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Abstract: Air pollution severely compromises children’s health and development, causing physical
and mental implications. We have explored the use of site-specific green infrastructure (green barriers)
in a school playground in Sheffield, UK, as an air-pollution-mitigation measure to improve children’s
environment. The study assessed air quality pre-post intervention and compared it with two control
sites. Nitrogen dioxide (NO2) and particulate matter <2.5 µm in size (PM2.5) concentration change
was assessed via three methods: (1) continuous monitoring with fixed devices (de-seasonalised);
(2) monthly monitoring with diffusion tubes (spatial analysis); (3) intermittent monitoring with a
mobile device at children’s height (spatial analysis). De-seasonalised results indicate a reduction of
13% for NO2 and of 2% for PM2.5 in the school playground after two years of plant establishment.
Further reductions in NO2 levels (25%) were observed during an exceptionally low mobility period
(first COVID-19 lockdown); this is contrary to PM2.5 levels, which increased. Additionally, particles
captured by a green barrier plant, Hedera helix ‘Woerner’, were observed and analysed using
SEM/EDX techniques. Particle elemental analysis suggested natural and potential anthropogenic
origins, potentially signalling vehicle traffic. Overall, green barriers are a valid complementary tool
to improve school air quality, with quantifiable and significant air pollution changes even in our
space-constrained site.

Keywords: air quality; air pollution; green infrastructure; green barrier; nature-based solutions;
COVID-19 lockdown

1. Introduction

Air pollution continues to be one of the most pressing challenges of the urban land-
scape, causing environmental quality decline and human health implications. In particular,
children’s exposure to air pollution has severe repercussions to their health. At the same
time, a shocking 93% of children under 15 years old breathe polluted air worldwide [1].
These children might have experienced a range of illnesses, from adverse neurodevelop-
ment [2,3] and mental health problems [4], to decreased respiratory and cardiovascular
functions [5,6]. Whilst tackling the sources of pollution remains the most recommended
way to cut down toxic emissions and protect children’s health [7,8], the current imple-
mented measures worldwide do not seem sufficient for the urgency of solving a mostly
anthropogenic problem [9]. In that sense, additional mitigation measures to protect vul-
nerable populations have been explored, including the use of green infrastructure (GI) to
reduce air pollution at a local level.

Under the nature-based solutions umbrella, GI encompasses any type of natural and
semi-natural areas managed to deliver ecosystem services [10]. In the urban landscape,
this translates into street trees, parks, green roofs, green walls, hedges, green barriers or
fences, among others. GI has the potential to reduce ambient air pollution via multiple
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mechanisms: gases absorption such as nitrogen dioxide (NO2), gases and particulate matter
(PM) deflection and dispersion, and PM deposition on plants’ structures [11]. Simulta-
neously, various factors affect GI’s performance to improve air quality (AQ), such as the
urban layout and the local wind direction [12], or the plants’ composition and their AQ
functional traits [13,14].

The use of GI in school facilities to reduce pupils’ exposure to air pollutants has been
suggested by the U.S. Enviromental Protection Agency [15]. Some schools have put the
GI proposal into practice in the UK—specifically installing green barriers or fences. For
instance, schools in Dorset and London have installed ivy panels around the school facilities’
perimeter [16,17]; four schools in Manchester are part of a trial run by Lancaster University
where evergreen hedges were planted between school premises and passing traffic [18,19];
and the Mayor of London’s Green Fund awarded a grant to twenty-nine primary schools to
plant vegetation and boost air quality [20]. Although purposely implemented green barriers
exist in these UK schools, there is little/weak scientific evidence on actual air pollution
concentration changes due to the GI intervention, and that consider the site’s conditions.
For instance, Abhijith et al. [21] found a 44% decrease of PM concentrations immediately
behind a green screen installed in a London school, but the authors’ short monitoring
campaign did not take into account the effect of the site’s seasonal and weather conditions,
and COVID restrictions. Moreover, most research to date comprises AQ assessments
in places with pre-existing GI onsite, which do not offer understanding of air pollution
pre-post intervention or are based on modelling studies that present ideal situations for
air quality improvement [13,22–28], potentially different from what could be achieved in
intricate real-life school environments. Besides, most studies use simplistic GI formed
by one to three plant species, e.g., [29], instead of more complex planting designs. GI
composed of multiple species could foster ecosystem functioning and deliver co-benefits
(e.g., safety, wellbeing, aesthetics, biodiversity).

This study assesses AQ impacts of a multi-species (31 taxa) thin GI in a UK school play-
ground, where a green barrier was purposely built and designed as a functioning ecosystem
that fits the irregular school layout. Pre- and post-intervention conditions—including air
quality, meteorological conditions, and COVID restrictions—are fully acknowledged and
characterised. Here, we focus on evaluating the GI intervention in terms of NO2 and PM2.5
concentration changes, and on identifying the composition of the latter. The following
sections elaborate on the methods (Section 2), the AQ outcomes due to the green barrier
implementation and a discussion based on three research questions (Section 3):

(i) Can site-specific multi-species thin green barriers provide enough protection against
NO2 and PM2.5 air pollution in a school facility?

(ii) What is ambient PM around an inner-city school made of?
(iii) What has a larger influence on school air quality: multi-species thin green barrier

implementation or low-vehicle traffic (due to COVID-19 lockdown)?

Concluding remarks are presented in Section 4.

2. Materials and Methods
2.1. Study Design

A green barrier was installed in a case study school in Sheffield, UK. Air quality was
monitored pre and post such GI intervention at the case study school (Sch-GB site) and at
two other sites serving as control for data comparison and contrast (Figure 1). The control
sites are located within a 2 km radius from Sch-GB and comprise a site in the city centre
(City site)—providing an urban background—and another school playground without a
green barrier (Sch-NoGB site). Air quality was monitored at those three sites from April
2019 to October 2021 (Figure 2). Sources of air pollution at the study sites include motorised
transport and residential/commercial forms of burning, such as woodburning stoves. In
Sheffield, 81% of road transport accounts for cars and taxis, while the remaining 19%
includes buses, light vans, heavy goods vehicles, and motorcycles [30].
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collected at a 1 h resolution from the Urban Flows Observatory portal [32], which com-
piled data recorded by Sheffield City Council. Additionally, a period of low-vehicle traffic 
and low-citizens′ mobility (first lockdown April–June 2020) was selected for contrast and 
comparison with the three other periods Table 1. Figure 2 shows the study′s timeline with 
the data-collection periods. 

