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Abstract: Exploring the spatiotemporal distribution and interrelationships among water-related
ecosystem services (WESs) and conducting ecological management zoning are crucial for regional
sustainable development. Taking the Xiangjiang River Basin (XJRB) as an example, this study first
quantified three primary WESs, including water conservation, soil retention, and water purification,
from 2000 to 2020. Second, the spatiotemporal variation in the interrelationships among WESs were
analyzed using global and local bivariate spatial autocorrelation. Third, a water ecological zoning
rule was constructed to divide the watershed into three primary and eight secondary water ecological
management zones. The results indicate a strong consistency in the changes in the three WESs
throughout the period from 2000 to 2020 in the XJRB. Precipitation patterns and urban expansion
were the primary factors affecting alterations in the WESs. Spatial heterogeneity and dependence were
evident across these ecosystem services. Both trade-offs and synergies were observed among WESs,
with synergies playing a dominant role. Positive synergies occurred primarily in woodlands and
grasslands, while negative synergies were observed in cultivated land, water areas, and construction
land. Three water ecological management zones, including core water ecological management zones,
general management zones, and restoration management zones, were delineated at the grid and
country scales according to the aggregation properties of the WESs. Ecological management strategies
were proposed for different zones. These findings can offer valuable insights for policy makers in
land use planning and water ecological management within the XJRB, and can facilitate similar
management endeavors in other regions.

Keywords: water-related ecosystem services; InVEST model; ecological management zoning;
trade-off and synergy; Xiangjiang River Basin

1. Introduction
1.1. Importance of Ecosystem Services Related to Water

Water-related ecosystem services (WESs) are the water-related goods and services
provided by natural ecosystems via the hydrological cycle, which constitute the ecological
environment and foundational resources for human welfare [1–3]. They refer not only to
water from river channels, but also to the activities of water in the terrestrial landscape [4].
Increasing amounts of WESs are needed given the continual growth of the population
and the development of society [5,6]. However, water’s ecological functions have been
deteriorating due to land use changes. This exacerbates conflicts between the ecologi-
cal environment and socioeconomic growth, and threatens the ecosystem’s stability and
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sustainable development [7–9]. Therefore, exploring the spatiotemporal changes and rela-
tionships among WESs and implementing appropriate land use governance plays a pivotal
role in harmonizing the natural ecosystem and socioeconomic development [10].

Four types of services are provided by the natural ecosystem according to the Millennium
Ecosystem Assessment (MA), and these have been further expanded into twenty-four sub-
types [11]. Among these services, water conservation (WC), soil retention (SR), and water
purification (WP) are the most important WESs, and these can effectively reflect the water
service capacity of the ecosystem [12–14]. WC reflects the ability of ecosystems to restore
and regulate water [15,16], which is critical for maintaining a stable regional water supply.
However, current research often focuses on water yield while neglecting water conserva-
tion. Limited research has been conducted on the relationships between water conservation
and other ecosystem services. SR primarily indicates the ecosystem’s capacity to retain
soil and accumulate sediment [17,18], while WP represents the ability of ecosystems in
the watershed to intercept, filter, and absorb nutrients such as nitrogen and phosphorus
from surface runoff [19]. In particular, land use change is recognized as the primary means
by which human activities directly affect natural ecosystems. Different land use practices
lead to changes in ecological processes, such as soil moisture, nutrient content, surface
runoff, and water conservation, and subsequently result in alterations to the whole region’s
hydrological cycle. Studies have shown that the transformation of woodland into cultivated
and construction areas can increase water yield and soil retention, but diminish the capacity
for water conservation and purification. A substantial quantity of unabsorbed nitrogen and
phosphorus from agricultural practices enters water bodies through surface runoff [20].
Conversely, afforestation can enhance water conservation, carbon sequestration, and soil
retention while also reducing natural runoff, which may lead to or exacerbate water scarcity
in arid areas [21–25].

Studies have quantified the typical ecosystem services and analyzed the spatiotempo-
ral distribution and evolutionary patterns in combination with the locations of hot and cold
spots [26–28]. On this basis, the interrelationships among different services are examined
using the Spearman coefficient [29], Pearson coefficient [22,26], Moran’s index [30,31], etc.
Further analyses are conducted on alterations in the supply and demand of ecosystem
services and the factors influencing them [32–34]. Ecosystem services do not exist indepen-
dently and exhibit either positive or negative effects on each other [35,36]. Synergy implies
that one service changes together with another in the same direction, while trade-off indi-
cates that the enhancement of one service is mirrored by a reduction in another. Trade-offs
and synergies among ecosystem services exhibit considerable spatial heterogeneity and
dependence in different ecological environments [37,38]. Understanding these mechanisms
and influencing factors among ecosystem services, as well as utilizing the relationships for
regional ecological management, remains a crucial focus in current research.

