify 58 auxiliary functions and sets of
48 parameters, stating the relationships among them based on the defined aggregation criteria.

The obtained results are described in detail in Appendix B and allow us to construct a
set of directed acyclic graphs. The aggregation criteria are represented by a directed arrow
to a single objective function from the aggregated function, as shown in Figure 6. Note
that many objective functions can aggregate an objective function, and the node size of
each one is directly defined by its number of aggregated functions. For instance, the total
greenhouse gas emissions in the supply chain (TGHGESC) involve waste, wastewater,
transport, production, and infrastructure GHG emissions. The total production cost (TPC)
involves the raw material acquisition, water, energy, and fuel costs. Furthermore, social
welfare (TSW) integrates the NPV, ROI, consumer surplus, social impacts, capacity use,
environmental impacts, health impacts, and weighted customer satisfaction.

Figure 6. Objective functions relationship diagram.

By considering the relationships among the final objective function, auxiliary function,
and parameters based on the defined aggregation criteria, we analyze and reduce the
number of functions to measure sustainability by considering the multivariate statistical
technique called the cluster analysis (CA) method [59]. It provides a graph and network
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analysis using Gephi open-source software [60]. Figure 6 shows the results obtained, where
the relationship between the parameters, auxiliary functions, and final functions allows
us to identify 12 clusters, which are colored to improve the visualization of each one.
In addition, we analyzed the cluster in terms of sustainability dimensions involved by its
parameters and functions, as Table 2 shows.

Table 2. Cluster analysis according to the addressed sustainability dimensions. Economic (EC), social
(SO), environmental (EN), political (PO), technological (TE).

Area

Dimension

Description

@

EC-EN

This cluster is related to waste generation by considering the waste emission amounts
and their environmental and economic impacts.

@

EN

This cluster is related to wastewater generation by considering the wastewater emission
amounts and their environmental and economic impacts. In addition to the total
avoided emissions related to waste recovery.

®)

EC-EN

This cluster is the economic and environmental impacts related to fuel, raw materials,
and water consumption in production.

4)

EC-EN

It involves the environmental impacts related to fuel consumption in transport, as well
as the logistics cost.

©)

EN-SO

This cluster includes consumer satisfaction and energy balance linked through the
production assessment. It involves customer satisfaction by considering the maximum
customers coverage, the customer service, quality of products, and delivery time to
customers.

(6)

EC-EN-SO

It involves social welfare linked to other clusters, in addition to the total capacity use,
the consumer surplus, and the health impacts related to the supply chain emissions.

@)

EN-S5O-PO

This cluster involves the social impact by considering hazardous materials used, occu-
pational accidents, infrastructure redundancy, social impact according to geographic
characteristics by considering the customers and suppliers’ geographical selection,
and food security.

®)

EC-TE-PO

It includes the governmental expenditures related to subsidies and taxes, the investment
related to infrastructure implementation as well as the financial metrics: net present
value and return on investment.

©)

EN

This cluster involves the total greenhouse gas emissions in the supply chain and the
environmental impact related to all the emissions in the supply chain.

(10)

EN-SO

This cluster assesses the infrastructure implementation by considering the emission
amounts generated and their environmental impacts, in addition to the number of
infrastructures implemented and the job creation impact related to Gini Index, poverty
levels, gross domestic product, among others.

11

EN

It includes the emissions related to the raw material acquisition as well as its sustainable
classification. Besides, the energy consumption links this cluster with clusters 4 and 5 to
reach the energy balance calculation..

(12)

EC-EN

It involves the total emissions cost and the total emissions produced in all the supply
chain stages.

Concerning the cluster assessment, we note that each cluster involves a different stage
in the supply chain. For instance, cluster 8 includes the infrastructure and technologies
implementation for production operations, while Cluster 10 evaluates the impact of this
implementation. Then, cluster 11 considers the provisioning stage, while cluster 4 evaluates
the transport in the entire supply chain. Cluster 3 includes the consumables necessary for
production, such as water, fuel, and raw materials, while Cluster 9 measures the emissions
generated in production. Clusters 1 and 2 measure emissions of waste and wastewater
generated in the production stage. Clusters 5 and 6 refer to the distribution of products by
measuring customer satisfaction and surplus. Finally, cluster 12 measures the costs of all
emissions generated in the supply chain, while cluster 8 assesses the financial aspects of
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the supply chain. Then, this distinction of metrics by cluster allows us to distinguish what
material flow and information (parameters) are required to assess sustainability in each
section or stage of the supply chain.

Regarding the sustainability dimensions involved in each cluster, we remark that the en-
vironmental and economic dimensions are in eleven (92%) and six (50%) clusters, respectively.
It shows the importance of environmental and economic dimensions in the SSCD and their
relation with the other dimensions to be evaluated. The social and political dimensions are in
four (33%) and two (17%) clusters, respectively. In contrast, the technological dimension is in
only one cluster (8%), evidencing the incipient assessment and relations of these aspects in
SSCD. Furthermore, considering the interactions among the sustainability dimensions, five
(42%) clusters simultaneously assess the economic and environmental metrics. Meanwhile,
four (33%) clusters integrate environmental and social metrics, while three (25%) only assess
environmental metrics. It defends the hypothesis of the possibility of finding similarities be-
tween the metrics, grouping them despite belonging to different dimensions of sustainability.
In addition, it shows the strong interrelationship among all the sustainability pillars, which
reinforces the need for a holistic assessment of sustainability.

