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Abstract: Photocatalysis with TiO2 semiconductors is one of several potential methods for removing
Methylene Blue (MB) that is environmentally friendly, relatively cheap, and effective. The capability
of TiO2 photocatalysts for degrading MB can be improved by modifying the morphology of TiO2

into nanotubes and adding anthocyanin sensitizers. The objective of this study was to investigate the
effect of anthocyanin sensitizer addition for TiO2 nanotubes on MB removal using a combined process
of electrocoagulation and photocatalysis. TiO2 nanotubes were prepared through an anodization
method with a glycerol electrolyte containing NH4F of 0.5% w/v and water of 25% v/v. The cathode
and anode used in the electrocoagulation process were 316 stainless steel and aluminum, respectively.
The characteristics of the resulting TiO2 nanotubes were analyzed using SEM-EDX, UV–Vis DRS, and
XRD analyses. The results showed that the electrocoagulation at a pH of 10 and a voltage of 50 volts
resulted in an MB removal efficiency of 57.88%. In the photocatalysis process, sensitizer addition
can increase the MB removal efficiency from 19.71% to 29.06%. Furthermore, a combined process of
electrocoagulation and photocatalysis without and with sensitizer addition resulted in MB removal
efficiencies of 59.66% and 64.30%, respectively.

Keywords: anthocyanin; electrocoagulation; methylene blue; nanotubes; photocatalysis; TiO2

1. Introduction

Waste resulting from textile industries contains dyes with concentrations of 20–30 mg/L,
which are hazardous and carcinogenic [1,2]. One of the dyes that are often used in industry
is Methylene Blue (MB) (C16H18N3SCl), which is a heterocyclic aromatic molecule [2,3].
The structure formula of MB can be seen in Figure 1. The MB has harmful effects such as
vomiting, increased heart rate, cyanosis, digestive system irritation if inhaled, and skin
irritation [3,4]. Because of the presence of aromatic amines in the MB structure, the MB is
difficult to decompose [3,5].
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Commonly, MB can be treated through physical and/or chemical treatments, including
filtration [6,7], coagulation and precipitation [8,9], adsorption [3,10], ozonation [11], reverse
osmosis [12], ion exchange [13], and advanced oxidation [14,15]. However, these treatments
need a high operating cost and result in a low pollutant removal efficiency, a high selectivity
just for a certain dye group, and harmful intermediate compounds [16].

Photocatalysis is one of the promising methods for removing MB organic dyes in
liquid waste because it can degrade MB to CO2 and H2O [17–21]. Titanium dioxide
(TiO2) is one of the semiconductors used in photocatalysis. TiO2 has some advantages,
including being stable, non-toxic, corrosion-resistant, abundant in nature, and relatively
affordable [18,22,23]. On the other hand, TiO2 photocatalysts have some disadvantages,
including a low specific surface area, a high recombination rate, and a high band gap
energy value [24]. The surface of TiO2 can be improved by modifying its morphology into
the shape of nanorods [24,25], nanowires [26,27], and nanotubes [23,26,28,29]. Nanotube
morphology is often used because it has a larger surface area and is more effective in
photocatalysis than other morphologies [26]. In water treatment, TiO2 nanotubes can
be used in particle or film form (titanium nanotubes arrays (TNTAs)), but the film form
(TNTAs) is more attractive because it does not require costly solid–liquid separation [30].

In addition, the effectiveness of TiO2 photocatalysts can also be improved by the
addition of dye-sensitizers. The dye-sensitizer materials function to absorb visible light
so electrons can be excited. With the addition of dye-sensitizers, TiO2 becomes more
responsive to visible light. Furthermore, dyes can easily adhere to the catalyst surface;
thus, the electrons readily achieve an excited state by photon absorption in the visible light
spectrum range [31–33]. Synthetic metal-based dyes can be used as sensitizers, but they can
decompose quickly in the working solution [28,29]. Therefore, natural dyes are interesting
alternative sensitizers in the photodegradation of aqueous organic contaminants. The natu-
ral dyes are harmless, abundant, and inexpensive and contain a hydroxyl carbonyl group
to attach to the surface of TiO2 [34,35]. Anthocyanin, carotenoid, chlorophyll, curcumin,
and flavonoid are natural dyes that can be used as sensitizers [31,36–39]. Anthocyanin is a
stable sensitizer that can absorb visible light with a high absorption coefficient. Moreover,
it can be easily obtained because it is derived from plant sources, such as fruits, blossoms,
and vegetables [32,40,41]. Figure 2 shows the structure formula of an anthocyanin molecule
attached to TiO2.
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Anthocyanin and other natural dyes have been widely used in solar cell applications
but are less used in water purification [40,42]. Some studies employed anthocyanins and
other natural dyes as sensitizers for TiO2 nanoparticles; however, there are still very few
applications of these sensitizers for TiO2 nanotubes [32,38,43–46].

To increase pollutant removal efficiency, photocatalysis can be combined with other
methods, such as ozone [11,17,47], zeolite [48–50], and electrocoagulation [51–54]. The
combination of photocatalysis and electrocoagulation treatments is often conducted in
separated reactors [9,55,56], and a small number of researchers employ a single reactor
for this purpose. In our previous studies, a combined process of electrocoagulation and
photocatalysis in a single reactor for waste treatment was developed [51–53]. However, the
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modification of the TiO2 nanotube arrays (TNTAs) through the sensitizer addition has not
been conducted yet.

Based on the information above, the main question addressed by this study is how
anthocyanins (as sensitizers) affect the characteristics of the resulting sensitized TNTAs and
the performance of the sensitized TNTAs for removing MB through a combined process of
electrocoagulation and photocatalysis using a single reactor. Therefore, the goal of this study
was to investigate the effect of the addition of anthocyanin sensitizers for TNTAs applied
in a combined process of electrocoagulation and photocatalysis, which was operated in a
single reactor, for degrading MB. In addition, electrocoagulation alone and photocatalysis
alone for degrading MB were also carried out under various operating conditions in this
study. The authors hypothesized that the combined process of electrocoagulation and
photocatalysis using sensitized TNTAs could result in a higher MB removal efficiency
than the electrocoagulation alone, photocatalysis alone, and the combined process using
unsensitized TNTAs. This study is original and has not been conducted by other authors
yet. The novelty of this study is the utilization of anthocyanins as sensitizers for TNTAs
used in a combined process of electrocoagulation and photocatalysis using a single reactor
for removing the MB.