Ecological management zoning is a fundamental and important step for decision mak-
ers seeking to implement effective land use management. To date, scholars have explored
various methods by which to divide management zones at different scales [39–41]. Service
bundles have been proposed based on statistical clustering methods [42], and the K-Means
method has been utilized for regional divisions [43,44]. Additionally, some studies have
performed zoning using Maximum Entropy Model (MaxEnt 3.4.1) [45–47], which was
combined with economic and environmental values to identify priority areas. The method
is reliable and comprehensive, and can effectively identify the priority areas. However,
there are still some shortcomings. The existing methods take into account the aggrega-
tion characteristics among ecological services, but cannot flexibly reflect the priorities of
ecosystem services. Meanwhile, priority protection mainly focuses on areas with good
ecological services [48], while other regions with moderate and poor ecological services are
overlooked. Protecting priority areas alone cannot achieve harmonized development in
the entire region [20,32]. Therefore, it is imperative to optimize management strategies to
ensure the consistent enhancement of services across the entire region.
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Research on WESs in China mainly concentrates on arid and semi-arid areas in the
north [49–51]. Conversely, there are relatively few studies examining the interrelationships
among WESs in the humid southern regions. The Xiangjiang River Basin (XJRB) constitutes
a significant component of the Yangtze River Basin in South China (Figure 1) [52]. The
basin is characterized by good hydrothermal conditions and a widespread distribution
of cultivated land in central and downstream areas, with relatively flat terrain. It is a
typical agricultural region in southern China, and an important rice-producing region of
Hunan Province. Despite the abundant rainfall in the basin, irrigation water consumption
makes up 70% of the overall water usage [53], leading to significant water pollution [54].
Moreover, the area displays uneven spatial and temporal rainfall patterns, as well as distinct
seasonal variations, which contribute to persistent issues in the water environment and
water ecology. Scholars have conducted research on WESs in the XJRB [12,53], but there are
still gaps in terms of the methods and strategies for watershed ecological management.
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Figure 1. Location map of the XJRB. (a) Hunan province in China. (b) XJRB in Hunan. (c) Topography
and river system of the XJRB. The provincial boundary shows other provinces adjacent to the XJRB.

1.2. Aim of the Article

This study explores the spatiotemporal distribution and interconnections among
WESs and constructs a zoning rule for water ecological management based on aggregation
characteristics. The goals of this study include the following: (1) quantifying and mapping
the WESs and their spatiotemporal distribution; (2) examining the trade-offs and synergies
between WESs and their evolution in response to land use changes; and (3) constructing a
water ecological management zoning rule according to the relationships between the WESs
and proposing corresponding strategies for different zones. This study offers a scientific
basis for land use management, and thus plays a critical role in safeguarding the well-being
and sustainable advancement of the watershed ecosystem.
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2. Materials and Methods
2.1. Study Area

The XJRB is situated within the subtropical monsoon region of China (24◦31′–29◦52′ N,
110◦30′–114◦15′ E). It is an important economic zone and a densely populated region within
the Yangtze River Basin. The study area covers only the basin in Hunan province, encom-
passing 9 cities and 67 counties, including Yongzhou, Chenzhou, Hengyang, Shaoyang,
Loudi, Zhuzhou, Xiangtan, Changsha, and Yueyang City. The basic unit is the country’s
administrative region. The yearly average temperature is 17.4 ◦C, with the annual total pre-
cipitation ranging from 1200 to 1700 mm. Precipitation primarily occurs during the spring
and summer seasons [55]. The terrain is complex and diverse, and is mainly covered by
mountains and hilly forests in the southern, eastern, and western areas, whereas the central
and northern areas exhibit relatively flatter topography. Due to rapid economic growth and
accelerated urbanization, especially regarding the rapid expansion of the Chang-Zhu-Tan
urban agglomeration in the downstream area, the demand for WESs in the watershed
continues to increase [56]. The growing demand for these services and the deteriorating
ecological environment have put great pressure on the watershed ecosystem. Accordingly,
effective ecological management measures are of great importance in advancing watershed
ecosystem services.

2.2. Data Sources

The basic data include the land use data, meteorological observation data, digital
elevation model (DEM) data, soil data, and administrative boundaries (Table 1). The land
use data have been categorized into woodland, cultivated land, grassland, construction
land, water, and bare land, with a resolution of 1 km, from 2000 to 2020. The data were
generated from Landsat TM, ETM+, and OLI images by manual visual interpretation. The
comprehensive accuracies of the classification reached 94.3% [57,58]. Meteorological data
were derived from 53 stations with daily precipitation, temperature, relative humidity, and
pressure in the basin. After removing null and outliers, the data were interpolated via
the ANUSPLIN method for yearly precipitation. Soil data include the type and texture of
the soil, organic carbon content, particle size ratio, and other attributes. DEM data were
downloaded from the geospatial data cloud website, and the resolution was 90 m. The
boundaries include rivers and roads of the countries and districts in relevant sections of the
XJRB. All of the data were transformed into the CGCS2000_GK_CM_111E and resampled
to 1 km × 1 km using ArcGIS 10.8. Figure 2 shows the framework of the study.

Table 1. The specific data sources utilized in this study.

Data Type Resolution Data Source

Land Use Data [59] Raster 1 km × 1 km
Resources and Environmental Science and Data Center, Chinese

Academy of Sciences, http://www.resdc.cn
(accessed on 8 May 2022)

Meteorological Data [60] point Daily China Meteorological Data Network, http://data.cma.cn
(accessed on 10 May 2022)

Soil Data [61,62] Raster 1 km × 1 km
Chinese Soil Data Set (v1.1) of the Harmonized World Soil Database

(HWSD), http://westdc.westgis.ac.cn
(accessed on 9 May 2022)

Digital Elevation Model [63] Raster 90 m × 90 m Geospatial Data Cloud, https://www.gscloud.cn
(accessed on 8 May 2022)

Boundaries [19] Vector -
National Earth System Science Data Center,

http://www.geodata.cn
(accessed on 8 May 2022)

http://www.resdc.cn
http://data.cma.cn
http://westdc.westgis.ac.cn
https://www.gscloud.cn
http://www.geodata.cn
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Figure 2. The framework for water ecological management zoning in this study. WC = water
conservation; SR = soil retention; WP = water purification.