Figure 1. Location of the study sites for air quality monitoring in Sheffield, UK. ‘Sch-GB’ refers to
case study school with a green barrier; ‘City’ refers to a city centre site (control); ‘Sch-NoGB’ refers to
an urban school site without a green barrier (control).

In light of the study happening during COVID-19 pandemic times, which caused
citizen’s mobility and ‘normal’ activities disruptions due to UK governmental restrictions
and lockdowns to contain the spread [31], only three periods from the AQ campaign
were adequate for analysis and comparison (Table 1). These periods were most similar
in vehicle traffic flow and comprised the same months for each year of the study. Vehicle
traffic flow (vehicle h−1) data are reported for each period and site in Table 2. These data
were collected at a 1 h resolution from the Urban Flows Observatory portal [32], which
compiled data recorded by Sheffield City Council. Additionally, a period of low-vehicle
traffic and low-citizens’ mobility (first lockdown April–June 2020) was selected for contrast
and comparison with the three other periods Table 1. Figure 2 shows the study’s timeline
with the data-collection periods.
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Table 1. Periods selected for air quality assessment from the study’s data-collection campaign.

Data Collection Period Abbreviation Date Description

Pre-green
barrier pre-gb July–October 2019 Baseline period: before the green barrier was

implemented in Sch-GB site’s playground.

COVID-19
lockdown lock April–June 2020

Period after the green barrier implementation
with first national lockdown measures to
contain the COVID-19 pandemic. Vehicle
traffic and citizens’ mobility were highly

restricted.

Post-green
barrier20 post-gb20 July–October 2020

Period one year after the green barrier
implementation. COVID-19 restrictions were

eased from 23 June to 31 October 2020. Second
national lockdown came in force on 5th of

November 2020.

Post-green
barrier21 post-gb21 July–October 2021

Period two years after the green barrier
implementation. Last phase of COVID-19

pandemic restrictions ease, and full reopening
of all economic activities on 19 July 2021.

Table 2. Mean traffic flow (vehicle h−1) at closest sensors to the study sites, per selected periods.

Period

Site

Sch-GB
Mean ± SE

City
Mean ± SE

Sch-NoGB
Mean ± SE

pre-gb 331.2 ± 4.2 231 ± 3.6 NA
lock 197.4 ± 3.6 83.4 ± 1.8 268.2 ± 3.6

post-gb20 303.0 ± 4.2 160.2 ± 2.4 386.4 ± 3.6
post-gb21 342.0 ± 9.0 200.4 ± 3.0 463.2 ± 4.8

2.2. Green Infrastructure Intervention

A purposely designed multi-species green barrier—the GI intervention—was installed
at the case study school (Sch-GB site). Such a green barrier was co-designed and co-
produced with the school community and many other contributors participating in six
project stages from October 2018 to January 2020 (so called GF-Sheff project). The project
stages included introduction and goal setting, green barrier design, construction, planting,
project debriefing, and maintenance [33].

The case study school has one- and two-story buildings of late-Victorian character, and
an active and highly used playground that accommodates 270 pupils in the infant stage
(5–7 years old) throughout the day. During pupils’ drop-off (8:50 h) and pick-up times
(15:10 h), parents and children walk through the playground and socialise. From 10:30 h to
15:00 h, the playground is used on and off for play and lunch activities. Additionally, one
day a week the playground is used for sports all-day-long, and extra-curricular sports club
take place twice a week up to 16:15 h.

Before the green barrier was installed, the playground had only a low stone-wall
(0.6–0.7 m high) and spaced metal railings (which allowed air flow) as a separation from
the adjacent streets (Figure 3). These streets are in close proximity to the school, be-
tween 1.9–2.2 m away from the playground’s perimeter. Motorised vehicle traffic contin-
uously circulates around the school, and car parking is available on one street adjacent
to the playground (Figure 4). Moreover, residential and commercial facilities dominate
the area. Therefore, local air pollution sources include vehicle traffic, and domestic and
commercial activities.

The green barrier construction started in July 2019 with groundworks preparations
and culminated in late October 2019 with local community’s supported planting (Figure 2).
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The multi-species green barrier comprises a mix of 31 different taxa planted along the
playground’s border (Figure 4), which extends for 60 m. Its height ranges from 2.2 to 2.4 m;
causing a separation between the playground and the street traffic of: 2.4 m max on the
southwest portion of the playground, and 4.4 m max on the northwest corner and north
portion of the playground (raised school grounds, Figure 4). Its width is 0.9 m continuously,
except on the northwest corner of the playground, where it extends up to 1.3 m. Five taxa
act as the green barrier’s structural plants and are the key components of air pollution
deposition, deflection, and dilution. The remaining taxa are complementary plants that
support the ecosystem functioning of the planting scheme (fostering plant establishment,
life-span extension, and a thriving planting scheme), add sensory interest, and create a
more aesthetic design. All the plants were incorporated in an almost-mature stage that
created a low-porosity green barrier, providing an immediate screening effect. Further
information on the characteristics of the green barrier and the species used can be found
in previous studies [33,34]. Pictures of the Sch-GB site before and after the green barrier
implementation are depicted in Figure 3, and Figure 4 provides detailed information on
the taxa used for the green barrier and its planting design in the school playground.
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2.3. Air Quality Data Collection

To assess the air pollutants concentration change due to the installation of the green
barrier, collection and assessment of AQ data was carried out at the three monitoring sites
(Sch-GB as site with GI intervention; and City and Sch-NoGB as control sites), and during
the different sampling periods (pre-gb, lock, post-gb20, postgf-21). Concentrations were
measured for NO2 and PM2.5 via three methods: (1) NO2 and PM2.5 continuous monitoring
with fixed devices at all monitoring sites, (2) NO2 monthly monitoring with diffusion tubes
at all monitoring sites, and (3) complementary spatially distributed PM2.5 monitoring with
a mobile device in Sch-GB. AQ monitoring with fixed devices and diffusion tubes is fairly
recognised by the scientific community and used by governments. In addition to these
commonly used methods, we used a mobile device set up at children’s breathing height
(1.1 m) to understand spatial changes of air pollution in the place where children walk and
play. Meteorological conditions were recorded using a weather station (OTT MetSystems)
installed at Sch-GB. The weather station measured air temperature, relative humidity, air
pressure, wind speed and direction, precipitation intensity, and global radiation in 15 min
intervals. Details of each AQ data-collection method are described in the following sections.