2. Materials and Methods
2.1. Material

This study used pro-analytic chemicals, such as ethanol, glycerol, HF, HNO3, MB,
and NH4F obtained from Sigma-Aldrich (St. Louis, MO, USA). Meanwhile, pure water,
aluminum as an anode, and 316 stainless steel as a cathode were collected from local stores.

2.2. Synthesis of TiO2 Nanotubes (TNTAs)

Titanium plates with dimensions of length, width, and thickness of 8 cm, 4 cm, and
0.5 mm are cleaned using cloth to eliminate adherent dirt. Then, chemical polishing was
performed using a mixture of HF (6 mL), HNO3 (18 mL), and H2O (36 mL). After that,
the plates were cleaned using distilled water, dried at room temperature, and kept in a
desiccator. The anodization process was carried out using a two-electrode configuration,
in which titanium (Ti) and platinum (Pt) plates were anode and cathode, respectively,
with an electrode distance of 1 cm. A DC power supply was utilized as a voltage source.
The glycerol electrolyte solution contained NH4F of 0.5% w/v and water of 25% v/v.
Anodization was conducted at a voltage of 50 V for 2 h without heating. After anodizing,
the plates were cleaned using distilled water and then dried at room temperature. The
calcination process was carried out at 500 ◦C for 3 h. The scheme of synthesis of TNTAs is
shown in Figure 3.
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2.3. Preparation of Sensitized TNTAs

Anthocyanin sensitizer was prepared by dissolving synthetic anthocyanin powder in
ethanol to generate an anthocyanin solution with concentrations of 40, 80, and 160 ppm.
Then, TiO2 nanotube photocatalysts were immersed in an anthocyanin solution while
ultrasonicated for 30 min (see Figure 3). Then, they were dried at room temperature.

2.4. Characterization of Catalyst

Characterization of catalyst was conducted to determine the physical and chemical
properties of the resulting photocatalysts. In this study, the catalyst characterization
methods included UV–Vis DRS, XRD, SEM-EDX, and FTIR.

2.5. Degradation of Methylene Blue by Electrocoagulation Process

The reactor was filled with 1000 mL of MB solution with a concentration of 10 ppm.
A 316 stainless steel plat (length, width, and thickness of 10 cm, 2.5 cm, and 2 mm) as
a cathode and two aluminum plates (length, width, and thickness of 10 cm, 2.5 cm, and
2 mm) as anodes were immersed to the solution with an electrode distance of 1 cm. The
operating conditions were varied, including voltages (30 V, 40 V, and 50 V) and initial pHs
(5, 7, and 10). A DC power supply was used as an electrical current. The electrocoagulation
process was carried out for 120 min at room temperature. The liquid samples were taken
at minutes 15, 30, 45, 60, 90, and 120. The MB concentrations in the liquid samples were
analyzed using UV–Vis spectrophotometry at 663 nm [57].

2.6. Degradation of Methylene Blue by a Combined Process of Photocatalysis and Electrocoagulation

As much as 1000 mL of MB solution with a concentration of 10 ppm was placed in
a reactor that was previously filled with sensitized TiO2 nanotubes. A 316 stainless steel
plate (length, width, and thickness of 10 cm, 2.5 cm, and 2 mm) as a cathode and two
aluminum plates (length, width, and thickness of 10 cm, 2.5 cm, and 2 mm) as anodes
were immersed to the solution with an electrode distance of 1 cm. Afterward, a 120 min
irradiation with a 250-watt mercury lamp was conducted. The combined process was
carried out for 120 min at room temperature. The liquid samples were taken at minutes 15,
30, 45, 60, 90, and 120. The MB concentrations in the liquid samples were analyzed using
UV–Vis spectrophotometry at 663 nm.

2.7. Removal Efficiency of Methylene Blue

The removal efficiency of MB was calculated using Equation (1), where CMBi is the
initial MB concentration (ppm), and CMB f is the final MB concentration (ppm).

MB removal e f f iciency =
CMBi − CMB f

CMBi

× 100% (1)

3. Results and Discussion
3.1. Effect of Water Content in Glycerol Electrolyte on the Morphology of TiO2 Nanotube
Arrays (TNTAs)

The mechanism of TiO2 nanotube formation can be explained by Equation (2). Equation (2)
describes the anodic oxidation of Ti to generate TiO2 [58].

Ti + 2H2O→ TiO2 + 4H+ + 4e− (2)

The Ti surface is oxidized to generate a TiO2 layer, which is then dissolved (electric
field-assisted dissolution), producing a tube-like TiO2 layer. The formation of pores (small
pits) is due to dissolving TiO2 in a solution containing H+ and F− ions (resulting from
NH4F), following Equation (3).

TiO2 + 6F− + 4H+ → (TiF6)
2− + 2H2O (3)
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According to Equation (3), Ti and TiO2 are also chemically dissolved due to the
availability of fluoride and the acidic environment. This reaction occurs across the entire
porous surface.

Two tests were performed in this investigation, one with a water content of 2% v/v
in glycerol, indicating a viscous electrolyte, and one with a water content of 25% v/v in
glycerol, representing an aqueous electrolyte. Figure 4 shows the morphology of TNTAs
resulting from the anodization process using viscous and aqueous electrolytes. Based
on Figure 4, the difference in water content in the electrolyte solution had a significant
impact on the morphology of the TNTAs. A higher water content in the electrolyte solution
resulted in nanotubes with a larger diameter and a more regular shape. The electrolyte
solution with a low water content hindered the mobility of ions in the solution, reducing the
TNTA production reaction rate and then producing nanotubes with smaller diameters [58].
Table 1 shows the results of tube diameter measurement.
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(a) 2% v/v and (b) 25% v/v.

Table 1. Comparison of nanotube diameter size at a variation of water content in glycerol used in the
anodization process.