2.3. Ecosystem Services Quantification
2.3.1. Water Conservation

Under the InVEST model, water conservation is employed to numerically assess the
water-holding capabilities of various ecosystems, considering factors such as evapotranspi-
ration and runoff from distinct land cover types [64,65]. Built upon the Budyko curve, this
approach calculates water yield as the difference between annual precipitation and actual
evapotranspiration. By considering diverse surface runoff characteristics, it derives the
water conservation capacity via the subtraction of surface runoff from the calculated water
yield. The equation is outlined below [66,67]:

Y(x) =
{

1− AET(x)
P(x)

}
× P(x) (1)

where Y(x) is the yearly water yield, AET (x) is the yearly actual evapotranspiration, and
P (x) is the yearly precipitation of pixel x.
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In this formula, the evapotranspiration of vegetation AET(x)
P(x) is determined by the

hypothesis formula introduced by Fu [68] and Zhang [69].

AET(x)
P(x)

= 1 +
PET(x)

P(x)
−

[
1 +

PET(x)
P(x)

ω] 1
ω

(2)

where PET(x) denotes the potential evapotranspiration of pixel x, and ω is a non-physical
parameter that represents inherent climate and soil attributes.

PET(x) = Kc(lx)× ET0(x) (3)

where Kc(lx) is the coefficient for vegetation evapotranspiration. ET0(x) indicates the refer-
ence evapotranspiration, which was calculated using the Pennman–Montieth formula [70].

ET0 =
0.408∆(Rn − G) + 900

T+237 U2(es − ea)

∆ + (1 + 0.34U2)
(4)

where Rn represents net radiation, T represents the daily average temperature, es is the
saturated water vapor pressure, ea is the actual water vapor pressure, ∆ is the slope of the
saturated water vapor pressure curve, G stands for the soil heat flux, and U2 represents the
wind speed at a height of 2 m.

WC(x) = Y(x)− Runo f f (x) (5)

Runo f f (x) = P(x)× Cj (6)

WC(x) is the yearly water conservation, Runoff (x) stands for the surface runoff, P(x) repre-
sents the yearly precipitation of pixel x, and Cj represents the surface runoff coefficient for
various land use categories [71]. The runoff coefficient was obtained with reference to the
guidelines for red line delineation in relation to ecological protection in China and other
literature [67,72,73].

2.3.2. Soil Retention

Soil retention was assessed through the Sediment Delivery Ratio (SDR) module. The
model is based on the universal soil loss equation and takes the sediment interception
of different land types into consideration [74]. The vegetation cover factor C and soil
conservation practice factor P were determined with reference to relevant studies, along
with the specific local conditions of XJRB [12]. The formula [75] is outlined as:

RKLSx = Rx × Kx × LSx (7)

USLEx = Rx × Kx × LSx × Cx × Px (8)

SRx = RKLSx −USLEx (9)

where SRx indicates the soil conservation capacity, and RKLSx and USLEx are the quantities
of potential and actual soil erosion, respectively; R, K, and LS are the factors of rainfall
erosion, soil erosion, and the slope length gradient, respectively [76]; and C and P are the
factors of vegetation cover and soil retention practice, respectively [77].

2.3.3. Water Purification

The Nutrient Delivery Ratio module was employed to quantify the water purification
capacity, which signifies the capability of the watershed to intercept and remove water
pollutants. It can illustrate the source and transport process of nutrients in the basin by
calculating the nutrient export in each grid cell and summarizing the nutrient output and
retention in each basin. The output of the module is the quantity of exported nitrogen (N)
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and phosphorus (P), which is inversely proportional to the water purification effect. A
larger output implies a weaker water purification capacity. The main algorithm is outlined
below [64,78]:

Xexpi = loadsur f ,i × NDRsur f ,i + loadsub,i × NDRsub,i (10)

Xexptot = ∑ Xexpi (11)

where Xexptot represents the cumulative export of nutrients from the watershed; Xexpi
signifies the nutrient outflow from grid i; loadsurf and loadsub are the nutrient load on the
surface and underground; and NDRsurf and NDRsub are the nutrient transfer rates on the
surface and underground, respectively.

2.3.4. Bivariate Spatial Autocorrelation

Bivariate spatial autocorrelation extends the concept of univariate spatial autocor-
relation under spatial statistical methods [79]. It includes both global and local bivari-
ate spatial autocorrelation. The former assesses the correlation coefficients between ser-
vices, and the results can be divided into positive values (I > 0, synergy), negative values
(I < 0, tradeoff), and non-correlation (I = 0). The latter reveals the spatial agglomeration
characteristics between adjacent elements, and the results can be categorized into five types:
high–high type (HH), high–low type (HL), low–high type (LH), low–low type (LL), and
non–correlation (NN).