Additionally, at larger nodes, which represent a larger number of function and param-
eter aggregations, we can highlight metrics such as TEIC. It aggregates the environmental
impacts by categories, including those associated with wastewater, waste, transportation,
and production. Similarly, TEmCost considers the costs associated with the emissions
generated throughout the entire supply chain, also accounted for as emissions in the TTESC
metric. TSI represents the social impact and includes the impact on food safety, infras-
tructure redundancy, accidents associated with production technologies, the impact of
implementing facilities according to the selected geographical location, and the impact
associated with the fixed and variable work generated. Finally, TSW represents social
welfare and incorporates several sustainability dimensions by evaluating the importance of
net present value, return on investment, environmental impact, impact on human health,
and social impact, among others. By including various metrics of several sustainability
dimensions, this is observed as an alternative to the inclusion of sustainability to all its
extensions through weighting the metrics it incorporates.

3.3. The Aggregation Criteria and Reduction Rules

Then, to understand which metrics are a particular case of another, we have developed
Figure A2 in Appendix C. It separates the metrics by level, increasing in level as metrics
are added. Then, we have a set of five metrics representative of sustainability as follows:
(1) total social welfare (TSW), (2) total products obtained with incipient technologies
(TPIT), (3) total raw materials acquired from sustainable suppliers (TRMSS), (4) total
sustainable raw material used (TSRM), and (5) total governmental expenditures (TGE). Note
that TSW integrates: net present value (NPV), return over investment (ROI), total social
impact (TSI), total environmental impact (TEI), total human impact (THI), total consumer
satisfaction (TCSat), total consumer surplus (TCSur), and total implemented capacity use
(TICU). This reduced number of metrics to consider when integrating sustainability in
the SSCD is a manageable number for both multi-objective optimization and decision-
maker assessments. Furthermore, these five metrics at the higher level of integration
consider the five sustainability dimensions: Economic, Social, Environmental, Political,
and Technological. Finally, note that TSW could be the only metric assessing sustainability
by considering weights to integrate TPIT, TRMSS, TSRM, and TGE.

4. Discussion

The proposed integrated metrics framework provides decision makers in the industry
with a systematic approach to defining and integrating sustainability metrics in sustainable
supply chain design (SSCD). This framework will allow decision makers to identify and
prioritize sustainability metrics and facilitate decision making in SSCD.
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The metrics assessment based on aggregation criteria and cluster analysis (CA) method
offers an integrated view of the relationship between the metrics and the sustainability
pillars. It reveals the holistic nature of sustainability and indicates that the sustainability
dimensions should not be analyzed separately but as a whole. This task is complex to
perform if we consider the different sustainability measurement guides or even the UN
sustainable development goals, which consider a large number of indicators to be evaluated.
In the SSCD context, the large number of metrics found in the related literature show this
complexity. Therefore, the reduced group of metrics proposed to measure sustainability
will simplify the process of measuring sustainability in SSCD and reduce the burden of
considering an unmanageable number of metrics. It will support and facilitate sustainability
management in supply chain design for decision-makers in the industry.

In addition, this proposal made tractable the SSCD problem from an optimization point of
view since it enables researchers and practitioners to design optimal sustainable supply chains
through the typical multi-objective solution methods to evaluate five objective functions.

The proposed framework lays the basis for novel decision-aid models for production
systems and logistics design. Because this research was focused on the strategic decision-
making level, further research could assess the ex post assessments following the proposed
methodology to identify and integrate the sustainability metrics.

5. Conclusions

This paper proposes an integrated, tractable, and representative metrics framework to
measure the five sustainability dimensions in the sustainable supply chain design. This research
has been based on an exhaustive and systematic literature review, multivariate relational
statistical techniques, and reduction rules. To our best knowledge, this report describes a
novel approach that has not been followed in previous research in a sustainable setting.

In the review process, 541 research articles were analyzed in depth, where most
of the literature assesses strategical decisions by applying optimization as the principal
methodological approach. Other topics observed from the literature review allowed us
to expect a clear linear research trend for evaluating sustainability aspects in the SSCD,
identifying that the principal research countries seeking SSCD are Iran, China, and the
United States of America, which are focused mainly on the automotive sector and consumer
goods production. Furthermore, the sustainability dimensions most studied are economical
and environmental. Fifty-one metrics to measure sustainability in the SSCD are described
based on the literature review. Among these, 16 correspond to the economic aspects, 15 to
environmental, 12 to social, and 4 to political and technological dimensions. They can be
understood as objective functions to be optimized, considering optimization is the most
applied methodology. From the sustainability metrics recognized in the literature, we
identify parameters and auxiliary functions by applying the aggregation criteria. Then,
the cluster analysis obtained 12 clusters showing the strong interrelationship among the
sustainability dimensions. Finally, following the reduction rules, a reduced number of
5 objective functions to measure sustainability in the SSCD is proposed, evidencing the
measure of social welfare as a potential metric to integrate all sustainability dimensions.