2.3.1. Continuous Monitoring with Fixed Devices—NO2 and PM2.5

Each study site had a fixed AQ monitor measuring air pollutant concentrations contin-
uously through the day. Therefore, NO2 and PM2.5 data were extracted from each monitor’s
data portal at a 1 h resolution. Consequently, 24 measurements (in µg m−3) were collected
per air pollutant for each day of the data-collection periods. Data were available for all sites
and all periods, except for NO2 during lock and post-gb20 periods at Sch-GB site.

The use of the selected fixed AQ monitors elaborates on previous AQ research con-
ducted in Sheffield by Chakraborty et al. [35] and Munir et al. [36]. Details of each moni-
toring device corresponding to the study sites are shown in Table 3. City and Sch-NoGB
sites have reference sensors managed by UK Department for Environment, Food and
Rural Affairs (DEFRA), and Sheffield City Council, correspondingly. For the Sch-GB site,
a low-cost monitor (AQ Mesh V5.0, Stratford upon Avon, UK) with medium accuracy
was installed in the school facilities (Figure 5). This monitor’s performance is reliable [37]
and has been used in several studies [38–41], including school facilities [42,43]. It has
an internal weather sensor that corrects data for weather effects using proprietary soft-
ware, and data are also O3-filtered to correct for cross-gas effects (eliminating O3 sensitiv-
ities and providing accurate NO2 concentrations). To refine data quality, concentrations
from Sch-GB’s monitor were scaled via a correlation with the reference sensors at the
control sites.

2.3.2. Monthly Monitoring with Diffusion Tubes—NO2

Diffusion tubes provided by Sheffield City Council were installed inside Sch-GB’s
playground in three different locations (Figure 5) to measure NO2 concentrations. This
AQ monitoring technique is part of the UK government tools utilised to review and assess
mean annual NO2 concentrations [47]. Diffusion tubes are passive samplers of atmospheric
NO2 and provide monthly indicative measurements. Atmospheric NO2 reacts with the
tubes’ coated triethanolamine (TEA) cap and, after chemical analysis (colorimetry) by the
correspondent laboratory, NO2 monthly concentrations are calculated and provided [48].

Sheffield City Council manages a network of diffusion tubes in the city, which includes
monitoring at Sch-NoGB and City study sites [49]. Therefore, Sch-GB NO2 concentrations
were compared within the playground and also with the control sites for the four data-
collection periods (pre-gb, lock, post-gb20, and post-gb21). Local and national co-location
studies of diffusion tubes with reference monitors take place every year to adjust NO2
results. Bias adjustment is already reflected here and included correcting the data with
bias adjustment factors from Sheffield City Council studies. These factors are 0.98, 0.93
and 0.93 for 2019, 2020 and 2021, correspondingly. It is worth noting that there are NO2
measurements for each month of the data-collection periods, except for the lock period
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at Sch-GB, which only has data from June 2020 due to COVID-19 disruptions; and the
post-gb20 period at Sch-NoGB, which is missing data from July 2020.

Table 3. Fixed air quality monitors specifications for each study site.

Study Site Air Quality Monitor Type Air Quality Monitor
Specifications

Monitoring
Technique Ref.

Sch-GB
(green barrier intervention)

Low-cost (medium
data accuracy)
Data quality:

• Proprietary software
for air pollutant
concentration
correction from
cross-gas effect
and from
cross-interference
with environmental
conditions, developed
by the manufacturer.

• Data correlation and
scaling with
reference sensors.

AQ Mesh
V5.0
Developed by
Environmental
Instruments Ltd.
Monitor at 1.7 m above
ground level, 3 m away
from closest road

NO2: Electrochemical
PM2.5: Optical
particle counter

[36,37,44]

City
(control site—city centre)

Reference
(high data accuracy)

Monitoring station from
DEFRA’s AURN
Station from ground level
to 3 m high, 15 m away
from closest road

NO2: Chemiluminescence
PM2.5: Tapered Element
Oscillating Microbalance

[36,45]

Sch-NoGB
(control site—school)

Reference
(high data accuracy)

Monitoring station from
Sheffield City Council
Station from ground level
to 2.5 m high, 3.5 m away
from closest road

NO2: Chemiluminescence
PM2.5: Tapered Element
Oscillating Microbalance

[36,46]

2.3.3. Intermittent Monitoring with a Mobile Device—PM2.5

To complement the fixed AQ monitoring at Sch-GB and understand the spatial dis-
tribution of air pollution at children’s breathing height (1.1 m), a low-cost mobile device
(Aeroqual series 500) was used. It measured PM2.5 (via optical particle counter), tem-
perature, and relative humidity at eight different locations. Five sampling locations are
inside the school playground and three are located on the adjacent streets (Figure 5). Air
sampling includes high-pollution times during the school day (pupil’s drop-off and pick-up
times), which were previously identified via the fixed-monitor data. Data collection took
place from May–July and September–October 2019 (pre-gb), and from September–October
2020 (post-gb20). During the data-collection periods, PM2.5 and meteorological conditions
(humidity and temperature) were collected with 1 min resolution at each sampling point,
for 5 consecutive minutes at a time. A total of 2074 observations were collected and used
for analysis. Due to the mismatch of pre and post green barrier collection periods, caused
by COVID-19 disruptions, data were clustered by its meteorology. This meant that pre and
post GI intervention data with the same mean humidity and temperature were compared.
Data clusters included (1) high humidity (81%) and low temperature (14 ◦C) days, and
(2) low humidity (52%) and high temperature (20 ◦C) days. These thresholds were selected
to have similar number of observations pre-post intervention. The same mobile monitoring
device (Aeroqual) has been successfully used in other studies [22,50–52]. Moreover, to
improve data quality we conducted a field co-location with the MOBIUS (MOBIle Urban
Sensing vehicle) reference sensor from the Urban Flows Observatory, The University of
Sheffield [53] (Figure S2 in Supplementary Material).
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2.4. Air Quality Assessment

