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Abstract: The Mohr–Coulomb (M-C) and Hoek–Brown (H-B) strength criteria are widely used in
various engineering fields, such as mining engineering, tunnel engineering and so on. To investi-
gate the M-C and H-B strength criteria considering the unloading effect and anisotropy, series of
triaxial loading (unloading) tests on layered sandstone were conducted. The results revealed that
the peak strength was significantly affected by the unloading effect. Moreover, the cohesion and
internal friction angle had a significant nonlinear relationship with the bedding angle. Additionally,
the M-C and modified H-B strength criteria were established considering the unloading effect and
anisotropy. Then, according to the strength criteria established, the peak strength could be estimated
theoretically. Furthermore, compared to the M-C strength criteria, the modified H-B strength criteria
were more appropriate for accurately estimating the triaxial compressive strength of layered sand-
stones. The conclusions obtained could provide certain references for the stability control of deep
excavation engineering.

Keywords: M-C strength criteria; modified H-B strength criteria; layered sandstone; unloading
effect; anisotropy

1. Introduction

The M-C and H-B strength criteria are widely used in various engineering fields,
including mining engineering, slope engineering, tunnel engineering, geothermal engineer-
ing, nuclear waste and CO2 storage engineering [1–5]. The reason is that the essence of rock
strength criteria refers to a theoretical basis for judging whether the yield or failure of rocks
occurs under complex external loads. Moreover, it can visually represent the relationship
between the stress state and rock strength.

In addition, the M-C and H-B strength criteria are widely used in rock mechanics. To
verify the applicability and accuracy of strength criteria, numerous scholars conducted
abundant studies with different perspectives and obtained abundant achievements. From
the perspectives of porosity, lithology, density, rock composition and initial structures of
rocks, serial strength criteria have already been constructed. Moreover, their applicability
and accuracy have been verified [6–13]. Especially, the simple empirical strength criteria
based on the uniaxial compressive strength of eight types of rocks and confining stress
based on triaxial strength parameters were proposed [12]. In addition, the rock parameter of
(mi) in the Hoek–Brown strength criteria, from the perspective of the basic physical proper-
ties and factors of marlstones, sandstones and limestones, was evaluated and modified [8].
From the energy evolution perspective, the energy evolution mechanism of sandstone
was deeply revealed based on the effect of confining pressure [14]. Meanwhile, the corre-
sponding energy–strength criteria were established. Additionally, the yield criterion and
modified compounded mobilized planes model were also constructed from the perspec-
tive of strain energy [15]. Meanwhile, the corresponding strength–energy criteria under
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different stress conditions were established. Additionally, numerous scholars obtained
certain innovative conclusions according to the rock strength criteria established from
multiple perspectives with the strain rate effect, the effect of intermediate principal stress
(including the effect of Lord’s angle), the thermal effect, the bedding effect and the effect of
hydrostatic pressure [16–35]. Specifically, series of true triaxial mechanical tests of rocks
were conducted [27]. Moreover, the corresponding peak strength of rocks was obtained,
and the nonlinear unified strength criterion considering the effect of intermediate principal
stress was constructed [27]. Similarly, the nonlinear triaxial and poly-axial strength criteria
for isotropic intact rocks considering the effect of intermediate principal stress were also
constructed, and the applicability and accuracy of the criteria were verified [20]. Corre-
spondingly, through introducing the weighting factor of the intermediate principal stress,
the three-dimensional yield criteria were also simplified and established, which could
effectively simulate the true triaxial strength of rocks under different stress levels [17].

However, the unloading effect is not considered in the above studies. In addition,
there is significant anisotropy in the deep strata itself (see Figure 1a). Furthermore, there
exists the obvious evolution process of the stress state of roadway surrounding rocks before
excavation, during excavating and after excavation (see Figure 1b). Therefore, the stress
path TLUT considering the unloading effect was proposed [36,37]. Furthermore, it was
expected to improve the accuracy of the applicability of the strength criteria.
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Figure 1. Engineering background [36,37]. Note: H, σ1 and σ3 represent the buried depth, axial stress
and confining pressure, respectively; σx, σy, σz, σx’ and σz’ represent the minimum principal stress,
the intermediate principal stress, the maximum principal stress, the minimum principal stress after
unloading and the maximum principal stress after re-loading.