In order to measure the relationships between the WESs in the XJRB, we transformed
the calculation data of each service into 1 km × 1 km vector data using ArcGIS10.8, and
then calculated the global and local spatial autocorrelation using GeoDa (Version 1.14.0).
Synergies were identified in the HH and LL cluster areas, and trade-offs were found in the
HL and LH cluster areas. The computation of the Moran’s I is outlined below [34,80]:

IG =
n∑n

i=1 ∑n
j 6=1 wij zl

i zm
j

(n− 1)∑n
i=1 ∑n

j 6=1 wi,j
(12)

IL = zl
i ·∑

n
j=1 wij·zm

j (13)

zl
i =

Xi
l − Xl

σl
zm

j =
X j

m − Xm

σm
(14)

where IG and IL represent the global and local bivariate Moran’s I, respectively. The range
of Moran’s I is [−1, 1]. n signifies the total number of geographic elements, and wij is the
spatial weight between neighboring elements. Xl , Xm, σl , and σm are the average value
and standard deviation of ecosystem services l and m, respectively. Xi

l and X j
m are the

computation results of ecosystem services l and m in spatial units i and j, respectively.

3. Results
3.1. Alterations in Land Use and Land Cover

The XJRB is situated in the mountainous area of southern China, where woodland
and cultivated land predominate as the primary land use categories (Figure 3). By 2020,
woodland covered 61.67%, cultivated land accounted for 29.97%, and other land accounted
for 8.36%. Notably, the land utilization types within the watershed underwent noticeable
transformations between 2000 and 2020, particularly in the middle and lower reaches. The
extent of construction land showed the most remarkable increase, from 1597 km2 in 2000 to
3709 km2 in 2020, with an average annual increase of 105.6 km2. Conversely, cultivated
land exhibited a consistently declining pattern, amounting to a cumulative reduction of
1132 km2 over the past two decades. Woodland and grassland gradually decreased, with
particularly significant changes between 2015 and 2020, and with most regions converted
into cultivated land, grassland, and construction land. In contrast, the extents of water and
bare land changed only slightly over the same period.
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Figure 3. The spatiotemporal distribution of land use from 2000 to 2020 in the XJRB.

The Sankey diagram above illustrates the transitions in land use between two time
periods (Figure 4). The left side of the diagram depicts land use types in the initial year,
while the right side represents land use types in the final year. It is evident here that the
land use alterations primarily involved cultivated land, woodland, and construction land.
The main changes over the entire period concerned the mutual transformations between
cultivated land and woodland. Moreover, the primary sources of increased construction
land were cultivated land and woodland, with cultivated land contributing to a larger
portion of this transformation. Between 2000 and 2005, urban development proceeded at a
steady pace. However, starting from 2005, there was a quick spread of construction land,
with a particularly notable increase in 2015–2020.
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3.2. Spatiotemporal Changes of WESs

Alterations in land use practices will inevitably influence the provision of ecological
services. Figure 5 shows the spatiotemporal patterns and changing trends of ecosystem
services. The WC services exhibited obvious spatiotemporal variation characteristics in
2000–2020. Here, we can see a fluctuating trend, initially decreasing, then increasing, and
then decreasing again, with the lowest value of 707.25 mm in 2005 and the highest value
of 990.42 mm in 2015. The WC gradually increased in terms of spatial distribution from
the central to the southern and northern areas of the watershed. Regions with high values
were primarily identified as woodland and grassland in the southern and eastern areas,
which was consistent with the regions of high precipitation and steep terrain. In contrast,
regions with low values were situated in the central area of the watershed, characterized
by a relatively flat terrain.

Soil retention services showed consistent fluctuation with water conservation from
2000 to 2020. In 2015, soil retention services were significantly increased under the influence
of heavy rainfall, and the total amount of soil retention reached 34 × 108 t/y. However,
from 2015 to 2020, a sharp decline of 37.0% in SR occurred due to the decrease in woodland
and precipitation. The services exhibited distinct spatial differentiation, ranging from 0 to
3.85 × 105 t/km2 over the entire period. There was a gradual decrease in SR from the
southeast to the northwest. Regions with steep terrain, such as woodland and mountains
in the upper streams, were associated with high values. In these areas, the topography
was undulating, with abundant precipitation resulting in high levels of potential erosion.
Nevertheless, the dense vegetation coverage on the slopes of the valley enhanced the soil
retention capacity, ultimately leading to remarkably high soil retention services. Low values
were found in relatively flat cultivated land and construction areas because of the extensive
management there.
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Water purification services remained relatively stable from 2000 to 2020. The change in
N export was less than 2%, while P export showed an increase of 5.29%. The quantities of
N and P export were between 0 and 850 kg/km2 and 0 and 150 kg/km2, respectively. The
high-export regions for N were situated in the central and northern areas, primarily covered
by cultivated land. Conversely, regions of lower value were positioned in the eastern and
southern regions, predominantly covered by woodland. Notably, urban construction land
and cultivated land were high-value areas for P export, whereas woodlands in the upstream
area demonstrated the effective interception of both N and P nutrients.

3.3. Trades-Offs and Synergies of WESs

Under the dual influence of external environment factors and internal processes,
ecosystem services often exhibit trade-offs or synergistic relationships with one another.
Based on the calculation of WESs in the XJRB, we constructed a 1 km × 1 km fishing net
using ArcGIS, and then linked the WESs’ results. Given that greater amounts of N and
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P export correspond to a decrease in water purification capacity, the reverse value of N
and P export was employed to represent the water purification service. Subsequently,
we conducted global and local bivariate spatial autocorrelation analyses to examine the
interrelationships between WESs and to identify spatial clustering characteristics.