To assess the impact of the GI intervention on school air quality, we carried out a
comparison of air pollutant concentration changes from the baseline period (pre-gb) to the
three post green barrier periods (i.e., lockdown, post-gb20 and post-gb21) for Sch-GB within
itself, and with the control sites. Air quality data were processed in a combination of Excel,
R software, and Python programming languages, and general statistics were evaluated to
calculate air pollutants concentration difference (in %), according to Equation (1):

[NO2 or PM2.5] difference (%) =

(
[Px] ∗ 100

[P0]

)
− 100 (1)

where Px represents either NO2 or PM2.5 mean concentrations at each study period (one
at a time), and P0 represents the mean concentration of the same air pollutant during the
pre-gb period. Due to different baseline concentrations at each study site, air pollutant
concentration differences (in %) were comparable across the city, unlike raw concentrations.

Prior this computation, fixed-monitor data were subjected to de-seasonalisation
(Section 2.4.1) to reflect the sole effect of the green barrier more accurately. On the other
hand, diffusion tubes and mobile device data maintained the influence of the weather;
therefore, their results reflect it and were primarily used for qualitative spatial analysis
(Section 2.4.2).
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2.4.1. Data De-Seasonalisation

The global COVID-19 pandemic resulted in significant heterogeneity in recorded
trends of anthropogenic emissions across the time under study. Variations in air quality as
measured are also strongly impacted by meteorological conditions. As in previous studies
that investigated the effect of COVID-19 restrictions on air quality [54–57], we eliminated
these uncertainties using a de-seasonalising approach. After treating missing data and
removing outliers, we used a two-step approach—using the R package ‘deweather’ [58]—to
exclude the effect of trend and weather on the air quality data and to normalise them, as
detailed below.

i. Step 1—Deweather:

We used the ‘gbm’ package to investigate and adjust for non-linear relationships
between meteorological variables, air quality measurements, and temporal variables, to
forecast the variability associated with the hour of the day, day of the week, and week of
the year. The latter factored in seasonal weather factors that were not considered by the
other components. Additionally, we included a trend term to account for COVID-19 related
changes in emission patterns during the three-year study period via a Machine Learning
(ML) technique based on the Generalized Boosted Regression Tree Model (BRT) [59]. The
model is formed, as shown in Equation (2):

[PM2.5] = RH + u + trend +∅+ Tθ + thour + tweekday + tJD (2)

where RH is relative humidity, u is the mean hourly wind speed, trend represents annual
variations, ∅ is the mean hourly wind direction (degrees, clockwise from the north), and Tθ
is the mean hourly temperature (◦C). Variables representing hour of the day, thour, day of
the week, tweekday, and day of the year, tJD, were also considered for the model development.

For each site, 80% of the hourly meteorological and pollutant measurements were used
for training the BRT model, with the remaining 20% split for testing and validation, with the
goal of developing the most suitable model. This determination is achieved automatically
using commonly used metrics such as Pearson’s correlation coefficient (r), root mean square
error (RMSE) and mean bias (MB). Individual models were developed for PM2.5 and NO2
for the time of the study.

ii. Step 2—Meteorological normalisation:

We used the ‘metSim’ function to create meteorological simulations in order to val-
idate the model and make predictions. After developing the model, the meteorological
averaging process was used to predict weather conditions numerous times using ran-
dom sampling [60]. The ‘metSim’ function was used to perform this sampling. The final
model was developed to forecast concentrations while accounting for the change in trends
caused by COVID-19 restrictions and meteorological variability. This method predicts
concentrations that are representative of typical meteorology accounting for the covariates
(temperature, humidity, wind speed, wind direction, week of the year, weekday, hour of
the day, and trend). The model’s performance was evaluated using tenfold cross-validation.
The model fitting results and the relation between PM2.5, NO2, and the covariates are
shown in Figure S1 (Supplementary Material).

2.4.2. Air Quality Pattern Trends

To characterise overall air quality trends of each study site, air pollutant concentrations
were analysed using the ‘Theil-Sen’ tool built-in ‘Openair’ R package [61]. The approach
provided a non-parametric measurement of trends based on ‘the median of the slopes
of pairs of points with varied x-values’, slope estimation, and bootstrap uncertainty esti-
mate [56]. Because these trends during lockdown vary from prior years and may obscure
the results, leading to incorrect conclusions, they were removed using a process similar
to weather normalisation. De-seasonalised modelled data (15 min resolution) filled the
vacant periods and a trend between 2019 and 2020 was stablished. ‘Theil-Sen’ calculated
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the monthly mean concentrations and the slopes between all pairs of the data. The final
‘Theil-Sen’ estimate of the slope (Figure 6) is the median of all these slopes. Air quality
pattern trends aid to understand pollution over time at Sch-GB and the control sites, and to
observe the green barrier’s effect on AQ. Statistical significance to the p-value < 0.001 was
determined from the trends’ overlaid slope at the 95% confidence intervals.
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Figure 6. De-seasonalised mean NO2 and PM2.5 concentration trends (blue line, in µg m−3) at Sch-GB
site across time using de-seasonalised modelled data. The green vertical line represents the green
barrier installation in the playground. The solid red line represents the overall trend estimate, and
the dashed red lines represent 95% confidence intervals for the trend based on resampling methods.
*** Shows that the trend is statistically significant at p < 0.001.

2.4.3. Qualitative Spatial Analysis

Diffusion tubes (NO2) and mobile low-cost device (PM2.5) data were primarily used
for spatial analysis. Their timeframe, combined with the ease of monitoring across space,
make them more suitable for qualitative analysis in geographical visualisations. Therefore,
data were mapped at playground and city scale. This analysis provides a valuable visuali-
sation tool to extract detailed information on pollutants concentration change across the
playground and city.