Consistently, interesting practical and policy implications emerge from the research.
Firstly, it reveals the exponential growth of SSCD-related research since formulating the
Sustainable Development Goals in 2015. As a result, it has led to an unmanageable number
of metrics to consider when integrating sustainability into supply chain design. Secondly,
the research proposes a limited set of metrics that make optimization tractable through
different methodologies to solve the SSCD multi-objective problem. Thirdly, the proposed
limited set of metrics facilitates decision making for stakeholders by reducing the number
of indicators to observe to make a decision. This research has important implications for
supporting the integration of sustainability in productive sectors by providing a managerial-
level understanding and allowing the development of optimized supply chain structures
for sustainability.
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The proposed methodology provides a systemic framework to incorporate additional
metrics or objective functions. Hence, considering this research work conducted a literature
review up to December 2020, it is advisable to conduct periodic updates every five years.

For future research, some associated research questions are proposed to be addressed,
which could facilitate the sustainability measure and analysis in the design problem of a
sustainable supply chain:

1. How do we integrate the different objective functions in an index/value of sustain-
ability in SSCD?
2. How do we define a validation process for it?

The first question invites us to study and analyze these research results from multi-
objective and many-objective optimization perspectives to obtain an index/value of sus-
tainability in SSCD, considering the unique features of each productive sector. It requires
analyzing and evaluating the five metrics found with a higher level of integration since they
could be integrated into a unique metric by weighting them according to their relevance.
Moreover, the relevance of each metric could vary depending on the production sector
(energy, waste, water, and others) and the organizational setting. This leads to the second
question, which is about defining a validation process based on historical management re-
ports and expert knowledge from relevant actors such as government authorities, industry,
and the community.
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Appendix A. Other Topics Analyzed from the Literature Review
Appendix A.1. Temporal Trends

Figure A1 presents the distribution of research articles focused on SSCD by year of
publication. A clear linear trend evidences the growing interest in integrating sustainability
aspects into supply chain design. The highest number of publications was in 2018, with
111 research articles representing 20.52%. Besides, 2011 and 2015 present the highest
increased percentages compared to the previous year, reaching an increase of 200%. Fur-
thermore, the annual growth trends observed in Figure A1 should continue in the coming
years due to the social, academic, governmental, and industrial compromise with sus-
tainable development [25,609]. Indeed, future trends of literature, considering a linear
regression over the data with a coefficient of determination (%) 94.91%, would reach around
192 research articles for 2030, i.e., an annual growth of approximately nine research articles
per year. Finally, it is worth mentioning that this literature review considers the articles
published until 31 December 2020.


https://www.mdpi.com/article/10.3390/su15097138/s1
https://www.mdpi.com/article/10.3390/su15097138/s1
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Figure A1. Distribution of articles published per year.

Appendix A.2. Countries Exploring the SSCD

Considering the number of related research articles applications in their territory,
we highlight Iran and China, with 38 publications each. For Iran, the main areas ex-
plored are the automotive sector industries, including tire production [137,266,471] and
transportation [201,499]. For China, the most critical study area is consumer goods pro-
duction, as in [68,86,89,91,143,160,203,300,324,437,441], followed by the recycling area,
as in [150,159,407,476]. Then, the US has 24 applied research articles, mainly related to
biorefineries as in [72,75,139,141,151,161,202,472,500,502-504], followed by the research
articles devoted to the consumer goods production as in [147,248,299,352]. In the case
of India, most of the 19 research articles devoted are related to the production of goods,
as in [99,133,134,144,146], focused on the automotive and textile sectors. The following
countries, the UK (8), France (7), Germany (6), and Australia (4), represent 4.62% of
the research articles. We should underline that most of the research articles present
mathematical models tested with theoretical data.

Appendix A.3. Main Production Sectors in SSCD Development

The key sectors involved in developing SSCD are categorized into different areas,
including goods production, industries, ecological products, biorefinery, bioenergy and
energy production, waste, biomass, and others. The breakdown of these categories can
be found in Table Al. Notably, Goods Production refers to final products intended for
immediate consumption, while Industries focus on intermediate goods like raw materials
used to produce final goods.

Table A1l. Number of publications per area.

Production Sectors Numbers of Publications Percentage
Goods production 142 26.25%
Industries 62 11.46%
Ecological products 52 9.61%
Biorefinery 31 5.73%
Bioenergy 29 5.36%
Waste 14 2.59%
Biomass 6 1.11%
Others 205 37.89%
TOTAL 541 100%

The majority of the research articles focus on producing goods, accounting for 26.06% of
the total. The final goods predominantly studied include electrical components [152,406,477],
mobile phones [474], food and perishable items [226,473,507], textiles [21,148], automo-
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tive products [107], and manufacturing items [156]. Another significant category is in-
dustries, which represent 11.65% of the research articles, with a particular emphasis on
the [157], Cement [200,475], Foundry [155], and Mining sectors [375]. The remaining 9.61%
of research articles cover ecological products, and this category mainly comprises stud-
ies on closed-loop supply chains, with the goal of increasing the reuse and recycling of
elements [66,78,227]. They also study meaningful aspects, such as the price competitiveness
between ecological and conventional products [77,84,138].