3.3.1. Temporal Variations of Trades-Offs and Synergies

Table 2 shows the bivariate spatial autocorrelation coefficients of WESs in the XJRB.
The results indicate that, from 2000 to 2020, WESs in the XJRB showed a synergistic rela-
tionship throughout the watershed (Moran’s I > 0, and p < 0.01), with an index of less than
0.35, which is consistent with previous findings [12,52]. Specifically, the synergies between
WC and SR gradually increased from 2000 to 2015, reaching the highest value in 2015
(Moran’s I = 0.3237). However, this synergy between the two services was significantly
weakened from 2015 to 2020. The synergy between WC and WP (N, P) exhibited a fluc-
tuating pattern—initially declining, followed by an increase, and finally another decline.
The lowest degree of synergy was observed in 2010, followed by the strongest synergistic
relationship in 2015, and a weaker synergy in 2020. Notably, the SR and the capacity for N
and P purification demonstrated a high degree of consistency. The synergistic relationship
between SR and WP also showed a fluctuating trend, but it contrasted with the synergy
between WC and SR. This trend initially exhibited an increase, followed by a decrease,
and then a subsequent increase, with the highest level of synergistic intensity being seen
in 2020. The growth of urbanization and the intensive management of cultivated land
have contributed to the improvement of regional soil erosion and nutrient discharge, thus
strengthening the positive synergy between SR and WP.

Table 2. Bivariate spatial autocorrelation coefficients of WESs in the XJRB.

Year WC–SR WC–WP (N) WC–WP (P) SR–WP (N) SR–WP (P)

2000 0.0655 0.0904 0.12 0.1679 0.1437
2005 0.1046 0.0817 0.115 0.1748 0.1498
2010 0.1799 0.0621 0.1094 0.1693 0.1485
2015 0.3237 0.1303 0.1687 0.1593 0.1426
2020 0.072 0.0141 0.0835 0.1805 0.1574

Note: Moran’s I > 0, and p < 0.01.

There were both trade-off and synergistic relationships over the years in the XJRB, with
synergies accounting for the largest proportion (Figure 6). The synergies between WC and
SR gradually increased from 2000 to 2015, and the proportion of synergies reached 55.74%
in 2015, while trade-offs represented only 22.27%. However, in 2020, synergies decreased
by 45.37%, and trade-offs increased to 30.73%. The non-significant areas in relation to WC
and WP (N) accounted for about 42% of the basin from 2000 to 2020, while their synergies
rose from 34.01% in 2000 to 40.54% in 2015 and then declined to 32.36% in 2020, which
is consistent with the trends observed in Moran’s index. Similarly, the non-significant
areas regarding WC and WP (P) were slightly larger than those for N, averaging about
48%. The areas of non-significance between WP (N, P) and SR were consistent with those
between WC and WP (N, P), but the ratios between trade-offs and synergies exhibited
notable variations. The synergies between SR and WP (N) in 2000, 2005, 2010, 2015, and
2020 were 39.87%, 41.29%, 40.58%, 39.13%, and 41.50%, respectively. On the other hand,
the trade-offs remained consistently lower in the same years. The proportion of synergy
between SR and WP (P) was relatively low compared to the proportion between SR and
WP (N), and slightly changed over the two decades studied.
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3.3.2. Spatial Distribution of Trades-Offs and Synergies

Figure 7 illustrates the spatial allocations of interrelationships among the WESs during
2000–2020. Synergies among the WESs were found mostly in the southern and southeastern
regions of the XJRB, which were characterized by extensive woodland distribution, as well
as in the central and downstream areas, which were covered with cultivated land. Positive
synergies among the WESs manifested in the upper reaches, where extensive grassland
and woodland thrived due to the abundant vegetation cover and sufficient precipitation.
Negative synergies were mainly located in relatively flat areas, construction land, water
areas, and cultivated land due to the extensive use of fertilizers and poor management.
Trade-offs were primarily located in regions with more pronounced land use changes,
including the cultivated land and woodland in low hilly areas.

In 2020, the synergy/trade-off ratio between SR and WP (N) in the cultivated land
reached 10.32. The services related to construction land were dominated by LL clustering be-
cause of the large degree of surface runoff and high nutrient export. The synergistic/trade-
off ratios between SR and WP (N) and SR and WP (P) in 2020 were 9.05 and 19.45, respec-
tively. Bare land predominantly occupied the northern region of the watershed, and the
WC and SR services here were low due to the sparse vegetation coverage. The export of
nutrients was also low because this area was less affected by human activities. Therefore,
WC and SR showed significant synergies in terms of LL aggregation, while WC and WP,
as well as SR and WP, showed pronounced trade-offs. Consistent stability was observed
in the synergistic/trade-off ratios between WP, WC, and SR in bare land in 2015, ranging
from 0.21 to 0.25. Additionally, the ratio between WC and SR was found to be 18.8.
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3.4. Ecological Management Zoning Based on the Clustering Characteristics

In the XJRB, the WESs have primarily been characterized by synergistic relationships
throughout the last two decades, and the spatial clustering features have not changed
significantly (I < 0.35). Considering the high Pearson coefficient between N and P export
(R2 > 0.9), we have selected the spatial aggregation characteristics between water conserva-
tion, soil retention, and water purification (N) in 2020 to construct zoning rules at the grid
and country scales. Considering the importance of the WESs, the priorities of ecosystem
services were ordered as follows: water conservation was ranked first, with soil retention
coming next, and water purification third. The region was divided into three primary zones
(core water management zones, general water management zones, and restoration water
management zones) and eight secondary zones.
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3.4.1. Constructing Zoning Rules