2.5. Qualitative PM Elemental Composition Identification

A green barriers’ mechanism of action to reduce air pollution is PM deposition on the
plants’ surface. In order to identify the sources of ambient PM in the case study school,
we carried out an elemental composition analysis of the particles deposited on the leaves’
surface of Hedera helix ‘Woerner’, the plants that cover the full length of the green barrier
(Figure 4). Six leaf samples were collected in January 2021 at 1.25 m height from the school
ground (Figure 2). They were stored in plastic containers, attaching the stem to the bottom
of the container to prevent movement during transportation. The samples were observed
under a scanning electron microscope (SEM) (Tescan Vega3 LMU) to visually examine and
chemically analyse the particles deposited on the surface [34]. The SEM was used at 15 kV,
in low vacuum mode (LVM) with a low vacuum secondary electron detector (LVSED).
No conductive coating was applied to the leaves. Energy dispersive X-ray analysis (EDX)
(Oxford Instruments X-Max 50) was used to qualitatively assess the elemental composition
of 18 random particles (three particles per sample). The PM sizes analysed ranged from
2–30 µm, and large regions of agglomerated particles were present on the leaf surfaces. The
Aztec Software (Oxford Instruments) was used to evaluate the chemical elements present
in each sample.

3. Results and Discussion
3.1. Impact of Green Barrier on Playground Air Quality

Air quality results indicate that the green barrier has mixed impacts on Sch-GB’s
playground levels: a consistent decrease in NO2 concentrations, and an environmental
conditions-dependent decrease in PM2.5 concentrations.
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For NO2, both de-seasonalised and weather-influenced data analyses indicate an
overall negative concentration trend in Sheffield from 2019 to 2021 (Table 4). Not only has
Sch-GB site seen a reduction in NO2 levels since the green barrier was built in its playground,
but also concentrations have decreased at both control sites. The city’s NO2 reduction is
most likely related to changes in car mobility caused by COVID-19 pandemic restrictions,
as the main NO2 source in Sheffield is motorised vehicle traffic [62]. Traffic flow during
post-gb21 period was most similar to pre-pandemic levels (Table 2), making it the most
representative period for observing solely the green barrier’s impact. Hence, comparing
NO2 concentrations from post-gb21 with pre-gb indicates that this gas pollutant decreased
at all sites. However, Sch-GB had a greater reduction than City and Sch-NoGB sites
(Figure S3 in Supplementary Material), suggesting that the green barrier has a mitigation
effect on playground pollution levels. Subtracting Sch-GB’s concentrations difference
from averaged control sites’ concentrations difference (Table 4), de-seasonalised results
showed an NO2 reduction of about 13% in the playground, whilst weather-influenced
results showed a reduction of about 23%. It is worth noting that direct comparison of fixed
monitors and diffusion tubes results is not possible due the de-seasonalisation process of
the former, however, each provide complementary information about NO2 concentration
changes in time.

Table 4. De-seasonalised air pollutant mean concentrations and difference (%) against baseline
scenario (pre-gb) at city scale.

Air Quality Data
Collection Period

Study Site

Sch-GB City Sch-NoGB
Mean ± SE

(µg m−3) Conc. diff. 1 Mean ± SE
(µg m−3) Conc. diff. Mean ± SE

(µg m−3) Conc. diff.

NO2—fixed monitor
(de-seasonalised)

pre-gb 27.53 ± 0.05 - 19.04 ± 0.10 - 24.82 ± 0.11 -
lock NA 2 NA 14.37 ± 0.03 −24.43% 18.50 ± 0.03 −25.44%

post-gb20 NA NA 16.02 ± 0.08 −15.76% 19.02 ± 0.06 −23.34%
post-gb21 22.88 ± 0.11 −16.88% 17.67 ± 0.10 −6.98% 24.73 ± 0.10 −0.37%

NO2—diffusion tubes
(weather-influenced)

pre-gb 24.58 ± 2.17 - 22.25 ± 0.66 - 28.58 ± 0.30 -
lock 11.50 ± 1.50 −53.22% 14.22 ± 0.29 −36.09% 19.05 ± 0.31 −33.36%

post-gb20 16.08 ± 1.17 −34.58% 17.83 ± 0.46 −19.87% 26.33 ± 0.51 −7.87%
post-gb21 14.11 ± 0.63 −42.62% 16.43 ± 0.41 −26.16% 25.12 ± 0.59 −12.12%

PM2.5—fixed monitor
(de-seasonalised)

pre-gb 5.98 ± 0.01 - 6.74 ± 0.01 - 6.64 ± 0.01 -
lock 7.50 ± 0.01 25.32% 7.96 ± 0.03 18.16% 7.98 ± 0.03 20.13%

post-gb20 6.09 ± 0.01 1.71% 6.63 ± 0.01 −1.52% 6.62 ± 0.01 −0.27%
post-gb21 5.85 ± 0.01 −2.31% 6.74 ± 0.01 0.033% 6.65 ± 0.01 0.078%

1 Conc. diff. = concentration difference. 2 NA = not available. Green colour indicates pollution reduction and red
colour indicates pollution increase, compared to baseline period.

Furthermore, from the three study sites, only Sch-GB had a statistically significant NO2
decrease trend over time (trend = −2.51 µg m−3 per year, 95% CL = −2.71, −2.19 µg m−3

per year, p < 0.001), which suggests that only the site with the GI intervention experienced
a sustained NO2 decrease from pre-gb to post-gb21 periods (Figure 6).

Spatial analysis supports the overall reduction of NO2 in the city (Figure 7). Moreover,
spatial analysis within the playground shows that for pre-gb there was a natural dilution
of NO2 from the roads, i.e., the further away from the road the diffusion tube was located,
the lower the NO2 concentration. On the other hand, once the green barrier was planted,
this pattern changed. For all post GI periods, NO2 levels were lower at diffusion tubes
immediately behind the green barrier, suggesting that the greatest AQ impact covers certain
range and dilutes with distance from the green barrier (Table 5 and Figure 7). Based on
the [63]’s calculation of the area of protection related to green barrier’s height (area of
protection in metres = 3 height − 3), Sch-GB’s green barrier protects up to 4.2 m behind it
under ideal conditions.
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In contrast to NO2 results, de-seasonalised PM2.5 concentrations do not follow the
same declining trend in Sheffield. PM2.5 levels greatly increased during the lockdown
period and do not substantially differ among pre-gb, post-gb20, and post-gf-21 across the
city (Table 4 and Figure S4 in Supplementary Material). Nevertheless, when comparing
only pre-gb with post-gb21 as indicated above, PM2.5 concentrations decreased about 2%
at Sch-GB’s playground, whilst increasing at the control sites. Similarly to NO2, only
Sch-GB experienced a statistically significant and sustained PM2.5 decrease from pre-gb
to post-gb21 (trend = −0.32 µg m−3 per year, 95% CL = −0.67, −0.14 µg m−3 per year,
p < 0.001) (Figure 6).
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Figure 7. NO2 mean concentrations difference (%) of sampling periods against baseline (pre-gb),
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Table 5. NO2 mean concentrations in Sch-GB at playground scale, from diffusion tubes.