Furthermore, 5.36% of the research articles correspond to biorefinery studies [82,153,472]. It
mainly refers to using second-generation raw materials, i.e., organic waste, to produce en-
ergy products, such as biofuels, chemical components, food, and fertilizers. Meanwhile, out
of the 29 research articles classified within the bioenergy category, the majority are focused
on the production of biofuels using first-generation raw materials [440], i.e., using biomass
that is more than often edible, or second-generation raw materials [136,267,438,506], of-
ten waste materials such as agricultural or municipal residues. By applying this process
within industries, the aim is to maximize energy efficiency and production. Furthermore,
certain research papers aim to establish a sustainable supply chain within the refinery
sector [500,501]. As an illustration, ref. [154] formulated an efficient and sustainable supply
chain for natural gas components intending to maximize overall profits while minimizing
total greenhouse gas emissions and water consumption. Additionally, alternative energy
sources like hydrogen are evaluated [130,158,348,505].

Research articles focused on waste aim to diminish the environmental impact by
preventing waste generation, ultimately decreasing greenhouse gas emissions [149,199,389,
406,439,479]. Thus, these articles examine the effect of waste supply chain management de-
cisions on the environment in search of greater efficiency [112]. Various waste management
scenarios, including Recycling, Landfill, Incineration, and Reuse, are analyzed to assess
their effects. That research concludes that supply chain management is critical in reducing
environmental impact [149].

For the study of biomass, six publications focused on the reduction of carbon dioxide
and costs to create a sustainable industry [135,140,142,145,247,489]. They mention the
management of sewage, fertilizers, and agricultural residues to strategically position
biomass plants to harvest and collect the product easily. While all articles point to biomass
supply chains, different factors and geographical regions are studied. For example, ref. [140]
assess the effect of biomass availability uncertainty in Mexico based on historical data.
Instead, ref. [247] seek the optimal location, technology, and capacity of the operating
facilities in combination with the optimal technology to harvest and collect products for
biomass supply chains in Europe.

Appendix B. Parameter and Function Descriptions with Acronyms and
Aggregation Criteria

Appendix B.1. Parameter Description and Acronyms

Table A2. Parameters description and acronyms.

Acronym Parameters Description

ABLA Average number of business days lost due to accidents in production plants
ACRMF Acquisition cost factor according to the raw material type and supplier
CATP The highest price that a consumer tends to pay for certain goods

CFEIL Cost factor per emissions by type, released in infrastructure implementation
CFEP Cost factor per emissions by type, released in production

CFERM Cost factor per emissions by type, released in raw material procurement
CFET Cost factor per emissions by type, released in transportation

CFEW Cost factor per emission by type, released in wastewater

CFF Cost factor per fuel
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Table A2. Cont.

Acronym

Parameters Description

CFWM

Cost factor per type of waste management

CO2EFII

CO, emission factor related to infrastructure implementation by technology and capacity

CO2EFP

CO, emission factor according to fuel consumption in production

CO2EFT

CO, emission factor according to fuel consumption in transport

CO2EFW

CO, emission factor according to waste type

CO2ERM

CO; emission factor related to raw material procurement

CSIFC

Category of social impact factor by customer location

CSIFP

Category of social impact factor (Gini / Poverty / GDP / Income) by production plant location

CSIFS

Category of social impact factor by supplier location

DFP

Demand factor per product by each customer

DPC

Distance between each plant and customer

DS

Discount rate

DSP

Distance between each supplier and plant

DTE

Delivery time expected

ECFRM

Energy consumption factor for raw material production by raw material type and supplier

EESF

Effect on ecosystem factor, from ReCiPe (a method for the impact assessment in a Life Cycle
Assessment), related to environmental impact by impact category

EFII

Emission generation factor by type other than GHG, in infrastructure implementation

EFP

Emission generation factor by type other than GHG, related to production

EFRM

Emission generation factor by type other than GHG, related to raw material type

EFT

Emission generation factor by type other than GHG, in transport

EFW

Emission generation factor by type other than GHG, in waste

EFWW

Emission generation factor by type other than GHG, in wastewater

EIF

Environmental impact factor weighting categories as carbon footprint, water footprint, and other
environmental impact categories.

EIFI

Environmental impact factor by impact category, according to location, technology, and capacity
implemented

EIFP

Environmental impact factor by impact category, related to production

EIFRM

Environmental impact factor by impact category, related to raw material production by raw
material type and supplier

EIFW

Environmental Impact factor by impact category, related to emissions type b from waste

EIFWW

Environmental impact factor by impact category, related to emissions type from wastewater

EIT

Environmental impact factor by impact category, related to emissions type from transport

FCFP

Fuel consumption factor for production according to raw material type, technology, and capacity
implemented

FCFTFP

Fuel consumption factor by final products transport, according to weight and distance

FCFTRM

Fuel consumption factor by raw material transport, according to weight and distance

FPrb

Faillure probability

FSF

Food safety impact as binary factor, according to raw material type consumed and supplier

FtoEF

Fuel to energy factor, depending on fuel type, as gasoline, electricity, among others

GHGEFII

GHG emission factor related to infrastructure implementation, other than CO,

GHGEFP

GHG emission factor according to fuel consumption in production, other than CO,

GHGEFRM

GHG emission factor related to raw material procurement, other than CO,

GHGEFT

GHG emission factor according to fuel consumption in transport, other than CO,
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Table A2. Cont.