According to the characteristics of spatial clustering, each element can be divided into
the HH, HL, LH, LL, or NN type. The core water management zones mainly consisted of
HH clusters and were supplemented by insignificant distribution regions, which we then
divided into core, key, and sub-key management units. The core management units were
all characterized by HH clusters, indicating that the natural ecosystems of the elements
and their surroundings were excellent. The key management units and sub-key manage-
ment units were worse than the core management units, and were mainly characterized
by HH clusters and non-significant correlation areas. General management zones were
aggregated by HL or LH supplemented with NN clusters; this means that the high-value
area of one service may be surrounded by a low-value area of another service. These were
further divided into two sub-management units: priority management units and general
management units. Priority management units were next to the sub-key management
units and better than general units, while other areas with less significant aggregation
characteristics and sporadic distributions were classified into general management areas.
The LL or LH clusters were divided into restoration water management zones, which were
then divided into three types of sub-restoration management unit. The natural ecosystems
in these units were poor and fragile. Finally, we merged neighboring regions according to
the combination rules (Table 3).

Table 3. Zoning rules based on bivariate local spatial autocorrelation types of WESs in 2020.

Zoning Types Management Units
(MU)

Bivariate Local Spatial Autocorrelation Types
WC–SR WC–WP SR–WP

Core water management zones
Core_MU HH HH HH/LH
Key_MU HH NN NN

Sub-key_MU NN HH HH/LH

General water management zones Priority_MU NN LH HH/LH
General_MU ELSE ELSE ELSE

Restoration water management zones
Sub-key restoration_MU LH LH HH

Key restoration_MU LL/LH LH LH
Core restoration_MU LL/HL LL/HL LL

3.4.2. Water Ecological Management Zones

Water ecological management zones were constructed based on the combination rules
(Figure 8). The core water ecological management zones had good natural environments
and excellent service functions, acting as natural barriers in water ecological protection.
The areas of the core management units were 11,865 km2, accounting for 56.8% of this zone
(Figure 9). They were mostly found in the southern and southeastern areas of the XJRB,
encompassing the central and southern regions of Yongzhou, Zhuzhou, and Chenzhou
City. The primary land use categories within this unit were woodland and grassland. Key
management units and sub-key management units accounted for 43.2% of this zone. Their
spatial pattern closely resembled that of the core units. The area of the general management
zones was 48,986 km2, accounting for 48.49% of the total watershed. Among these, the
priority management units only accounted for 10.38%. These were located in the transitional
zones of woodland and cultivated land, and were mostly concentrated around the core
management zones, including the low mountains and hilly areas of Hengyang, Yangzhou,
and Chenzhou. The general management units were widely distributed, accounting
for 89.62% of this zone. They were generally located in low, hilly areas and cultivated
land, with no obvious spatial clustering characteristics. The restoration water ecological
zone encompassed 31,155 km2, accounting for 30.8% of the basin. It exhibited extensive
distribution across cultivated land, water, and construction land in the western, central, and
northern regions of the watershed. The areas of core restoration management units, key
restoration units, and sub-key units were 23,047 km2, 4236 km2, and 3872 km2, respectively.
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The zoning results at the country scale exhibited contiguous characteristics and main-
tained good consistency with the findings at the grid level (Table 4). The core water
management zones covered nine counties. Among these, five counties (i.e., Chaling, Yan-
ling, Rucheng, Guidong, and Zixing) were divided into core management units, and four
(i.e., Jiangyong, Jianghua, Dao, and You) were divided into sub-key management units. No
counties were divided into key management units. These counties were all situated in the
southwestern and eastern regions of the watershed, and were characterized by excellent
ecological conditions and minimal human disturbance. Greater emphasis should be placed
on ecological preservation to ensure the sustainable delivery of ecosystem services in this
area. There were 40 counties divided into general water management zones, accounting for
57.14% of the total. The priority management units covered 13 counties, mainly located
in Yongzhou and Chenzhou (e.g., Lanshan, Xintian, Shuangpai, Qiyang, Jiahe, Guiyang,
etc.). The ecological conditions in these areas were less favorable than those in the core
management zones, but superior to those in other regions. The general management units
were represented by 27 counties, the largest number of any of the partition units. They
were widely dispersed throughout the central part of the basin, including most counties
within Hengyang, Shaoyang, and Xiangtan Cities (e.g., Shaoyang, Shaodong, Xinshao,
Hengyang, Hengnan, Hengshan, Qidong, Xiangtan, Liling, etc.). These are important
grain-producing areas within the watershed. The focus in these counties was on attaining
a harmonious equilibrium between ecological preservation and economic advancement.
The restoration management zones covered 21 counties, among which 17 were divided
into core restoration units, 3 (Suxian, Yizhang, Anren country) were divided into sub-key
restoration units, and only 1 (Yongxing) in Chenzhou was divided into key restoration
units. All of the core restoration units were distributed in the downstream area of the
watershed, and were greatly influenced by human behaviors. The primary reason for the
limited provision of WESs in this unit is the substantial conversion of ecological land into
construction land, resulting in decreased water conservation, increased soil erosion, and
heightened nutrient discharge.

Table 4. Water ecological management zoning at the county scale.