In this study, a series of triaxial loading tests considering the unloading effect and
anisotropy was conducted, and the peak strength and deviator strength (σ1−σ3)cf could be
measured. Based on analyzing the experimental data, it was indicated that the cohesion
and internal friction angle were not constants and would change with increasing bedding
angle. Furthermore, the specific expressions of the M-C and modified H-B strength criteria
considering the unloading effect and anisotropy were established. The applicability of the
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M-C and modified H-B strength criteria was verified by comparing the theoretical strengths
with the actual experimental strengths.

2. Experimental System and Scheme

An MTS-815.02 electro-hydraulic servo rock mechanics test system was used in the
tests, and the specific upper thresholds of basic parameters of the system are as follows:

a. The upper threshold of axial pressure is 1700 kN;
b. The upper threshold of confining pressure is 45 MPa;
c. The upper threshold of pore pressure is 45 MPa;
d. The upper threshold of osmotic water pressure difference is 2 MPa;
e. The upper threshold of osmotic gas pressure difference is 6 MPa;
f. The upper threshold of temperature is 200 ◦C;
g. The upper limit of specimen size for applicable tests is 100 mm in diameter and

200 mm in height.

Additionally, fully considering the excavation unloading effect of deep roadway
surrounding rocks (see Figure 1), the stress path TLUT was designed and proposed, which
broke through the awkwardness of the conventional triaxial loading stress path CTLT
from zero loading to rock failure. The specific stress paths of uniaxial loading (UCT),
conventional triaxial loading (CTLT) and triaxial loading and unloading (TLUT) are shown
in Figure 2, and the detailed parameters settings of each stage of each sub-experiment are
included. Among them, the stress state corresponding to the buried depth of 1010 m was
the initial high in situ stress at the sampling site, and the specific detail of in situ stress
measurement referred to [38].
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Figure 2. Stress paths and corresponding detailed parameters [38,39]. Note: c represents different
pre-set confining pressures; σ1c f ,UCT represents uniaxial compressive strength of layered sandstones;
σ1c f ,CTLT represents triaxial compressive strength of layered sandstones under CTLT; σ1c f ,TLUT repre-
sents triaxial compressive strength of layered sandstones under TLUT.
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3. Results and Analysis
3.1. Strength Anisotropy

Referring to the literature [39], the peak strengths under UCT, CTLT and TLUT were
obtained. Subsequently, the corresponding evolution characteristics of peak strength were
drawn (see Figure 3).
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As shown in Figure 3, with increasing bedding angle, the peak strength first decreased
and then increased. Among the angles, when the bedding angle was 45◦, the peak strength
was the smallest. Additionally, with increasing confining pressure, the peak strength also
showed a continuous increasing nonlinear evolution trend.

Additionally, the peak strength under TLUT was significantly lower than that under
CTLT. It indicated that the influences of the unloading effect on the peak strength were
stronger than those of the effect of hydrostatic pressure. Corresponding to the whole
life-cycle evolution process of deep roadway surrounding rocks, the unloading effect in
excavation intensifies the released degree of a large amount of energy accumulated be-
fore excavation. Correspondingly, the dissipated energy is greatly improved during the
unloading process. Meanwhile, its bearing capacity is further weakened by aggravating
the damage degree of the roadway surrounding rocks. Therefore, it could be used, from
the perspective of reducing the unloading effect in excavation, to start to improve the
bearing capacity of roadway surrounding rocks. For example, before excavation, modern
geophysical detection technology, geological big data, 5G communications, artificial intelli-
gence and other technologies could be utilized to build a visual mine with high accuracy
in real time [40–42]. Subsequently, series of structural regulation and measurement works
could be conducted for the weak structures attached to the position of the roadway to
be excavated by numerous technical means [43–45]. In this way, the bearing capacity of
roadway surrounding rocks could be improved.