Water Content in Glycerol, v/v Diameter of Tube (nm)

2% 24–29

25% 130–168

The presence of F− ions can dissolve the resulting oxide layer, and F− ions were more
aggressive in aqueous conditions, resulting in shorter tubes with wider diameters [59].
TiO2 nanotubes with a mean diameter of 55 nm were produced by anodization at a voltage
of 50 volts using an electrolyte solution of ethylene glycol containing 0.5% w/v NH4F
and 2% v/v H2O [28]. It means that the average diameter of TNTAs generated in this
study using glycerol electrolyte solution with a water content of 2% v/v was less than
that in the previous study using ethylene glycol electrolyte solution with a water content
of 2% v/v [22]. The different values were because ethylene glycol had a lower viscosity
(1.612 × 10−2 Pa·s) than glycerol (1.412 Pa·s), so the mobility of ions in the ethylene glycol
solution was higher than that in the glycerol solution for the same water content.

3.2. Effect of Water Content in Glycerol Electrolyte on Crystallinity of TNTAs

The goal of calcination is to produce TiO2 in the anatase crystalline phase. XRD testing
was performed to determine the crystallinity of the photocatalysts. Figure 5 shows the XRD
test results. Following the XRD result data, anatase crystals were formed either at a water
content of 2% v/v or 25% v/v. Peaks of anatase appear at angles of 25.60◦, 38.70◦, 48.30◦,
53.30◦, 55.30◦, 63.20◦, 70.90◦, 76.50◦, and 82.50◦ at 2θ position. From Figure 5, it is clear that
more frequent and higher peaks are anatase peaks. The peak altitude in the XRD results
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reflects the crystallinity level. It means that the higher the anatase peak, the higher the
anatase crystal content. The appearance of the anatase peak in Figure 5 indicates that the
main component of the catalyst was the anatase crystal. The anatase content in catalysts
at a water content of 25% v/v was higher than that at a water content of 2% v/v. Table 2
displays the size of anatase crystals at water contents of 2% v/v and 25% v/v.
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Table 2. Comparison of anatase crystal size at a variation of water content in glycerol used in the
anodization process.

Water Content in Glycerol, v/v Anatase Crystal Size (nm)

2% 26.6

25% 23.6

The anodization process using glycerol electrolytes with a water content of 2% v/v
resulted in anatase crystals with greater crystal sizes than those with a water content of
25% v/v. The resulting anatase crystal size tends to be set at tiny diameters between 10 and
30 nm, and anatase crystals are stabilized in larger-diameter nanotubes [2]. According to
the results of catalyst characterization, the water content in the electrolyte solution affected
the tube diameter size and the film layer thickness.

Based on the explanation above, the TNTAs resulting from the anodization process
using electrolytes with a water content of 25% v/v were better than those with a water
content of 2% v/v. Therefore, the electrolyte solution with a water content of 25% v/v was
used in the investigation of the effect of sensitizer addition.

3.3. The Effect of Anthocyanin Sensitizer Addition on TNTA Morphology

Ti and O were the primary components of TNTAs, as seen in Figure 6. Other elements,
including C, N, and F, were also identified because these elements were absorbed during
the anodizing process. After the addition of anthocyanin sensitizer, the C element in TNTAs
increased (Figure 6). Based on Figure 6b, TNTAs before sensitization contained Ti, C, and
O elements of 67.68, 2.22, and 27.79%wt or 40.55, 5.32, and 49.85% atoms. Then, based
on Figure 6d, TNTAs, after sensitization, contained Ti, C, and O elements of 67.96, 4.51,
and 25.37%wt or 40.63, 10.74, and 45.39% atoms. This demonstrated that the increase in C
element was caused by the diffusion of anthocyanins into TNTAs during the immersion-



Sustainability 2023, 15, 15384 7 of 23

ultrasonication process. Zyoud et al. also reported that the C element in the catalyst
increased after the addition of anthocyanin sensitizers [31].
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3.4. The Effect of Anthocyanin Sensitizer Addition on Crystallinity

The effect of adding anthocyanin sensitizers on the crystallinity of TNTAs was exam-
ined using XRD. The results of the XRD analysis are shown in Figure 7. For TNTAs without
sensitizers, peaks at 2 θ at angles of 35.40◦ and 40.50◦ indicate diffraction from titanium (Ti).
Meanwhile, peaks at 2 θ at angles of 25.60◦, 38.70◦, 48.30◦, 53.30◦, 55.30◦, 63.20◦, 70.90◦,
76.50◦, and 82.50◦ indicate diffraction from anatase. In detail, sensitized TNTAs had higher
anatase peaks than unsensitized TNTAs, especially at an angle of 38.70◦. This means that
the sensitizer addition successfully increased the anatase crystal content in TNTAs.

The anatase phase crystal sizes without and with sensitizer additions are shown in
Table 3. The addition of anthocyanin sensitizers caused the anatase phase crystal size to
expand because there was an increase in temperature throughout the process of sensitizing
TNTA catalysts with an anthocyanin sensitizer with ultrasound for 30 min. Following the
addition of the sensitizer, the calcination effect caused the anatase crystal size of the catalyst
to become larger.

3.5. The Effect of Anthocyanin Addition on the Band Gap Energy of TNTAs

The effect of anthocyanin addition on the band gap energy was examined using a
UV–Vis DRS. Figure 8a,b depict the results of UV–Vis DRS analysis. Figure 8 depicts the
results of UV–Vis DRS investigations to calculate the band gap energy using a Tauc plot, as
well as extrapolating Tauc graphics on the linear part of the graph and cutting the x-axis.
Figure 8 shows that unmodified TNTAs had a band gap energy of 3.25 eV, which was
consistent with reports in the literature and confirmed that TiO2 was only active when
exposed to UV light [31,60]. The band gap energy for TNTAs + anthocyanin was reduced
to 2.5 eV. When a photon is absorbed by the anthocyanin molecule, an electron is excited
from its highest occupied molecular orbital (HOMO) to its lowest unoccupied molecular
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orbital (LUMO). Subsequently, a state of relaxation is achieved as a result of the process of
electron loss to the conduction band (CB) of TNTAs [43,44,61].
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Table 3. Comparison of anatase crystal size as a result of the addition of anthocyanin sensitizer.