Zoning Types Management Units
(MU) County

Core water
management zones

Core_MU Chaling, Yanling, Rucheng, Guidong, and Zixing
Key_MU

Sub-key_MU You, Dao, Jiangyong, and Jianghua Yao autonomous county

General water
management zones

Priority_MU Beihu and Lengshuitan districts; Leiyang, Changning, Guiyang, Jiahe,
Linwu, Lingling, Qiyang, Shuangpai, Ningyuan, Lanshan, and Xintian

General_MU

Liuyang, Liling, Xiangtan, Hengyang, Hengnan, Hengshan, Hengdong,
Qidong, Xinshao, Shaoyang, Xinning, Shaodong, Lengshuijiang and

Dongan country; Hetang, Lusong, Tianyuan, Lukou, Zhuhui, Zhengxiang,
Nanyue, Shuangqing, Daxiang, Beita, and Louxing Districts.

Restoration water
management zones

Sub-key restoration_MU Suxian, Yizhang, and Anren
Key restoration_MU Yongxing

Core restoration_MU
Changsha, Ningxiang, Xiangxiang, Shaoshan, Xiangyin, Miluo, Lianyuan

and Shuangfeng; Tianxin, Furong, Yuelu, Kaifu, Yuhua, Wangcheng,
Shifeng, Yuhu, and Yuetang Districts.

4. Discussion
4.1. Assessment of WESs and Variation in Trade-Off and Synergy

Three water-related ecosystem services were assessed from 2000 to 2020 in our study.
Existing studies have often focused on the WESs of water yield, water purification, soil
retention, and food production [81–83]. There are few studies focusing on the relationships
between WC and other WESs. In our study, we considered water conservation as a crucial
indicator when assessing regional hydrological regulation. It serves as a valuable metric for
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illustrating the natural ecosystem’s ability to store and regulate water, and is significantly
influenced by precipitation patterns and underlying surface conditions [15,84]. For instance,
construction land exhibits a higher water yield compared to woodland due to the increased
evapotranspiration from vegetation. Nonetheless, the degree of water conservation is
relatively low under the same conditions due to the high surface runoff observed in
construction land [85]. Therefore, WC, SR, and WP were selected as indicators of the water
ecosystem services for our study.

The WESs in the XJRB could be divided into three stages during the study period.
In the first, from 2000 to 2005, they decreased. At this stage, the rapid development of
China’s social economy placed significant pressure on the ecological environment, and
the reduction in rainfall further contributed to a declining pattern regarding WESs. Then,
the WESs gradually increased during 2005–2015, as is consistent with the findings of
existing research [12,53]. The increased precipitation, the execution of the Grain for Green
program, and the development of high-quality farmland were the main driving forces in this
period [86,87]. However, from 2015 to 2020, the accelerated urbanization in China triggered
the transformation of woodland and cultivated land into construction areas, consequently
causing a swift decline in water ecosystem services [88]. Therefore, controlling the rapid
expansion of urbanization and reducing the occupation of ecological land by construction
land will improve the protection of the water ecological environment.

The trade-off and synergistic relationships were also investigated among the three
WESs using both global and local bivariate spatial autocorrelations. The findings reveal
that the interrelationships among WESs in the XJRB were all synergistic, as is consistent
with the findings of existing studies [3,20,30]. However, the degrees of synergy varied
during these years. The synergies between WC and SR and between WC and WP increased
quickly from 2000 to 2015 due to the rapid growth of the population and urbanization,
while the synergies between SR and WP were weakened during the same period. This is
because rapid urbanization increases the quantity of water-impermeable surface, which
enhances soil retention and water yield capacity [84,85]. However, it also contributes to
an increase in nutrient discharge, thus weakening water the purification capacity [13].
Additionally, climate change also plays an important role in this process, especially via
the direct effects of precipitation changes on the WESs [89,90]. From 2000 to 2015, there
was a gradual increase in precipitation, which led to a significant improvement in WC and
SR. Meanwhile, WP underwent a slight enhancement under the combined influences of
climate change and human activity. Between 2015 and 2020, with rising temperatures and
reduced precipitation [91], all three ecosystem services showed significant declining trends,
and the trade-offs and synergies among these services also underwent significant shifts.
As temperatures continue to rise and extreme weather events become more frequent in
the future [92], the interactions among water-related ecosystem services will endure even
greater impacts. For example, the rise in temperature may accelerate the evaporation of
water resources and negatively affect SR and WC. The increasing frequency of extreme
precipitation events may improve soil retention and water yield, but may also lead to
flooding and nutrient erosion, subsequently affecting the water purification process [93].
Therefore, we should more closely examine the impacts of human activities and climate
change on ecosystem services in order to better understand the dynamics and evolutions of
these relationships.

4.2. Implications of Zoning Management

Water-related ecosystem services have significant impacts on both the natural envi-
ronment and socioeconomic development. Core management zones represent the most
important areas for WESs in the watershed. In these zones, it is critical to consider the
protection of the environment as a primary goal. Specialized protection practices, such
as redlines for ecological conservation and Grain for Green programs, should be imple-
mented [94]. Social activities that damage the landscape, vegetation, topography, and
landform should be strictly prohibited. On the other hand, development restrictions may
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affect the living standards and environments of native residents. Therefore, ecological
compensation measures and tourism development activities can be pursued to improve
the livelihood of local people [19,95]. Local governments need to increase financial support
in order to achieve ecological civilization construction.