Acronym

Parameters Description

GHGEFW

GHG emission factor according to waste type, other than CO;

GHGEFWW

GHG emission factor in wastewater, other than CO,

HIF

Health impact factor related to the environmental impact categories

HRMF

Hazardous raw materials factor, according to raw material type

ICF

Installation capacity factor

ICFT

Investment costs factor by production technology implementation

IIF

Infrastructure investment factor, according to location and capacity

ITF

Incipient or emerging technology binary factor

IULF

Investment uncertainty level factor for each production technology, according to its maturity
level

LIF

Category of social impact factor related to the total job created, considering geographical charac-
teristics as GDP, GINI, unemployment, or income, among others

LP

Length of the evaluation period

MCI

Maintenance cost factor according to the raw materials processed depending on technology,
capacity, and location implementation

MLF

Maturity level factor by production technology

OEngConsF

Other energy consumption in supply chain factor.

OLC

Other logistic costs

OPCF

Production cost factor according to raw material type, technology, and capacity implemented,
without fuel, water, and energy-related costs

PAF

Number of potential accidents according to technology factor

PP

Product price

PtoEF

Product to energy factor

RTQP

Rate of transformation in quality products, according to technology and raw material used

SFII

Subsidy factor for investments in infrastructure depending on government incentives

SIW

Social impact weight

SRMF

Sustainable raw materials factor, according to raw material type

SSF

Sustainable supplier factor, according to supplier location

SWW

Social welfare weight

TB

Tax base

TCO2EFWW

CO, emission factor in wastewater

TR

Transformation rate according to raw material type, technology, and capacity implemented

TS

Transport average speed km/h

TV

Variation of taxes depending on Government Incentives

UnTLF

Uncertainty related to the technology readiness level factor

WfootF

Water foot factor

WConsF

Water consumption factor according to raw material type processing, technology, and capacity
implemented

WCostF

Water cost factor

WCTF

Number of workers required according to capacity and technology

WPEF

Waste production factor by type a, according to raw material type, technology, and capacity
implemented

WRecEIF

Waste recovery environmental impact factor

WRF

Water recycling factor possible depending on the production technology and raw material used

WRMCTF

Number of workers required to process a type of raw material according to production technology
and plant capacity

WRRMF

Waste recovery raw materials factor, according to raw material type

WWPE

Wastewater generation factor, according to raw material type processed, technology, and capacity
implemented
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Appendix B.2. Main Objective Function Description and Acronyms

Table A3. Main objective function description and acronyms.

n° Acronym Function Description
1) TFI Total number of facilities installed
2) TP Total number of products by type, produced in a certain
location with a certain technology
3) TICU Total installed capacity use
(4) TRev Total revenues
5) TaxP Tax Paid
(6) D Total distance in the supply chain network
7) TTC Total transportation costs
8) TLC Total logistics costs
9) T™C Total maintenance costs
(10) TPC Total production costs
11) TWC Total waste costs
(12) TEmCost Total emission costs
(13) TEnvCost Total environmental costs
(14) TC Total costs
(15) TBEB Total business economic benefits
(16-47) NPV Net present value including technology investments
17) ROI Return over the investment (Profitability)
(18) TJC Total job opportunity created
(19) TJI Total job opportunity created impact
(20) TPLA Total number of potential labor accidents, according to plant
location, capacity and production technology
(21) TDL Total days lost due to accidents in production plants
(22) TSI Total social impact
(23) TCSur Total customer surplus
(24) ADT Average delivery time
(25) TCSL Total customer service level
(26) TCSat Total customer satisfaction
(27) TSW Total social welfare
(28) TRI Total redundancy infrastructure
(29) TCO2ESC Total CO; emissions in the supply chain
(30) TGHGESC Total GHG emissions in the supply chain
(31) TFCons Total fuel consumption
(32) TEngCons Total energy consumption
(33) TSRW Total quantity of sustainable raw materials purchased
(34) TAWC Total amount of water consumed
(35) TAWW Total amount of wastewater produced in raw material

transformation
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Table A3. Cont.

n° Acronym Function Description

(36) TRMSS Total quantity of raw materials purchased to sustainable
suppliers

37) TAW Total amount of waste generated by production

(38) THM Total hazardous materials

39) TARW Total amount of recycled water

(40) TWRec Total waste recovery

(41) TTESC Total emissions by type in the supply chain

(42) TTETransp Total emissions by type in the transport

(43) TEIC Total environmental impact by impact category

(44) TTechl Total technologies implemented

(45) TITI Total investment required for production technology
implementation

(46) TPIT Total number of products produced with incipient technology

(48) TaxC Tax collection

(49) TGE Total government expenditure

(50) TQP Total quantity of quality products

(51) TIFS Total impact on food safety

Appendix B.3. Auxiliary Function Description and Acronyms

Table A4. Auxiliary function description and acronyms.

n® Acronym Auxiliary Function Description

(52) TRW Total quantity of raw material acquired by type and supplier

(53) TCO2ERM Total CO, emissions from raw material

(54) TGHGERM Total GHG emissions from raw material

(55) TPbyT Total product by type of final product

(56) TEIRM Total environmental impact by category, depending on the production
of each type of raw material