3.2. M-C and Modified H-B Strength Criteria

According to the above analysis, the unloading effect and bedding weak planes could
both significantly affect the peak strength and bearing capacity of layered sandstones.
Therefore, it was urgent to establish the M-C and H-B strength criteria considering the
unloading effect and anisotropy. In this way, it could provide certain theoretical references
for the stability control of deep excavation engineering.
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3.2.1. Initial Principles of M-C Criteria

The two most important parameters in M-C strength criteria are the cohesion (c) and
the internal friction angle (ϕ). As shown in Figure 4a, the relationship between the shear
stress (τ) and the normal stress (σn) on arbitrary failure plane AB is as follows:

τ = c + σn tan ϕ (1)
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Additionally, the shear stress (τ) and the normal stress (σn) can be obtained through
stress transformation: {

σn = 1
2 (σ1 + σ3) +

1
2 (σ1 − σ3) cos 2α

τ = 1
2 (σ1 − σ3) sin 2α

(2)

Coupling Equations (1) and (2) contributes to Equation (3):

σ1 =
2c + σ3[sin 2α + tan ϕ(1− cos 2α)]

sin 2α− tan ϕ(1 + cos 2α)
(3)

Furthermore, as shown in Figure 4b, the relationship between (α) and (ϕ) can be
expressed as follows:

2α =
π

2
+ ϕ (4)

Additionally, coupling Equations (3) and (4) contributes to Equation (5):

σ1 = 2c· cos ϕ

1− sin ϕ
+

1 + sin ϕ

1− sin ϕ
·σ3 (5)

According to Equation (5), the intercept (E) and the slope (F) can be obtained. E = 2c· cos ϕ
1−sin ϕ

F = 1+sin ϕ
1−sin ϕ

(6)

Meanwhile, according to Equation (6), (c) and (ϕ) can be obtained as follows:{
c = E

2
√

F
ϕ = arcsin F−1

F+1
(7)
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where τ and σn are the shear stress and the normal stress demonstrated on arbitrary
failure plane AB; σ1, σ3 and σt are the axial stress, the confining pressure and the uniaxial
tensile strength of materials, respectively. α is the angle between the direction of maximum
principal stress and the failure plane AB. (c) and (ϕ) are the cohesion and the internal
friction angle of materials.

3.2.2. M-C Strength Criteria

To further quantify the anisotropy on the peak strength, a functional relationship
between the peak strength and the bedding angle was established. As shown in Figure 5,
the fitting function relationship between the peak strength and the bedding angle under
identical confining pressure is as follows:

σ1c f = a + b ∗ β + c ∗ β2 + d ∗ β3 + e ∗ β4 (8)

where a, b, c, d and e are the fitting coefficients (see Table 1), β is the bedding angle, σ1cf is
the peak strength.
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Figure 5. Fitting relationship between the peak strength and bedding angle under various confining
pressures: (a) CTLT; (b) TLUT.

Table 1. Fitting functions between the peak strength and bedding angles under various confining
pressures.

Stress Paths σ3/MPa Fitting Functions a b c d e R2

UCT 0 σ1c f = a + b ∗ β + c ∗ β2 + d ∗ β3 + e ∗ β4 69.882 7.008 −0.44 0.0078 −4.19 × 10−5 0.99807

CTLT

5 σ1c f = a + b ∗ β + c ∗ β2 + d ∗ β3 + e ∗ β4 132.85 6.51 −0.39 0.0065 −3.37 × 10−5 0.99504
10 σ1c f = a + b ∗ β + c ∗ β2 + d ∗ β3 + e ∗ β4 162.65 8.18 −0.50 0.0085 −4.5 × 10−5 0.99465
20 σ1c f = a + b ∗ β + c ∗ β2 + d ∗ β3 + e ∗ β4 178.29 9.90 −0.62 0.011 −6.14 × 10−5 0.98355

TLUT

5 σ1c f = a + b ∗ β + c ∗ β2 + d ∗ β3 + e ∗ β4 119.3 12.66 −0.77 0.01 −7.2 × 10−5 0.99864
10 σ1c f = a + b ∗ β + c ∗ β2 + d ∗ β3 + e ∗ β4 131.2 13.95 −0.85 0.02 −8.4 × 10−5 0.99499
20 σ1c f = a + b ∗ β + c ∗ β2 + d ∗ β3 + e ∗ β4 147.95 8.88 −0.47 0.008 −4.18 × 10−5 0.97657