General water ecological management zones are predominantly located in the center
of the watershed, and serve as the main areas for agricultural production. Emphasis should
be placed on integrated agricultural production development and environmental protection
in the administration of these areas. In general management zones, some regions with
high service functions have been found to be surrounded by low-value services (e.g., HL
clusters). In addition to maintaining the stability of high service functions, it is important
to prevent assimilation by the surrounding areas, as this may lead to the deterioration
of their original water ecological functions [96]. In transition regions between woodland
and farmland, avoiding the conversion of woodland to cultivated land and promoting the
growth of sparse woodland can benefit regional water ecological functions. In addition,
establishing buffer zones along rivers can reduce soil erosion and nutrient emissions from
agricultural activities.

Restoration water management zones were mostly found in the downstream regions,
encompassing agricultural and construction areas, which were heavily affected by human
activities [97]. The extensive management of cultivated land, along with the disposal of
domestic and industrial wastewater, has exacerbated the difficulty of water environment
protection in these areas [98]. Therefore, it is imperative for decision-makers to develop
effective water ecological restoration polices that will enhance the provision of WESs. For
agricultural areas, the consumption of fertilizers and pesticides can be reduced to limit the
export of N and P. Optimizing agricultural planting structure and implementing intensive
management practices are essential ways to harmonize food production and the agricul-
tural ecological surroundings. Given its effects in terms of enhancing water conservation
and soil retention, it is essential to consider converting steeply sloping cultivated land
into woodland and grassland ecosystems. In the case of construction land, controlling
rapid population growth and improving the treatment efficiency of industrial and domestic
wastewater can effectively improve water ecological services. Additionally, reducing the
agglomeration of construction land, improving the urban greening rate, and establishing ur-
ban ecological corridors are also important in mitigating the negative effects of urbanization
on the environment.

4.3. Limitations and Prospects

Although the results of water ecological management zoning may offer beneficial
information for water ecological governance in the XJRB, several drawbacks remain in
the present research. Firstly, only three WESs and their relationships were quantified
in this study. In future research, it will be important to incorporate other water-related
services, such as food production and flood regulation, in order to comprehensively assess
water ecosystem dynamics. Moreover, the accuracy of the results may be impacted by the
constraints of the InVEST model. More accurate parameters and biophysical coefficients
are needed in future studies. Secondly, this study did not consider the factors influencing
WESs and their relationships, which limits our ability to fully understand the mechanisms
behind WES changes. Therefore, it is imperative to explore the interplay between climate
and human activities with regard to their effects on trade-offs in future research. Thirdly,
ecological management zoning was based solely on the aggregation characteristics of WES
supply, without considering the demand for these services. Integrating ecological service
demand into management zoning is essential to achieve a more holistic and effective water
ecosystem management strategy.
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5. Conclusions

This study assessed three critical WESs in the XJRB during the period of 2000–2020
using the InVEST model. We examined the spatiotemporal variations and trade-offs among
these WESs, and subsequently divided the watershed into three management zones and
eight secondary zones by constructing a zoning rule. The conclusions are as follows:

(1) The three WESs showed fluctuating patterns throughout the study’s duration, as
they first decreased (from 2000 to 2005), then increased (from 2005 to 2015), and subse-
quently rapidly declined (after 2015). Among these WESs, WC and SR showed significant
changes, with the most significant changes reaching 40.0% and 44.1% in 2015, respectively.
WP services exhibited minor fluctuations throughout this period.

(2) The WESs exhibited significant spatial heterogeneity and dependence. The interre-
lationships of the WESs in the XJRB indicated both trade-offs and synergies, but synergistic
relationships were the most prevalent. The woodland and grassland mainly presented
positive synergy, while the cultivated land, water areas, and construction land mainly
displayed negative synergy.

(3) In addition, the watershed was divided into core water ecological management
zones, general water ecological management zones, and restoration water ecological man-
agement zones, with reference to the clustering attributes of the WESs. The core water
ecological management zones were predominantly distributed in the southern and eastern
parts of the watershed. The restoration of water ecological management zones was primar-
ily clustered in the middle and lower reaches. General water ecological protection areas
were mostly clustered in the transitional areas between cultivated land and woodland.

(4) Different management policies have been proposed for the three management
zones. The protection of the natural ecosystem should be given top priority in the core
management zones. Local governments should increase their financial support to negate
the contradiction between environment protection and the improvement of residents’ liv-
ing standards. General management zones need to achieve a balance in the relationships
between agricultural production and environmental protection, and to reduce soil erosion
and nutrient output related to agricultural activities. More attention needs to be paid
to the restoration management zones. Controlling the rapid growth of the population,
improving the efficiency of industrial and domestic sewage treatment, and encouraging eco-
logical construction are effective means by which to alleviate the pressure on the ecological
environment in the region.
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Abbreviations
List of abbreviations used in the article (in alphabetical order).

CGCS2000 China Geodetic Coordinate System 2000
DEM Digital Elevation Model
HH High–High
HL High–Low
InVEST Integrated Valuation of Ecosystem Services and Trade-offs
LH Low–High
LL Low–Low
MA Millennium Ecosystem Assessment
MU Management Units
NN Non-correlation
SR Soil Retention
WC Water Conservation
WESs Water-related Ecosystem Services
WP Water Purification
XJRB Xiangjiang River Basin
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