Air Quality Data
Collection Period

Location Inside Playground

North Tube South Tube West Tube
Mean ± SE

(µg m−3) Conc. diff. 1 Mean ± SE
(µg m−3) Conc. diff. Mean ± SE

(µg m−3) Conc. diff.

NO2—diffusion tubes
(weather-influenced)

pre-gb 24.75 ± 2.24 - 20.75 ± 3.33 - 28.25 ± 2.29 -
lock NA - 10.00 −51.81% 13.00 −53.98%

post-gb20 15.75 ± 1.11 −36.33% 14.25 ± 1.11 −31.33% 18.25 ± 1.11 −35.39%
post-gb21 13.72 ± 1.70 −44.57% 13.25 ± 1.21 −36.14% 15.35 ± 1.55 −45.66%

1 Conc. diff. = concentration difference. Green colour indicates pollution reduction, compared to baseline period.

Previous studies have shown that wind direction highly influences GI’s PM reduction
efficiency [13,64–66]. We found that it is also the case for our PM2.5 de-seasonalised data at
Sch-GB. Prevailing wind directions around the playground come from the west, northwest,
and southeast to a lesser extent (Figure 4). Our results show that PM2.5 decreases with
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all wind directions (PM2.5 trends over time are all negative and statistically significant
to at least the p < 0.05 level, Figure 8). However, the conditional probability function
visualisation at the 90th percentile (=3.5) showed that south-easterly winds bring the
highest level of PM2.5 pollution into the playground (Figure 8). This might be related
to airflow entering through the open-metal school gate (Figure 4) and could be solved
by supplying the gate with a material that hinders air movement (e.g., bamboo/wooden
mesh), as a GI implementation is not suitable there. Furthermore, spatial analysis signal to
a more restricted airflow inside the playground due to the green barrier (Figure 9). During
the pre-gb period, higher PM2.5 concentrations occurred on the sampling points next to
the divisionary wall between the playground and the streets, and lower concentrations in
the middle of the playground. Whilst for post-gb20, PM2.5 levels were more homogeneous
across the playground.
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Other weather covariates impact PM2.5 concentrations, such as humidity (15.7%) and
temperature (6.4%) (Figure S1), which had an influence on the data collected at children’s
breathing height with a mobile device. Weather-influenced results from that device showed
that relatively hotter and less humid days (i.e., similar to British summer conditions)
displayed a reduction in PM2.5 concentrations inside the playground only, in contrast to
colder and more humid days (Table 6). Overall, seasonality and weather patterns have
a considerable impact on PM behaviour. Despite de-seasonalised outcomes indicating a
positive impact on playground air quality due to the green barrier, it is small compared to
the effect of the underlying weather component.

The apparent limited protection that the green barrier provides against PM2.5 is possi-
bly related to three factors: (1) the narrow width of the barrier (0.9–1.3 m), (2) the location of
the fixed AQ monitor, and (3) the multiple and diverse PM sources around the playground.
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Firstly, regarding GI width, research suggests that thicker green barriers are more
effective at AQ provisioning [28,67,68]. Some studies suggest up to a minimum width of
10 m, although such wide thickness approach seems to be more suitable for protecting
populations near long open roads, such as motorways [12]. In the urban environment,
green barriers need to be more accommodating to the different landscape morphologies,
where often planting space is scarce. For Sch-GB’s playground, the maximum width the
school could spare for planting was 1.3 m in its widest section (northwest corner), hence,
plant selection assured full coverage of the green barrier’s height and low porosity. As such,
the green barrier in Sch-GB’s playground illustrates successful multi-species GI application
in an intricate urban layout, which most likely acts by deflecting air pollution. Other
studies have explored the use of green barriers in open roads or urban street canyons,
and conclude that GI’s design should be site-specific and context-dependent to foster AQ
provisioning [64,69–71]. That being said, thin green barriers (1.0–2.2 m) have a place in
cities, as modelling studies have shown air pollutant reductions from 2 to 54% [66,72] and
up to 42% in real life case studies [22,65,73].
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data collected with mobile monitoring device. Data are displayed for two sampling periods pre-gb
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Secondly, the fixed AQ monitor is located on the north section of the playground,
which is raised by 2 m above the ground. The monitor’s installation was limited by real-life
constraints of power supply access and children’s safety. Its location is, therefore, higher
than the sources of pollution at road level (i.e., vehicle traffic). This situation might cause
the device to pick up slighter changes of air pollution because the concentrations are lower
at its height. Nevertheless, evidence from PM being captured by those green barrier plants
via leaf deposition is shown here (Section 3.2) and in our previous study [34], suggesting
that the green barrier’s PM mitigation could be more notorious had the monitor been at
road level. Additionally, unlike studies where AQ was measured immediately behind the
vegetation e.g., [21], our study’s monitor was located 1 m away from the green barrier,
which could cause a dilution effect on the pollution concentrations.



Sustainability 2023, 15, 1075 16 of 24

Table 6. PM2.5 mean concentrations and difference (%) between street and playground sampling points
during two weather conditions in the Sch-GB site. Data collected with mobile monitoring device.

Weather
Conditions Period Sampling

Points
Mean ± SE

(µg m−3)
Conc. diff. 1

against Street

High hum–low temp
pre-gb street 5.82 ± 0.21 -

playground 6.45 ± 0.20 10.95%

post-gb20 street 7.03 ± 0.17 -
playground 7.07 ± 0.11 0.60%

Low hum–high temp
pre-gb street 5.63 ± 0.12 -

playground 5.79 ± 0.11 2.79%

post-gb20 street 6.34 ± 0.14 -
playground 6.04 ± 0.06 −4.69%

1 Conc. diff. = concentration difference. Green colour indicates pollution reduction and red colour indicates
pollution increase, compared to mean street sampling points concentration.