According to Table 1, the fitting coefficients all exceeded 0.9750, which indicated that
there was a strong nonlinear relationship between the peak strength and bedding angles
under identical confining pressure. Furthermore, compared with CTLT, the fitting curves
of peak strength with TLUT fluctuated more significantly, which also indicated that the
unloading effect significantly affected the accuracy of rock strength criterion.
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The fitting relationship between the peak strength and the confining pressure under
five different bedding angles is shown in Figure 6, and the corresponding details of fitting
relationships can be seen in Table 2.
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Table 2. Fitting functions between the peak strength and confining pressures under various bedding
angles: CTLT and TLUT.

Stress Paths β/◦ Fitting Functions a b R2 C/MPa ϕ/◦

CTLT

0 σ1c f = a + b ∗ σ3 92.85527 5.07731 0.80331 20.60438 42.1371
30 σ1c f = a + b ∗ σ3 85.45472 5.12911 0.81234 18.86623 42.3524
45 σ1c f = a + b ∗ σ3 54.84519 4.87182 0.85823 12.42404 41.2534
60 σ1c f = a + b ∗ σ3 60.22258 5.55663 0.97647 12.77390 44.0244
90 σ1c f = a + b ∗ σ3 81.93618 4.5764 0.97106 19.15066 39.8923

TLUT

0 σ1c f = a + b ∗ σ3 112.0105 1.89684 0.99172 40.66431 18.0347
30 σ1c f = a + b ∗ σ3 90.974 4.0006 0.99999 22.74179 36.8733
45 σ1c f = a + b ∗ σ3 29.0247 5.76219 0.99869 6.04566 44.7680
60 σ1c f = a + b ∗ σ3 55.9759 5.17955 0.86989 12.29773 42.5592
90 σ1c f = a + b ∗ σ3 61.7466 5.55021 0.86333 13.10474 44.0006

As shown in Table 2 and Figure 6, compared with CTLT, the variation degree of slope
and intercept of fitting lines of peak strength with TLUT was more significant. It still
indicated that the unloading effect could significantly affect the evolution characteristics
between the peak strength and the confining pressure. In addition, with increasing bedding
angle, the slope of the fitting lines under CTLT showed an evolution trend that decreased
first, then increased and finally decreased, but the variation degree was relatively slow.
Meanwhile, the intercept of the fitting lines under CTLT showed a V-shaped evolution
trend that decreased first and then increased, and the variation degree was more severe.
However, with increasing bedding angle, the slope of the fitting lines under TLUT showed
an increasing evolution trend, and the variation degree was relatively slow. Meanwhile, the
intercept of the fitting lines under TLUT showed a V-shaped evolution trend that decreased
first and then increased, and the variation degree was more significant. The above evolution
characteristics indicated that the intercepts of the fitting lines under CTLT and TLUT were
more sensitive to the anisotropy.

The Mohr circles and strength envelopes under CTLT and TLUT with five bedding
angles are shown in Figures 7 and 8, respectively. When the bedding angle was constant,
there was a significant tangential relationship between the Mohr strength envelope and
the Mohr stress circle. According to the M-C strength criterion, the variation of slope and
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intercept of the Mohr strength envelope was determined by the internal friction angle and
the cohesion. Additionally, the internal friction angle and the cohesion with five bedding
angles under CTLT and TLUT could be calculated according to Equation (7), and the
calculation results are shown in Table 2.
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As shown in Table 2, with increasing bedding angle, the cohesion under CTLT pre-
sented a V-shaped evolution characteristic that sharply decreased first and then increased.
Correspondingly, the internal friction angle fluctuated gently within ϕ ∈ [39.8, 44]. It
indicated that the anisotropy on the cohesion was much greater than that of the internal
friction angle. Namely, compared to the internal friction angle, the cohesion was more
sensitive to the bedding effect. Similarly, with increasing bedding angle, the cohesion
under TLUT also presented a V-shaped evolution characteristic that sharply decreased first
and then increased. Correspondingly, the internal friction angle presented the evolution
characteristic that sharply increased first and then remained basically constant. However,
with increasing bedding angle, the variation degree of the cohesion under TLUT was sig-
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nificantly higher than that of the internal friction angle. It also indicated that the cohesion
was still more sensitive to the bedding effect compared to the internal friction angle. The
above analysis showed that the unloading effect could significantly affect the evolution
characteristic of the cohesion and the internal friction angle. Therefore, it was necessary to
strengthen the study of strength criteria of rocks considering the unloading effect.