Catalyst Anatase Crystal Size (nm)

TNTAs 23.6

TNTAs + anthocyanin 160 ppm 28.7
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The UV–Vis DRS spectra in Figure 9 exhibited an increase in absorbance values in the
wavelength range of 380–800 nm due to the addition of 160 ppm anthocyanin sensitizer.
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This shows that catalysts with sensitizers can absorb photons more efficiently in the visible
light spectrum.
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Figure 9. UV–Vis DRS spectra of catalysts with and without anthocyanin addition. Electrolyte
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3.6. Photocatalytic Process for Methylene Blue (MB) Degradation
3.6.1. The Effect of Initial pH

Figure 10 demonstrates that the rate of MB photodegradation increases when the
initial pH increases from 5 to 10. After 120 min, initial pHs of 5, 7, and 10 resulted in MB
removal efficiencies of 15.38, 17.47, and 19.71%, respectively. Hence, MB degradation was
best achieved at an initial pH of 10, resulting in the highest MB removal efficiency. This was
because the initial pH of 10 changed the charge on the surface of the TNTA photocatalysts
to be negatively charged, so MB (which was a cationic dye) became more easily adsorbed,
thereby increasing the photodegradation rate of MB. The adsorption rate of MB on the
catalyst surface affected the variance in reaction rate.

Sustainability 2023, 15, 15384 10 of 24 
 

removal efficiencies of 15.38, 17.47, and 19.71%, respectively. Hence, MB degradation was 
best achieved at an initial pH of 10, resulting in the highest MB removal efficiency. This 
was because the initial pH of 10 changed the charge on the surface of the TNTA 
photocatalysts to be negatively charged, so MB (which was a cationic dye) became more 
easily adsorbed, thereby increasing the photodegradation rate of MB. The adsorption rate 
of MB on the catalyst surface affected the variance in reaction rate. 

 
Figure 10. Effect of initial pH variation on the performance of TNTA photocatalyst for degrading 
MB. Electrolyte solution with a water content of 25%v/v in the anodization process and anthocyanin 
sensitizer addition of 160 ppm. 

The findings of this study were consistent with the findings of a previous study by 
Dariani et al., who reported that an increase in initial pH from 3 to 11 can improve the MB 
removal efficiency through a photocatalysis process using 0.5 g of TiO2 with a particle size 
of 200 nm and a process time of 5 h [62]. At high pH levels, the catalyst surfaces were 
dominated by negative charges, and there was a significant interaction between the 
catalyst surfaces and the dye cations, resulting in strong adsorption. On the other hand, 
at low pH, the catalytic surfaces and coloring molecules were positively charged,]. The 
surface of TiO2 had a neutral charge at a pH of 6.8. In an acidic medium (pH < 6.8), the 
surface of TiO2 had a positive charge; in a base medium (pH > 6.8), it had a negative charge 
[62]. 

3.6.2. The Effect of Sensitizer Addition for TNTAs on Photocatalytic Performance 
The decrease in MB concentration during the photocatalysis process at various 

sensitizer additions is shown in Figure 11. An increase in sensitizer addition from 0 to 160 
ppm successfully increased the rate of MB degradation. After 120 min, MB removal 
efficiencies at sensitizer additions of 0 (without sensitizer addition), 40, 80, and 160 ppm 
were 19.71, 19.94, 24.65, and 29.06%, respectively. The presence of sensitizers reduced the 
band gap energy, making the catalyst more receptive to photons and increasing the 
number of excited electrons. The addition of anthocyanin sensitizers did not affect the 
shape of the catalyst’s nanotubes, so the area of the catalytic surface remained vast. The 
XRD data revealed that the addition of sensitizers increased the anatase crystal size. 
Anthocyanins had a hydroxyl (OH) group, so the anthocyanin-sensitized catalyst surface 
became hydrophilic. As a consequence, MB molecules were closer to the catalyst surface, 
and the tension between the catalyst surfaces and the MB solution became lower. 

5

6

7

8

9

10

0 15 30 45 60 75 90 105 120

M
B 

co
nc

en
tr

at
io

n 
(p

pm
)

Time (minutes)

pH 5
pH 7
pH 10

Figure 10. Effect of initial pH variation on the performance of TNTA photocatalyst for degrading
MB. Electrolyte solution with a water content of 25% v/v in the anodization process and anthocyanin
sensitizer addition of 160 ppm.

The findings of this study were consistent with the findings of a previous study by
Dariani et al., who reported that an increase in initial pH from 3 to 11 can improve the
MB removal efficiency through a photocatalysis process using 0.5 g of TiO2 with a particle
size of 200 nm and a process time of 5 h [62]. At high pH levels, the catalyst surfaces were
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dominated by negative charges, and there was a significant interaction between the catalyst
surfaces and the dye cations, resulting in strong adsorption. On the other hand, at low pH,
the catalytic surfaces and coloring molecules were positively charged. The surface of TiO2
had a neutral charge at a pH of 6.8. In an acidic medium (pH < 6.8), the surface of TiO2 had
a positive charge; in a base medium (pH > 6.8), it had a negative charge [62].

3.6.2. The Effect of Sensitizer Addition for TNTAs on Photocatalytic Performance

The decrease in MB concentration during the photocatalysis process at various sensi-
tizer additions is shown in Figure 11. An increase in sensitizer addition from 0 to 160 ppm
successfully increased the rate of MB degradation. After 120 min, MB removal efficiencies
at sensitizer additions of 0 (without sensitizer addition), 40, 80, and 160 ppm were 19.71,
19.94, 24.65, and 29.06%, respectively. The presence of sensitizers reduced the band gap
energy, making the catalyst more receptive to photons and increasing the number of excited
electrons. The addition of anthocyanin sensitizers did not affect the shape of the catalyst’s
nanotubes, so the area of the catalytic surface remained vast. The XRD data revealed that
the addition of sensitizers increased the anatase crystal size. Anthocyanins had a hydroxyl
(OH) group, so the anthocyanin-sensitized catalyst surface became hydrophilic. As a con-
sequence, MB molecules were closer to the catalyst surface, and the tension between the
catalyst surfaces and the MB solution became lower.
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Figure 11. Effect of addition of anthocyanin sensitizers on the performance of TNTA photocatalysts
for degrading MB. Electrolyte solution with a water content of 25% v/v in the anodization process
and initial pH of photocatalysis process of 10.

The MB removal efficiency in the case without sensitizer addition was 19.71%. Fur-
thermore, after the sensitizer addition of 40 ppm, the MB removal efficiency increased to
19.94%. It shows that the sensitizer addition of 40 ppm to TNTAs had no significant effect
on the MB removal efficiency. However, the sensitizer addition of 160 ppm significantly
increased the MB removal efficiency value, namely 29.06%.