Finally, sources of PM in the case study school include cars, diesel buses [56], light and
heavy vehicles, and woodburning stoves from residential areas nearby. In the UK, domestic
combustion accounts for 25% of the total PM2.5 emissions, with 70% from the use of wood
as fuel [74]. Moreover, secondary PM formation caused by agriculture fertilizers used for
crop growing, especially in spring, could also be a source of PM in the city. Alternatively,
there might be internal sources of PM in the playground, for instance from debris plant
material generated by the three mature trees on the northwest corner (Figure 4) which can
be resuspended by children’s movement/play. PM resuspension inside schools has been
the case for sandy playgrounds in Barcelona, where sand was resuspended by children’s
activities and added to the local PM concentrations [75].

3.2. Elemental Composition of PM Captured by Green Barrier Plants

The green barrier plants used in the GI at Sch-GB were effective in capturing airborne
PM [34], and SEM imaging revealed PM particles distributed across the leaves both individ-
ually and in regions of agglomerated particles. Figure 10 illustrates chemical analysis of a
large individual pollution particle, and from an extended cluster of PM2.5 particles. Overall,
the elemental composition of particles deposited on the green barrier plant Hedera helix
‘Woerner’, (planted along the whole length of the GI—Figure 4), indicate both natural and
anthropogenic PM sources’ contribution. Specifically, seventeen elements were identified
on PM deposited on the Hedera helix leaf samples. Elements carbon (C) and oxygen (O)
were found in all particles and particle clusters analysed and were the most abundant, com-
prising about 70–80 Wt% (mean weight percentage) and 10–20 Wt%, respectively. Iron (Fe),
aluminium (Al), calcium (Ca), silicon (Si), and platinum (Pt) were the second most frequent
and abundant elements. Additionally, chlorine (Cl), sulphur (S), nickel (Ni), potassium
(K), phosphorus (P), sodium (Na), magnesium (Mg), Ruthenium (Ru), barium (Ba), and
bromine (Br) were identified in trace levels.

The high abundance of C and O, combined with other elements identified here (P, Ca,
K, Na, Fe, Cl, Mg, Al, Si) is typical of the so called ‘biogenic aerosols’, which are particles
of biological nature (living matter, e.g., pollen, fungal spores or plant tissue) [76,77]. In
addition, some of the C and O X-rays may originate from the surrounding background leaf
tissue. Particles containing Si, Al, and Fe, are classified as ‘geogenic particles’, or natural
particles derived from the Earth’s crust like salts [76].

Based on the local air pollution sources, the presence of certain elements within the
assessed particles is also consistent with anthropogenic origins. The significant quantity
of C identified in all particle spectra partially originate from the presence of organic and
elemental carbon from vehicle exhausts [78]. Moreover, C and O may also signal the
presence of polycyclic aromatic hydrocarbons (PAHs), which are caused by incomplete
combustion of organic matter (i.e., from diesel or petrol) and are carcinogenic [77]. Particles
containing the transition metals Fe and Ni may be related to abrasion of vehicle parts,
especially brake and tyre wear [79,80]. Less attention has been given to transition metals Pt
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and Ru, which we found in six and two analysed regions, respectively. Pt and Ru signal
traffic air pollution because they are used in motors’ catalytic converters. Although the
aim of catalytic converters is to transform exhaust emissions into less polluting forms,
their internal catalyst rare-earth metals leak into the environment. According to Wiseman
and Zereini [81], platinum group elements are increasingly found in airborne PM and,
although in small concentrations, they may be more bioavailable and toxic to humans
than expected. For instance, the platinum group elements are known to cause allergies,
respiratory sensitisation, and oxidative damage [81,82].
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Figure 10. Sample SEM and EDX spectra of elemental composition analysis of PM captured on
Hedera helix ‘Woerner’ leaves from green barrier. Each EDX spectrum shows the elements found on
(a) single particle and (b) an agglomerate deposited on the leaves, and the mean weight percentage
(Wt%) of each element. The SEM at the top right corner of each EDX spectrum shows PM (light grey)
on the dark leaf backdrop. cps/eV = counts per second/electron Volt; σ = standard deviation.

Although it was not possible to determine the exact nature or share of each PM source
in this study, the presence of Pt and Ru shows that part of the PM found here corresponds to
vehicle exhaust emissions. Additionally, as leaf samples were collected in January, a winter
month in the UK, vehicle traffic and home heating with solid fuels (e.g., for woodstoves) are
likely to be part of the anthropogenic sources. Our results are similar to other studies that
found anthropogenic elements that originate from exhaust and non-exhaust vehicle sources
of PM on GI in the UK, such as living walls in Birmingham and hedges in Guildford [83,84].

Foliar PM deposition is considered a green barrier mechanism to clean the air, but
secondary to air pollution dispersion effects [85]. Nevertheless, there is clear evidence on
PM capture by plant structures and, therefore, a preference to include evergreen species
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in green barriers [86]. Plant selection for Sch-GB’s green barrier included not only five
structural plants that could indeed form a barrier all year long, but species highlighted
in the literature as potential PM sinks due to their micromorphological structures. SEM
results here confirm PM deposition on Hedera helix ‘Woerner’ leaves, and a prior study also
confirms effective PM capture by other two green barrier plants [34].

3.3. Impact of Low-Vehicle Traffic and Low-Citizens’ Mobility Period (COVID-19 Lockdown) on
Air Quality

Sheffield faced unexpected conditions across the two years of study due to measures
imposed by the British government to control the spread of the COVID-19 disease. The
global pandemic forced a strict first national lockdown from end of March to June 2020, in
which people’s mobility was restricted and vehicle traffic considerably decreased [31]. For
the study sites, traffic flow decreased 40–64% compared to 2019 levels (Table 2). Analysis
of air pollution during this exceptional lockdown period demonstrate AQ improvements
regarding NO2, but not for PM2.5.