The variation of strength parameters with different bedding angles under CTLT and
TLUT is shown in Figure 9. As shown in Figure 9, the cohesion and the internal friction angle
under CTLT and TLUT showed a significant nonlinear polynomial function relationship
with the bedding angle, and the specific expressions are as follows:

cβ = g + h ∗ β + i ∗ β2 + j ∗ β3 (9)

ϕβ = p + q ∗ β + r ∗ β2 + s ∗ β3 + t ∗ β4 (10)

where g, h, i, j, p, q, r, s and t are all relevant fitting coefficients, and the specific values are
shown in Tables 3 and 4. (c) and (ϕ) are the cohesion and the internal friction angle.
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Table 3. Fitting functions between (c) and β under CTLT and TLUT.

Stress Paths Fitting Functions g h i j R2

CTLT cβ = g+ h ∗ β+ i ∗ β2 + j ∗ β3 20.714 −0.1456 −0.011 1 × 10−4 0.91468

TLUT cβ = g+ h ∗ β+ i ∗ β2 + j ∗ β3 41.057 −0.8764 0.004 2.3 × 10−5 0.91146

Table 4. Fitting functions between (ϕ) and β under CTLT and TLUT.

Stress Paths Fitting Functions p q r s t R2

CTLT ϕβ = p + q ∗ β + r ∗ β2 + s ∗ β3 + t ∗ β4 41.7157 0.68 −0.004 8.2 × 10−4 −4.8 × 10−6 0.90453

TLUT ϕβ = p + q ∗ β + r ∗ β2 + s ∗ β3 + t ∗ β4 17.8544 −0.4588 0.073 −1.5 × 10−3 8.6 × 10−6 0.99851

Coupling Equations (5), (9) and (10), the M-C strength criteria considering the bedding
effect and the effect of confining pressure could be obtained as follows:

σ1c f β = 2cβ·
cos(ϕβ)

1− sin(ϕβ)
+

1 + sin(ϕβ)

1− sin(ϕβ)
·σ3, β ∈ [0, 90]; σ3 ∈ [0,+∞) (11)
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where σ1cfβ is the peak strength with the bedding angle of β at various confining pressures.
To further verify the applicability and reliability of the M-C strength criteria, the

theoretical peak strength under various confining pressures and different bedding angles
was calculated according to Equation (11) (see Table 5).

Table 5. Calculation results of the M-C strength criteria under CTLT and TLUT.

Specimens No. σ3/MPa β/◦ Actual σ1cf /MPa Theoretical σ1cf
’/MPa 4σ1cf /MPa 4χ/%

UCT-0-0 0 0 70.5882 92.43275 21.84455 30.94646
UCT-0-30 0 30 63.1373 80.165336 17.02804 26.96985
UCT-0-45 0 45 36.4706 23.440632 13.02997 35.72732
UCT-0-60 0 60 52.1569 54.964666 2.807766 5.383307
UCT-0-90 0 90 75.2941 81.664869 6.370769 8.46118

CTLT-5-0 5 0 134.1575 117.3223 16.8352 12.54883
CTLT-5-30 5 30 128.512 105.304668 23.20733 18.05849
CTLT-5-45 5 45 95.6064 85.9217 9.6847 10.12976
CTLT-5-60 5 60 95.8986 82.16242 13.73618 14.32365
CTLT-5-90 5 90 108.722 104.13657 4.58543 4.217573
CTLT-10-0 10 0 164.289 142.21186 22.07714 13.43799