(57) TGHGEIL Total GHG emissions from infrastructure implementation

(58) TCO2EII Total CO; emissions from infrastructure implementation

(59) TTEIL Total emissions by type from infrastructure implementation

(60) TEII Total environmental impact by category, depending on infrastructure
implementation

(61) TEI Total environmental impact in ecosystem

(62) TGHGEW Total GHG emissions from waste

(63) TTEW Total emissions by type from waste

(64) TCO2EW Total CO, emissions from waste

(65) TEIW Total environmental impact by category, related to waste

(66) TGHGEWW Total GHG emissions in wastewater

(67) TTEWW Total emissions by type in wastewater
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Table A4. Cont.

n° Acronym Auxiliary Function Description

(68) TCO2EWW Total CO; emissions in wastewater

(69) TEIWW Total environmental impact by category, related to wastewater

(70) TCEWW Total cost related to emissions in wastewater

(71) THI Total environmental impact on health

(72) OEngConsP Other energy consumption in production

(73) TFCFP Total fuel consumption by final product transport

(74) TFCRM Total fuel consumption by raw material transport

(75) EngBal Energy Balance in the supply chain

(76) TFCP Total fuel consumption for production

(77) CO2Foot Carbon footprint

(78) TGHGEP Total GHG emissions from fuel in production

(79) TGHGET Total GHG emissions from transport

(80) TCO2EP Total CO; emissions from fuel consumption in production

(81) TCO2ET Total CO; emissions from transport

(82) TEIP Total environmental impact by category, depending on production

(83) TCRMA Total cost of raw material acquisition

(84) TGWF Total gray water footprint

(85) OrC Other production costs related to raw material type, technology, and
capacity implemented, without fuel, water, and energy

(86) TCWC Total cost of water consumption

(87) TBWF Total blue water footprint

(88) TEIT Total environmental impact by category, depending on transport

(89) TTEP Total emissions by type related to production

(90) TECRM Total energy consumed due to the production of raw materials

91) TCECP Total cost related to fuel consumption in production

(92) TF Tax fraction

(93) TPS Total plant installation subsidy

(94) TIU Total investment uncertainty

(95) TIILC Total installation investment according to location and capacity

(96) TII Total infrastructure and technology investment

97) ATL Average technology level

(98) TSICI Total average social impact by impact category such as GDP, GINI,
unemployment, or incomes according to infrastructure location
implementation

(99) TSICC Total average social impact by impact category such as GDP, GINI,
unemployment, or income according to customer location selection

(100) TSICS Total average social impact by impact category such as GDP, GINI,
unemployment, or income according to supplier selection

(101) TSIC Total average social impact by impact category such as GDP, GINI,
unemployment, or income according to geographic selection for
plants, supplier, and customer

(102) FW Fixed number of workers required by plant
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n® Acronym Auxiliary Function Description

(103) VWI Variable number of workers required by infrastructure

(104) ADTC Average delivery time to each client

(105) ADTS Average delivery time satisfaction

(106) PCDS Percentage of each customer demand satisfied, per product type

(107) TTERM Total emissions by type related to raw material procurement

(108) MCC Maximum coverage of customers reached, considering all customers
and plants

(109) TIC Total installed capacity

(110) TEIAvoidWRec Total environmental impact avoided by category related to waste
recovery

(111) UnIn Uncertainty in infrastructure investment related to the technology
readiness level

(112) WFootC Water foot impact by categories

Appendix B.4. Relationship Description among the Parameters, Main Functions (Metrics),
and Auxiliary Functions

Table A5. Relationship among the parameters, functions, and auxiliary functions (relationship

weight equal to 1.5 for relationships with parameters and a weight equal to 2 for relationships among

functions).
Source End
0 Acronym o Acronym Relationship Weight

ABLA (21) TDL 1.5
ACRMF (83) TCRMA 15

(24) ADT (105) ADTS 2

(104) ADTC (24) ADT 2

(105) ADTS (26) TCSat 2

97) ATL (111) Unln 2
CATP (23) TCSur 1.5
CFEI (12) TEmCost 15
CFEP (12) TEmCost 1.5
CFERM (12) TEmCost 15
CFET (12) TEmCost 1.5
CFEW (70) TCEWW 15
CFF (91) TCFCP 1.5
CFF (7) TTC 15
CFWM (11) TWC 1.5
CO2EFII (58) TCO2EII 15
CO2EFP (80) TCO2EP 1.5
CO2EFT (81) TCO2ET 15
CO2EFW (64) TCO2EW 1.5
CO2ERM (53) TCO2ERM 15
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Source End
o Acronym o Acronym Relationship Weight

(75) EngBal (43) TEIC 2
FCFP (76) TFCP 1.5
FCFTFP (73) TFCFP 1.5
FCFTRM (74) TFCRM 1.5
FPrb (28) TRI 1.5
FSF (51) TIFS 1.5
FtoEF (32) TEngCons 1.5