According to Angulo et al., dye molecules can easily attach to the catalyst surface and
acquire an excited state via photon absorption in the visible light spectrum region [33].
The injection of electrons from anthocyanin dye molecules into the conduction bands
of TNTA photocatalysts increased the quantities of reactive oxygen species (ROS) and
accelerated the breakdown of MB. Anthocyanin sensitizers absorbed visible light and
allowed electrons to be activated. TNTA photocatalysts became more responsive to visible
light when anthocyanin sensitizers were added [31,33]. Figure 12 depicts a scheme of MB
photodegradation by TNTAs with anthocyanin sensitizers.
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Figure 12. The scheme of MB photodegradation by TNTAs with anthocyanin sensitizers.

3.7. Electrocoagulation Process for Methylene Blue (MB) Degradation
3.7.1. Effect of Voltage

The effect of voltage on the electrocoagulation process for degrading MB is shown
in Figure 13. Based on Figure 13, the higher the voltage was applied, the faster the MB
degradation rate would be. After 120 min, the electrocoagulation process at voltages of 30,
40, and 50 volts resulted in MB removal efficiencies of 29.91, 43.35, and 51.85%, respectively.
An increase in voltage was directly proportional to an increase in electrical current (I). The
larger the electrical current was applied, the more the ions were generated at the anode
and cathode, resulting in enhanced coagulant formation in the solution [63]. The more the
coagulants were generated in the solution, the more the MB molecules could be adsorbed,
enhancing the MB removal efficiency.
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Figure 13. The profiles of MB concentrations during the electrocoagulation process at various voltages.

The waste quality standard (MB of 5 ppm) was reached in around 120 min at a voltage
of 50 volts. The linear equations in Figure 14 can be used to approximate the reduction of the
MB compound as a function of time during the electrocoagulation process. Through these
linear equations, the waste quality standard for MB can be achieved after being processed
through an electrocoagulation process at voltages of 30, 40, and 50 volts for 215 min,
153 min, and 120 min, respectively. Furthermore, the relationship between voltage and time
needed to reach the waste quality standard can be predicted through the linear equations
shown in Figure 15. Through the equations in Figures 14 and 15, the electrocoagulation
process time required to reach the MB effluent quality standard at various voltages can be
estimated within a voltage range of 30–50 V.
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Figure 14. The relationship between MB concentration and electrocoagulation process time.
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The degradation of MB during electrocoagulation can be modeled through the first-
order kinetic model, following Equation (4).

−dC
dt

= kC (4)

The first-order kinetic model can be rearranged by integration to become Equations (5)
and (6) with the boundary conditions of C = C0 at t = 0 and C = Ct at t = t

In
(

Ct

C0

)
= −kt (5)

lnCt = −kt + lnC0 (6)
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Equation (5) can be arranged into Equation (6).

Ct = C0exp(−kt) (7)

where Ct is the concentration of MB at t time (ppm), C0 is the initial concentration of
MB (ppm), t is the electrocoagulation time (minutes), and k is the reaction rate constant
(min−1). The kinetic constants (k) can be obtained through optimization with the objective
function of the Sum of Squared Error (SSE) using Microsoft Excel. The formula of SSE is
shown in Equation (7).

SSE =
n

∑
i=1

(
Ctmodeli

− Ctexperimenti

)2
(8)

where Ctmodel is the concentration of MB at time t (ppm) obtained from modeling, and
Cexperiment is the concentration of MB at time t (ppm) obtained from the experiment. The
first-order kinetic model was successfully used to simulate the MB concentration profiles
during the electrocoagulation process with SSE values of 0.522–0.725. Plotting between
experimental data and modeled data is shown in Figure 16. Then, the reaction rate constants
at 30, 40, and 50 V were 0.0025, 0.0040, and 0.0053 min−1, respectively.

Sustainability 2023, 15, 15384 14 of 24 
 

 
Figure 16. Plotting between experimental data and modeled data obtained from the first-order 
kinetic model. 

3.7.2. The Effect of pH 

In this stage, the electrocoagulation process was carried out at a voltage of 50 volts 
with a variation of initial pH of 5, 7, and 10. Figure 17 shows the profiles of MB 
concentration during the electrocoagulation process at various initial pHs. The 
electrocoagulation at initial pHs of 5, 7, and 10 resulted in MB removal efficiencies of 39.49, 
51.85, and 57.88%, respectively. Hence, an increase in initial pH from 5 to 10 increased MB 
removal efficiency values. The highest MB removal efficiency of 57.88% was obtained at 
an initial pH of 10. According to Figure 17, after 2 h, the electrocoagulation process at 
initial pHs of 7 and 10 can decrease MB concentrations to meet the waste quality standard 
for MB. Meanwhile, the time to reach the waste quality standard at pH 5 can be predicted 
through linear regression of the relationship between MB concentration and time. As a 
result, for initial pHs of 5, 7, and 10, the time required to achieve the waste quality criteria 
was 147, 115, and 75 min, respectively. It can be concluded that an initial pH of 10 can 
lower the MB concentration to the quality standards in less time than initial pHs of 5 and 
7. During electrocoagulation, Al3+ ions are generated at the anode, and OH− ions are 
generated at the cathode. The Al3+ can react with OH− to form various Al species. At high 
pH, the dominant Al species is Al(OH)3, while at low pH, the dominant Al species is Al3+ 
ions. Hence, the Al(OH)3 coagulant amount is higher at an initial pH of 10 than at initial 
pHs of 5 and 7. The Al(OH)3 coagulants can adsorb MB. Thus, the MB was easier to remove 
at initial pH of 10 than at initial pHs of 5 and 7. As a consequence, the initial pH needed a 
shorter time to decrease the MB concentration from 10 ppm to 5 ppm (quality standard). 
In line with this study, Muttaqin et al. reported that an initial pH of 10 resulted in a higher 
Al(OH)3 amount than initial pHs of 5 and 7, so an initial pH of 10 resulted in a higher MB 
removal efficiency than initial pHs of 5 and 7 [64].  

0

2

4

6

8

10

12

0 15 30 45 60 75 90 105 120

M
B 

co
nc

en
tr

at
io

n 
(p

pm
)

Time (minutes)

50 volts (experiment)
40 volts (experiment)
30 volts (experiment)
50 volts (model)
40 volts (model)
30 volts (model)

Figure 16. Plotting between experimental data and modeled data obtained from the first-order
kinetic model.