CTLT-10-30 10 30 155.263 130.443999 24.819 15.98514
CTLT-10-45 10 45 115.7094 109.82013 5.88927 5.089707
CTLT-10-60 10 60 120.081 109.36017 10.72083 8.927999
CTLT-10-90 10 90 135.1286 126.380968 8.747632 6.473561
CTLT-20-0 20 0 180.0923 191.990956 11.89866 6.606977

CTLT-20-30 20 30 174.4253 180.641627 6.216327 3.563891
CTLT-20-45 20 45 142.108 157.616989 15.50899 10.91352
CTLT-20-60 20 60 167.236 163.755675 3.480325 2.081086
CTLT-20-90 20 90 168.774 171.551677 2.777677 1.645797

TLUT-5-0 5 0 120.494 122.1011949 1.607195 1.333838
TLUT-5-30 5 30 110.902 95.9125784 14.98942 13.51592
TLUT-5-45 5 45 56.6327 86.7164127 30.08371 53.12075
TLUT-5-60 5 60 70.3082 64.87972 5.42848 7.720977
TLUT-5-90 5 90 76.7481 90.0899997 13.3419 17.38401
TLUT-10-0 10 0 132.48 131.547778 0.932222 0.70367

TLUT-10-30 10 30 131.083 115.597043 15.48596 11.81386
TLUT-10-45 10 45 88.451 114.902517 26.45152 29.90528
TLUT-10-60 10 60 125.119 90.267581 34.85142 27.85462
TLUT-10-90 10 90 136.373 117.256881 19.11612 14.01752
TLUT-20-0 20 0 149.447 150.390459 0.943459 0.6313

TLUT-20-30 20 30 170.939 154.96597 15.97303 9.344287
TLUT-20-45 20 45 143.667 114.902517 28.76448 20.02164
TLUT-20-60 20 60 153.784 141.026828 12.75717 8.295513
TLUT-20-90 20 90 166.376 171.590648 5.214648 3.134255

Among them,4σ1cf represents the absolute strength difference between the theoretical
peak strength σ1c f

′ and the actual peak strength σ1c f . Meanwhile, the percentage difference
4χ represents the ratio between the absolute difference of peak strength and the actual
peak strength. Their specific expressions are as follows:

∆σ1c f =
∣∣∣σ1c f

′ − σ1c f

∣∣∣ (12)

∆χ =

∣∣∣σ1c f
′ − σ1c f

∣∣∣
σ1c f

(13)

As shown in Table 5, in stress path CTLT, when the confining pressures were 0 MPa,
5 MPa, 10 MPa and 20 MPa, the averages of 4σ1cf were 12.081 MPa, 13.61 MPa, 14.45
MPa and 7.98 MPa, respectively, and the averages of4χ were 21.498%, 11.86%, 9.98% and
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4.96%, respectively. Correspondingly, in stress path CTLT, when the confining pressures
were 5 MPa, 10 MPa and 20 MPa, the averages of 4σ1cf were 13.09 MPa, 19.37 MPa
and 12.73 MPa, respectively, and the averages of 4χ were 18.62%, 16.86% and 8.29%,
respectively. Additionally, the comparison between the theoretical curve and the actual test
data of the M-C strength criteria is shown in Figures 10 and 11. According to the above
comparative analysis, the evolution trend of the theoretical curve of M-C strength criteria
was basically consistent with the actual test data. It indicated that the M-C strength criteria
considering the bedding effect could be used to estimate the peak strength with different
bedding angles.
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3.3. Modified H-B Strength Criteria

The evolution trend of the M-C strength criteria considering anisotropy was basically
consistent with the actual test values with the bedding angle, but there was still a great
difference between the theoretical curve and the actual test values. Therefore, the H-B
strength criteria were further considered and explored.
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Figure 11. Comparison of the M-C strength criteria for theoretical curve and test data under TLUT:
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3.3.1. Initial Principles of H-B Criteria

The H-B strength criteria were first proposed by Hoek and Brown in 1980 [48], and the
specific expression is as follows [49,50]:

σ1c f = σ3 + σUCS·(m·
σ3

σUCS
+ n)