(108) MCC (26) TCSat 2
MCI ) T™C 1.5
MLF 97) ATL 1.5

(16-47) NPV (27) TSW 2
OEngConsF (75) EngBal 1.5

(72) OEngConsP (75) EngBal 2
OLC (8) TLC 1.5

(85) OPC (10) TPC 2
OPCF (85) OPC 1.5
PAF (20) TPLA 1.5

(77) CO2Foot (61) TEI 2
CSIFC (99) TSICC 1.5
CSIFP (98) TSICI 1.5
CSIFS (100) TSICS 1.5
DFP (106) PCDS 1.5
DPC (108) MCC 1.5
DPC (81) TCO2ET 1.5
DPC 6) D 1.5
DPC (73) TFCFP 1.5
DPC (79) TGHGET 1.5
DPC (42) TTETransp 1.5
DS (16-47) NPV 1.5
DSP (81) TCO2ET 1.5
DSP 6) D 1.5
DSP (74) TFCRM 1.5
DSP (79) TGHGET 1.5
DSsp (42) TTETransp 1.5
DTE (105) ADTS 1.5
ECFRM (90) TECRM 1.5
EESF (61) TEI 1.5
EFII (59) TTEI 1.5
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Source End
- Acronym o Acronym Relationship Weight

EFP (89) TTEP 1.5
EFRM (107) TTERM 1.5
EFT (42) TTETransp 1.5
EFW (63) TTEW 15
EFWW (67) TTEWW 1.5
EIF (61) TEI 1.5
EIFI (60) TEIL 1.5
EIFP (82) TEIP 1.5
EIFRM (56) TEIRM 1.5
EIFW (65) TEIW 1.5
EIFWW (69) TEIWW 1.5
EIT (88) TEIT 1.5

(102) FW (18) TJC 2
GHGEFII (57) TGHGEII 1.5
GHGEFP (78) TGHGEP 1.5
GHGEFRM (54) TGHGERM 1.5
GHGEFT (79) TGHGET 1.5
GHGEFW (62) TGHGEW 1.5
GHGEFWW (66) TGHGEWW 1.5
HIF (71) THI 1.5
HRMF (38) THM 1.5
ICF (109) TIC 1.5
ICFT (45) TITI 1.5
IIF (95) TIILC 1.5
ITF (46) TPIT 1.5
IULF (94) TIU 1.5
LIF (19) TJI 1.5
LP (16-47) NPV 1.5

17) ROI (27) TSW 2
RTQP (50) TQP 1.5
SFII (93) TPS 1.5
SIW (22) TSI 1.5
SRMF (33) TSRW 1.5
SSF (36) TRMSS 1.5
SWW (27) TSW 1.5

(106) PCDS (25) TCSL 2
PP (23) TCSur 1.5
PP 4) TRev 1.5
PtoEF (75) EngBal 1.5
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Source End
Acronym o Acronym Relationship Weight

(39) TARW (34) TAWC 2
(37) TAW (64) TCO2EW 2
(37) TAW (62) TGHGEW 2
(37) TAW (63) TTEW 2
(37) TAW (11) TWC 2
(34) TAWC (87) TBWE 2
(34) TAWC (86) TCWC 2
(34) TAWC (43) TEIC 2
(35) TAWW (70) TCEWW 2
(35) TAWW (68) TCO2EWW 2
(35) TAWW (43) TEIC 2
(35) TAWW (66) TGHGEWW 2
(35) TAWW (84) TGWF 2
(35) TAWW (67) TTEWW 2
(48) TaxC (49) TGE 2
5) TaxP (48) TaxC 2
5) TaxP (15) TBEB 2

TB (92) TF 1.5
(15) TBEB (16-47) NPV 2
(15) TBEB 17) ROI 2
(87) TBWEF (112) WFootC 2
(14) TC 5) TaxP 2
(14) TC (15) TBEB 2
(70) TCEWW (13) TEnvCost 2
91) TCFCP (10) TPC 2