3.7.2. The Effect of pH

In this stage, the electrocoagulation process was carried out at a voltage of 50 volts with
a variation of initial pH of 5, 7, and 10. Figure 17 shows the profiles of MB concentration
during the electrocoagulation process at various initial pHs. The electrocoagulation at
initial pHs of 5, 7, and 10 resulted in MB removal efficiencies of 39.49, 51.85, and 57.88%,
respectively. Hence, an increase in initial pH from 5 to 10 increased MB removal efficiency
values. The highest MB removal efficiency of 57.88% was obtained at an initial pH of 10.
According to Figure 17, after 2 h, the electrocoagulation process at initial pHs of 7 and 10
can decrease MB concentrations to meet the waste quality standard for MB. Meanwhile, the
time to reach the waste quality standard at pH 5 can be predicted through linear regression
of the relationship between MB concentration and time. As a result, for initial pHs of 5, 7,
and 10, the time required to achieve the waste quality criteria was 147, 115, and 75 min,
respectively. It can be concluded that an initial pH of 10 can lower the MB concentration to
the quality standards in less time than initial pHs of 5 and 7. During electrocoagulation,
Al3+ ions are generated at the anode, and OH− ions are generated at the cathode. The
Al3+ can react with OH− to form various Al species. At high pH, the dominant Al species
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is Al(OH)3, while at low pH, the dominant Al species is Al3+ ions. Hence, the Al(OH)3
coagulant amount is higher at an initial pH of 10 than at initial pHs of 5 and 7. The Al(OH)3
coagulants can adsorb MB. Thus, the MB was easier to remove at initial pH of 10 than at
initial pHs of 5 and 7. As a consequence, the initial pH needed a shorter time to decrease
the MB concentration from 10 ppm to 5 ppm (quality standard). In line with this study,
Muttaqin et al. reported that an initial pH of 10 resulted in a higher Al(OH)3 amount than
initial pHs of 5 and 7, so an initial pH of 10 resulted in a higher MB removal efficiency than
initial pHs of 5 and 7 [64].
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Figure 17. The profiles of MB concentrations during the electrocoagulation process at various initial
pHs. Voltage of 50 Volts.

The rate of MB decolorization and the amount of sludge were affected by the initial
pHs. As shown in Table 4, an increase in initial pH increased the sludge amount and the
decolorization rate. At higher pH levels, Al(OH)3 coagulations were generated in large
amounts. The more the amount of Al(OH)3 was generated in the solution, the higher the
dye decolorization efficiency was obtained [42]. The solution pH has a significant impact
on the electrocoagulation process performance [8].

Table 4. Sludge weights in the electrocoagulation process at various initial pHs.

Initial pH of Electrocoagulation Sludge Weight (g)

5 2.42
7 2.83
10 3.85

3.8. A Combined Process of Electrocoagulation and Photocatalysis for Methylene Blue (MB) Degradation

At this stage, a combined process of electrocoagulation–photocatalysis without and
with anthocyanin sensitizer addition for degrading MB compounds was performed. The
profiles of MB concentrations during photocatalysis (P), electrocoagulation (E), and the
combination process of E-P are shown in Figure 18. After 120 min, the electrocoagulation
process achieved an MB removal efficiency of 57.88%, while the combined process of
electrocoagulation and photocatalysis without sensitizer addition achieved a higher MB
reduction efficiency of 59.66%. The presence of anthocyanin sensitizers in the combined
process of electrocoagulation and photocatalysis can improve the MB removal efficiency
from 59.66% to 64.30%. In this condition, waste quality standards can be reached within
48 min, whereas combining electrocoagulation and photocatalysis without a sensitizer
takes 60 min (Figure 18). The presence of photocatalysis could assist in the degradation of
MB dyes into non-hazardous compounds for the environment.
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Figure 18. (a) Profiles of MB concentrations during the electrocoagulation, photocatalysis, and
combined process of electrocoagulation and photocatalysis; (b) the total MB removal efficiencies after
120 min. Electrolyte solution with a water content of 25% v/v in the anodization process, anthocyanin
sensitizer addition of 160 ppm, initial pH of 10, and voltage of 50 Volts. E = electrocoagulation,
P = photocatalysis, E−P = combined process of electrocoagulation and photocatalysis. Blue arrows in
(a) show the times that are needed by the processes to decrease the MB concentration from 10 ppm to
5 ppm (quality standard).

This was also reflected in the sludge’s color of the combined process without sensitizer
addition, which was more faded when compared to the sludge’s color of the combined
process without sensitizer addition. In other words, the presence of anthocyanin sensitizers
in the combined process can improve its ability to degrade MB. The addition of anthocyanin
sensitizers can improve photon absorption in the visible light spectrum, allowing TNTA
photocatalysts to degrade MB dyes more effectively. The addition of sensitizers reduced
the band gap energy, making the catalyst more receptive to photons and increasing the
number of excited electrons. The addition of anthocyanin sensitizers did not change the
morphology of the catalyst nanotubes, so the area of the catalytic surface remained vast.

The combined process of electrocoagulation and photocatalysis can decrease MB
concentrations to waste quality standards in less time than the electrocoagulation alone and
the photocatalysis alone. Figure 18 shows that the electrocoagulation alone needed around
75 min to reach waste quality criteria, while the combined process of electrocoagulation and
photocatalysis with sensitizer addition needed only 48 min to reach waste quality criteria.

Table 5 provides a comparison of the results of this study with those of other studies.
According to Table 5, the combined process in this study resulted in a higher MB removal
per catalyst than that in a previous study [51] because this study used anthocyanin sen-
sitizers, while a previous study did not use sensitizers [51]. However, another previous
study [61] resulted in a higher MB removal per catalyst than this study, where the previous
study [61] utilized the photocatalysis process with anthocyanin sensitizers, while this study
utilized the combined process anthocyanin sensitizers. It was due to the difference in
the ratio of MB/catalyst, namely 0.3125 mg/cm2 in this study and 0.125 mg/cm2 in the
previous study [61]. Furthermore, the other previous studies (see Table 5) reported different
pollutant removal efficiencies because of the differences in the types of methods, types and
forms of photocatalysts, types of sensitizers, and types of pollutants.
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Table 5. Comparison of the results of the current research with those from previous studies.