De-seasonalised data indicate that NO2 concentrations decreased about 25% at the
control sites during lockdown, which was the highest reduction of all periods (Table 4 and
Figure S3 in Supplementary material). Moreover, weather-influenced results showed that
Sch-GB’s playground also experienced a major NO2 reduction during lockdown, greater
than post-gb20 by 18% and post-gb21 by 10% (Table 5, Figure 7). The NO2 pollution
decrease was greater at Sch-GB than at the City and Sch-NoGB sites (Table 4, Figure 7),
potentially indicating a double effect of lower traffic plus green barrier. In any case, reduced
traffic flow had the greatest positive impact on Sheffield’s air quality regarding NO2. This
finding is consistent with vehicle traffic being the major source of NO2 in Sheffield [62]
as well as in the UK [87]. These results emphasise the importance of reducing pollution
at the source as the first and most effective way to protect children’s health, for example
reducing motorised vehicle traffic around schools and/or preventing its proximity during
pupils drop-off/pick-up times. Consequently, green infrastructure has a place in the set of
measures to tackle air pollution yet, as pointed out by Hewitt et al. [88], only after ‘reducing
emissions and extending distance between sources and receptors’.

In contrast, PM2.5 levels during the lockdown period substantially increased, with an
averaged de-seasonalised PM2.5 concentrations about 21% larger across Sheffield. Despite
vehicle traffic not being the main source of PM in the city [62], a slight decrease in PM2.5
could have been expected from the reduced traffic’s share during lockdown. However, that
was not the case, and PM increased during that period as a result of other particle sources
increasing. For example, domestic combustion activities increased, such as cooking or
woodstove use, due to people spending more time at home. Garden fires for waste burning
also saw a spike during lockdown [89], potentially adding to the local PM load. Alterna-
tively, Munir et al. [90] attribute some of the high PM concentrations during lockdown to
long-range transport of European pollution. Their study in Sheffield used back trajectory of
air masses and concluded that winds originating from central and eastern Europe brought
pollution and caused increases in secondary PM. Similarly to Munir et al. [90], we used
the HYSPLIT model [91] to simulate PM concentrations at Sch-GB for the years 2020 and
2021 from 24–25 of April each year as an example (Figure 11). We calculated 72 h backward
trajectories to assess whether 2020 and 2021 PM concentrations were under the influence
of long-distance transport and source apportionment. HYSPLIT predicted higher PM
concentrations arriving from Europe at those specific periods, suggesting that long-range
transport of air pollution from Europe may be an important temporal source of PM at
the school playground. These findings evidence the high complexity of PM formation,
dispersion, and meteorology interaction. It also highlights the difficulty of PM reduction
via GI or other measures.
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4. Conclusions

This study has evaluated site-specific green infrastructure, specifically multi-species
thin green barriers, as an air-pollution-mitigation measure in schools. By co-creating and
constructing a multi-species green barrier in a school playground with real-life design
constraints, we were able to support a thriving planting scheme that mitigates air pollution
to real levels. The methods selected for this research allowed us to answer our three research
questions (Section 1):

i. This study suggests that the site-specific and multi-species thin green barrier
(0.9–1.3 m max width) built in a UK school playground reduced air pollution. The
reduction in pollutants concentration was significant for NO2 (between 13% to 23%)
and slight for PM2.5 (about 2%). The downward pre-post intervention trend was
statistically significant.

ii. Composition of PM deposited on the green barrier plant Hedera helix ‘Woerner’
suggests PM of natural and anthropogenic origin. The latter include catalytic
converters from motorised vehicles.

iii. Low-vehicle traffic and low-citizen mobility (lockdown) seem to have significantly
reduced NO2; such reduction exceeds the effects of the green barrier. These mo-
bility restrictions do not seem to significantly reduce PM pollution in the UK case
study, most likely because meteorological patterns and conditions have a stronger
influence on PM than traffic levels.

The mitigation effect of the multi-species thin green barrier on school AQ—most likely
due to air pollutant deflection/dispersion by the green barrier, yet PM deposition was also
identified—was quantifiable, and potentially helped to further reduce air pollution in the
school playground during the first COVID-19 lockdown (which imposed travel restrictions).
The reduced traffic flow during lockdown, however, caused the greatest reduction of NO2
in Sheffield (about 25% at the control sites). This finding highlights the importance of
working towards systematic changes, such as cars’ phasing out, low traffic neighbourhoods,
and school streets initiatives, to make a direct and strong impact on air pollution mitigation
and protect children’s health. PM2.5 did not decrease during the lockdown period, rather, it
increased. This behaviour was caused by an array of potential sources including increased
domestic burning (e.g., cooking and heating) during lockdown, spring fertilizer pollution,
continued diesel bus services, and long-range transport of air pollution from central and
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eastern Europe. The variety of PM sources highlights the volatility and difficulty of PM
pollution mitigation due to its interrelation with meteorology and its cross-continental
range, making a case for site-specific intervention to improve local air quality, such as green
barriers in school playgrounds.

This study was constrained by the nature of the school’s built-up environment, the
reduced green barrier width to maintain play space, and by the plant selection which was
localised to the UK climate. In addition, air quality is a topic of concern in the UK compared
to other geographies [92], and actions to minimise pollution could be taken by its citizens
(i.e., active travel). Therefore, further studies looking at real-case scenario green barriers
with different plant mixes and in other climates or geographies could help to supplement
our findings and the green barrier design.

Green barriers can improve school air quality, and, despite their limited potential,
changes are quantifiable and significant even in our space-constrained site. Moreover, this
nature-based solution can complement other tools and efforts to create healthy environ-
ments for children, as well as offer multiple co-benefits to the school community due to the
added greenery.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/su15021075/s1, Figure S1: Model results and partial dependency
of the covariates on PM2.5 and NO2 concentrations at Sch-GB from 2019 to 2021; Figure S2: Taylor
diagram comparing the modelled data (red dot) which are the corrected low-cost mobile device
measurements for the reference data (observed); Figure S3: De-seasonalised NO2 concentrations
(µg m−3) for each data-collection period and study site; and Figure S4: De-seasonalised PM2.5
concentrations (µg m−3) for each data-collection period and study site.
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