TCO2EFWW (68) TCO2EWW 1.5
(58) TCO2EII (29) TCO2ESC 2
(58) TCO2EII (57) TGHGEII 2
(80) TCO2EP (29) TCO2ESC 2
(80) TCO2EP (78) TGHGEP 2
(53) TCO2ERM (29) TCO2ESC 2
(53) TCO2ERM (54) TGHGERM 2
(29) TCO2ESC (30) TGHGESC 2
(81) TCO2ET (29) TCO2ESC 2
(81) TCO2ET (79) TGHGET 2
(64) TCO2EW (29) TCO2ESC 2
(64) TCO2EW (62) TGHGEW 2
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Source End
- Acronym - Acronym Relationship Weight
(68) TCO2EWW (29) TCO2ESC 2
(68) TCO2EWW (66) TGHGEWW 2
(83) TCRMA (10) TPC 2
(26) TCSat (27) TSW 2
(25) TCSL (26) TCSat 2
(23) TCSur (27) TSW 2
(86) TCWC (10) TPC 2
(21) TDL (22) TSI 2
(90) TECRM (32) TEngCons 2
(61) TEI (27) TSW 2
(110) TEIAvoidWRec (43) TEIC 2
(43) TEIC (61) TEI 2
(43) TEIC (71) THI 2
(60) TEIL (43) TEIC 2
(82) TEIP (43) TEIC 2
(56) TEIRM (43) TEIC 2
(88) TEIT (43) TEIC 2
(65) TEIW (43) TEIC 2
(69) TEIWW (43) TEIC 2
(12) TEmCost (13) TEnvCost 2
(32) TEngCons (75) EngBal 2
(13) TEnvCost (14) TC 2
92) TF 5) TaxP 2
(73) TFCFP (31) TFCons 2
(73) TFCFP 7) TTC 2
(31) TFCons (32) TEngCons 2
(76) TFCP 91) TCFCP 2
(76) TFCP (31) TFCons 2
(74) TFCRM (31) TFCons 2
(74) TFCRM ?) TTC 2
(@8] TFI 97) ATL 2
@ TFI (102) FW 2
(@8] TFI (58) TCO2EII 2
@ TFI (57) TGHGEII 2
(€8] TFI (109) TIC 2
@ TFI (93) TPS 2
(€8] TFI (28) TRI 2
@ TFI (98) TSICI 2
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Source End
- Acronym o Acronym Relationship Weight
(e8] TFI (44) TTechl 2
@ TFI (59) TTEI 2
(57) TGHGEIL (30) TGHGESC 2
(57) TGHGEIL (59) TTEI 2
(78) TGHGEP (30) TGHGESC 2
(78) TGHGEP (89) TTEP 2
(54) TGHGERM (30) TGHGESC 2
(54) TGHGERM (107) TTERM 2
(30) TGHGESC (77) CO2Foot 2
(79) TGHGET (30) TGHGESC 2
(79) TGHGET (42) TTETransp 2
(62) TGHGEW (30) TGHGESC 2
(62) TGHGEW (63) TTEW 2
(66) TGHGEWW (30) TGHGESC 2
(66) TGHGEWW (67) TTEWW 2
(84) TGWEF (112) WFootC 2
(71) THI (27) TSW 2
(38) THM (22) TSI 2
(109) TIC 3) TICU 2
3) TICU (27) TSW 2
(51) TIFS (22) TSI 2
(96) TII (16-47) NPV 2
(96) TII 17) ROI 2
(95) TIILC (96) TIL 2
(45) TITI (96) TII 2
(94) TIU (45) TITI 2
(18) TJC (19) TJI 2
(19) TJ1 (22) TSI 2
8) TLC (14) TC 2
) TMC (14) TC 2
2) TP 3) TICU 2
2) TP (46) TPIT 2
(55) TPbyT (75) EngBal 2
(55) TPbyT (106) PCDS 2
(55) TPbyT 2) TP 2
(55) TPbyT (50) TQP 2
(55) TPbyT 4) TRev 2
(10) TPC (14) TC 2
(20) TPLA (21) TDL 2
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Source End
- Acronym - Acronym Relationship Weight

(93) TPS (49) TGE 2
(93) TPS (96) TIL 2
(50) TQP (26) TCSat 2

TR (55) TPbyT 15
(4) TRev (5) TaxP 2
4) TRev (15) TBEB 2
(28) TRI (22) TSI 2
(52) TRW (53) TCO2ERM 2
(52) TRW (83) TCRMA 2
(52) TRW (90) TECRM 2
(52) TRW (54) TGHGERM 2
(52) TRW (51) TIFS 2
(52) TRW (55) TPbyT 2
(52) TRW (36) TRMSS 2
(52) TRW (33) TSRW 2
(52) TRW (107) TTERM 2
(52) TRW (103) VWI 2

TS (104) ADTC 1.5
(22) TSI (27) TSW 2
(101) TSIC (22) TSI 2
(99) TSICC (101) TSIC 2
(98) TSICI (101) TSIC 2
(100) TSICS (101) TSIC 2
@) TTC 8) TLC 2
(44) TTechl (96) TII 2
59) TTEII (60) TEIL 2
(59) TTEI (12) TEmCost 2
(59) TTEI (41) TTESC 2
(89) TTEP (82) TEIP 2
(89) TTEP (12) TEmCost 2
(89) TTEP (41) TTESC 2
(107) TTERM (56) TEIRM 2
(107) TTERM (12) TEmCost 2
(107) TTERM (41) TTESC 2
(42) TTETransp (88) TEIT 2
(42) TTETransp (12) TEmCost 2
(42) TTETransp (41) TTESC 2
(63) TTEW (65) TEIW 2
(63) TTEW (41) TTESC 2
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Table A5. Cont.
Source End
- Acronym o Acronym Relationship Weight
(67) TTEWW (69) TEIWW 2
(67) TTEWW (41) TTESC 2
TV (92) TF 1.5
(11) TWC (13) TEnvCost 2
(40) TWRec (110) TEIAvoidWRec 2
(111) UnIn (96) TIL 2
UnTLF (111) Unln 1.5
(103) VWI (18) TJC 2
WConsF (34) TAWC 1.5
WCostF (86) TCWC 1.5
WCTF (102) FW 1.5
(112) WFootC (61) TEI 2
WrfootF (112) WFootC 1.5
WPF (37) TAW 1.5
WRecEIF (110) TEIAvoidWRec 1.5
WRF (39) TARW 1.5
WRMCTF (103) VWI 1.5
WRRMF (40) TWRec 1.5
WWPF (35) TAWW 1.5
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