No Methods Photocatalyst Power/Film Sensitizer Pollutant Experiment Results References

1
E-P with
a single
reactor

TiO2
nanotubes

array
Film Anthocyanin Methylene

Blue (MB)

Volume of
1000 mL, MB

of 10 ppm,
ratio of

MB/catalyst of
0.3125 mg/cm2

The removal
efficiency of MB
was 64.5%. The
MB removal per

catalyst was
2.016%/cm2.

This study

2
E-P with
a single
reactor

Fe-TiO2
nanotubes

arrays
Film -

Methylene
Blue–

ciprofloxacin
(MB-CIP)

Volume of
1000 mL,

10 ppm MB-10
ppm CIP,

film surface of
64 cm2, ratio of
MB/catalyst of
0.1562 mg/cm2,

ratio of
CIP/catalyst of
0.1562 mg/cm2

The removal
efficiencies of
CIP and MB

were 90% and
100%,

respectively. The
CIP removal per

catalyst was
1.406%/cm2.

The MB removal
per catalyst was
1.5625%/cm2.

[51]

3
E-P with
separated
reactors

Ag-TiO2 P25 Powder - Tartrazine
(TTZ)

Volume of 3 L,
TTZ of

50 mg/L,
100 mg/L

Ag-TiO2 P25,
ratio of

TTZ/catalyst
of 0.5 mg/mg

The
mineralization of

TTZ was 74%.
The TTZ removal
per catalyst was

0.2467%/mg.

[56]

4
E-P with
separated

reactor

Immobilized
ZnO Film - Petroleum

Initial COD of
1000 mg/L,

ratio of
petroleum/catalyst

of
0.2711 mg/mg

The removal
efficiency of

COD was 94%
after 60 min.

The petroleum
removal per
catalyst was
0.0255%/mg

[9]

5
E-P with
separated
reactors

TiO2 and
ZnO Powder -

Olive
washing

wastewater

Initial pH of
6.9, voltage of

12.5 V,
ZnO of 1 g/L

The removal
efficiencies of

COD and color
were 88% and

100%,
respectively.

[55]

6
E-P with
a single
reactor

ZnO Powder - Malathion

Initial
malathion

concentration
of 45 mg/L,

ZNO of
1.6 mg/L,
volume

of 500 mL,
ratio of

malathion/catalyst
of

28.125 mg/mg

The removal
efficiency of

malathion was
68.33%. The
malathion

removal per
catalyst was
85.41%/mg.

[54]
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Table 5. Cont.

No Methods Photocatalyst Power/Film Sensitizer Pollutant Experiment Results References

7 P
TiO2

nanoparti-
cles

Powder Anthocyanin Methylene
Blue (MB)

Anthocyanin
from

blackberry,
hibiscus,
Urucum,
Curcuma

The
decolorization
efficiency was

51–73%.

[45]

8 P TiO2 P25 Thin Film Anthocyanin Methylene
Blue (MB)

Volume of
25 mL, MB of

10 ppm,
surface area of
2 cm2, ratio of
MB/catalyst of
0.125 mg/cm2

The
decolorization
efficiency was
25.6%. The MB

removal per
catalyst was
12.8%/cm2.

[61]

9 P
TiO2

nanoparti-
cles

Powder Chlorophyll Methylene
Blue (MB)

Volume of
100 mL, MB of

20 ppm,
catalyst of

1 g/L, ratio of
MB/catalyst of

20 mg/mg

The removal
efficiency of MB

was 85%. The
MB removal per

catalyst was
8.5%/mg.

[65]

10 P TiO2 aerogel Powder Anthocyanin Cr (VI)

Volume of
50 mL, Cr(VI)
concentration

of
15 ppm, ratio of
Cr(VI)/catalyst
of 0.75 mg/mg

The removal
efficiency of

Cr(VI) was 100%.
The Cr(VI)

removal per
catalyst was

2%/mg.

[46]

3.9. The Color and Weight of Sludges Resulting from the Electrocoagulation Process and the
Combined Process of Electrocoagulation and Photocatalysis

The sludges from the electrocoagulation process and the combined process were
analyzed. The sludge from the electrocoagulation process without MB was used as a
control. Then, the control sludge was compared to the sludges from the electrocoagulation
process, the combined process with and without sensitizer additions. Figure 19 shows the
sludges of the electrocoagulation process and the combined processes.
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Based on Figure 19, there was a difference in the color of sludges resulting from the
electrocoagulation process and the combined process. The electrocoagulation process has
three steps, namely electrolysis, coagulation, and flotation [42,66]. During this process,
Al is oxidized to Al3+ at the anode, while water is reduced to H+ and OH− ions at the
cathode. Then, Al3+ reacts with OH ions to form coagulants of Al(OH)3, which can adsorb
contaminants, while H2 is produced through water electrolysis. The H2 gas aids in the
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removal of contaminants through flotation [55,67,68]. Detailed reactions occurring during
the electrocoagulation process are as follows:

At Anode : Al(s) → Al3+(aq) + 3e− (9)

At Cathode : 2H2O(aq) + 2e− → 2OH−
(aq) + H2(g) (10)

Chemical Reaction : Al3+(aq) + 3OH−
(aq) → Al(OH)3(s) (11)

Total Reaction : 2Al(s) + 6H2O(aq) → 2Al(OH)3(s) + 3H2(g) (12)

Equation (11) is applicable for alkaline medium [64]. Then, Al(OH)3 can adsorb MB to
form sludge (MB-Al(OH)3), as shown in Equation (12).

Al(OH)3(s) + MB→ (MB−Al(OH) 3)(s) (13)

Light and catalysts are required for the photocatalysis process to accelerate chemical
reactions. When subjected to UV light with an energy larger than the band gap energy,
these semiconductor materials create electron pairs

(
e−cb

)
and holes, which can reduce

and oxidize compounds. The reactions that occur in the photocatalytic process for waste
degradation are as follows:

TiO2 + hv→ TiO2(h+ + e−cb) (14)

TiO2(h
+) + H2O→ OH•+ H+ (15)

TiO2
(
e−cb

)
+ O2 → O−2 • (16)

OH• or O−2 •+ MB→ CO2 + H2 (17)

Therefore, the electrocoagulation process involves the adsorption of MB dye, but the
combined process involves the degradation of MB dye by TNTA photocatalysts as well
as the adsorption process. The MB removal mechanisms during a combined process of
electrocoagulation and photocatalysis are shown in Figure 20 in detail.

The sludge formed from the electrocoagulation process was not blue compared to the
sludge formed from the combined process of electrocoagulation–photocatalysis. Methylene
Blue (MB) can turn into colorless leuco-Methylene Blue (LMB) due to a hydrogenation
reaction, while the LMB can turn into MB due to an oxidation reaction [68]. A hydrogenation
reaction is a reaction between hydrogen and another compound. During electrocoagulation,
hydrogen is generated at the cathode. The presence of hydrogen might cause MB to change
to LMB. Then, the coagulants might adsorb the LMB, thereby resulting in colorless sludge.

Meanwhile, during the combined process, the hydrogen resulted from the electro-
coagulation, while the oxygen resulted from the photocatalysis process. The presence of
hydrogen would change MB to LMB, and then the presence of oxygen would change LMB
to MB again. Furthermore, the coagulants adsorbed MB, thereby resulting in blue sludge.

The sludges resulting from the combined process without and with sensitizers also
appear to differ in color. When compared to the sludge from the electrocoagulation process
without sensitizers, the sludge from the combined process with the sensitizers has a more
fading color. The combined process with sensitizers degraded more MB than the combined
process without sensitizers. As a consequence, the coagulants in the combined process
with sensitizers adsorbed less MB than those in the combined process without sensitizers.
Therefore, the sludge from the combined process with sensitizers has a more fading color.
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the electrocoagulation process are as follows: At Anode ∶ Al( ) → Al( ) + 3e  (9) At Cathode ∶  2H O( ) + 2e → 2OH( ) + H ( ) (10) Chemical Reaction ∶  Al( ) + 3OH( ) →  Al(OH) ( ) (11) Total Reaction ∶  2Al( ) + 6H O( )  →  2Al(OH) ( ) + 3H ( ) (12) 

Equation (11) is applicable for alkaline medium [64]. Then, Al(OH)3 can adsorb MB 
to form sludge (MB-Al(OH)3), as shown in Equation (12). Al(OH) ( ) + MB →  (MB − Al(OH) )( ) (13) 

Light and catalysts are required for the photocatalysis process to accelerate chemical 
reactions. When subjected to UV light with an energy larger than the band gap energy, 
these semiconductor materials create electron pairs (e ) and holes, which can reduce 
and oxidize compounds. The reactions that occur in the photocatalytic process for waste 
degradation are as follows: TiO + ℎ𝑣 → TiO (ℎ + e ) (14) TiO (ℎ ) + H O →  OH •  +H  (15) TiO (e ) + 𝑂 →  O • (16) OH • or O •  +MB → CO + H  (17) 

Therefore, the electrocoagulation process involves the adsorption of MB dye, but the 
combined process involves the degradation of MB dye by TNTA photocatalysts as well as 
the adsorption process. The MB removal mechanisms during a combined process of 
electrocoagulation and photocatalysis are shown in Figure 20 in detail.  

 
Figure 20. The MB removal mechanisms during a combined process of electrocoagulation and 
photocatalysis. 

Figure 20. The MB removal mechanisms during a combined process of electrocoagulation
and photocatalysis.

Table 6 shows the weight of the sludge produced in the electrocoagulation process and
the combined process without and with sensitizer addition, indicating that there is a differ-
ence in the weight of the sludge produced. The sludge produced in the combined process
was less than the sludge produced in the electrocoagulation alone. This was because, in the
combined process, some OH− ions became OH• radicals due to the photocatalysis process,
so only a small amount of OH− ions reacted with Al3+ ions to form Al(OH)3 coagulants.

Table 6. Sludge weight in the electrocoagulation process and the combined process of
electrocoagulation–photocatalysis.

Method Sludge Weight (g)

Electrocoagulation 3.85
Combination without Sensitizer 2.15

Combination with Sensitizer 1.6

4. Conclusions

The water content in the glycerol electrolyte solution used in the anodization process
significantly affected the diameter of nanotubes and the size of TNTAs. Specifically, a
higher water content led to a bigger diameter while simultaneously causing a decrease
in crystal size. The incorporation of anthocyanins into TNTAs did not alter the structural
characteristics of the nanotubes. However, it led to an increase in the crystal size of the
anatase phase from 23.6 nm to 28.7 nm and a decrease in the band gap energy from 3.2 eV
to 2.5 eV. Utilization of the sensitized TNTAs in the combined process of electrocoagulation
and photocatalysis can increase the removal efficiency from 59.66% to 64.30%. The results
of this study confirmed the authors’ hypothesis that the combined process of electrocoag-
ulation and photocatalysis using sensitized TiO2 nanotube photocatalysts can result in a
higher MB removal efficiency than the electrocoagulation alone, photocatalysis alone, and
the combined process using unsensitized TiO2 nanotube photocatalysts. In general, the
total cost of the photocatalysis process using sensitized TiO2 nanotubes is higher than the
total cost of the photocatalysis process using unsensitized TiO2 nanotubes because there
is the cost of synthesis of sensitized TiO2 nanotubes in the former. Then, the MB removal
efficiency in the former does not exceed 65%. Therefore, a feasibility study of the process is
necessary to be conducted in the future.

This study has some limitations. This study used a wavelength of 663 nm to mea-
sure the MB concentration during electrocoagulation and photocatalysis at various pH
conditions. However, in theory, the optimum wavelength of MB may be affected by pH
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levels. For the next study, this needs to be noted. Furthermore, the composition of sludges
resulting from electrocoagulation, photocatalysis, and the combined process was not ana-
lyzed. Thus, this needs to be noted in the next study. The future research prospect might
be the application of the combined process with sensitized TiO2 nanotube photocatalysts
for treating Rhodamine B, methyl orange, as well as real organic wastes. In addition,
the economic analysis and feasibility study of the combined process are necessary to be
conducted in the future. This study did not analyze the stability and recyclability of the
sensitized TiO2 nanotubes. Therefore, these analyses need to be carried out in the next
research. Also, this study did not analyze the intermediate products resulting from the
combined process. Hence, identification and characterization of these intermediates need
to be conducted in the future to know detailed mechanisms during the combined process.
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