γ
(14)

where σUCS, σ1 and σ3 represent the uniaxial compressive strength, the peak strength and
the confining pressure, respectively. For intact rocks, m is a constant, which can be used
to reflect the level of rock hardness; n and γ are constants accompanying the rock mass to
characterize its own properties. Especially, when the rock mass is intact, n = 1 and γ = 0.5.
Therefore, for intact rocks, the specific expression of H-B strength criteria is as follows:

σ1c f = σ3 + σUCS·(m·
σ3

σUCS
+ 1)

0.5
(15)

3.3.2. Modified H-B Strength Criteria

To comprehensively consider the confining pressure effect and anisotropy on the
peak strength under CTLT and TLUT, this study deeply explored the modified H-B
strength criteria.



Sustainability 2023, 15, 14418 14 of 21

As shown in Figure 12, from the perspective of H-B strength criteria, the relation-
ship between the deviatoric peak strength and the confining pressure was obtained. By
comparing Equation (14), the fitting functions in Figure 12 and the attribute parameter
(n), (γ) under CTLT and TLUT could be obtained. Additionally, due to all test specimens
being layered sandstones, they could not be completely fitted according to Equation (15).
Therefore, the fitting function relationship shown in Figure 12 needed to be modified by
referring to the H-B strength criteria, and the corresponding specific details can be seen
in Table 6, where A is the modified coefficient, and m is directly degraded to the uniaxial
compressive strength with various bedding angles.
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Figure 12. Fitting curves of deviator strength with various bedding angles in view of H-B strength
criterion: (a) CTLT; (b) TLUT.

Therefore, according to the above analysis, the relationship between the peak strength
of layered sandstones under CTLT and TLUT, the confining pressure and the bedding angle
conformed to the modified H-B strength criteria, and the specific functional relationship is
as follows:

σ1c f β = σ3 + A·σUCS−β·(σ3 + nβ)
γβ (16)

where σUCS−β is the uniaxial compressive strength of layered sandstones with the bedding
angle of β.

Additionally, as shown in Figure 13, it was found that there was a certain functional
relationship between the attribute parameters (nβ), (γβ) and bedding angle; the specific
expressions are as follows:

Table 6. Fitting functions between confining pressure and deviator strength of layered sandstones
with different bedding angles under CTLT and TLUT.

Stress Path β/◦ Fitting Functions R2 A n γ

CTLT

0 (σ1 − σ3)c f = 1.482σUCS−0 × (σ3 + 0.07026) 0.14827 0.98537 1.482 0.07026 0.14827

30 (σ1 − σ3)c f = 1.55σUCS−30 × (σ3 + 0.06033) 0.15641 0.99324 1.55 0.06033 0.15641

45 (σ1 − σ3)c f = 1.753σUCS−45 × (σ3 + 0.07447) 0.21615 0.99995 1.753 0.07447 0.21615

60 (σ1 − σ3)c f = 0.715σUCS−60 × (σ3 + 2.16486) 0.44159 0.99793 0.715 2.16486 0.44159

90 (σ1 − σ3)c f = 0.71σUCS−90 × (σ3 + 2.8149) 0.32838 0.99846 0.71 2.8149 0.32838

TLUT

0 (σ1 − σ3)c f = 1.70σUCS−0 × (σ3 − 4.85) 0.0227 0.91955 1.70 −4.85 0.0227

30 (σ1 − σ3)c f = 1.868σUCS−30 × (σ3 − 4.85) 0.06712 0.80546 1.868 −4.85 0.06712

45 (σ1 − σ3)c f = 1.892σUCS−45 × (σ3 − 4.85) 0.17162 0.865 1.892 −4.85 0.17162
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Table 6. Cont.

Stress Path β/◦ Fitting Functions R2 A n γ

TLUT
60 (σ1 − σ3)c f = 1.69σUCS−60 × (σ3 − 4.85) 0.15661 0.99893 1.69 −4.85 0.15661

90 (σ1 − σ3)c f = 1.285σUCS−90 × (σ3 − 4.85) 0.15588 0.9986 1.285 −4.85 0.15588

Under CTLT and TLUT, for the parameter (γβ):

γβ = K + L·β + O·β2 + U·β3 (17)

Under CTLT, for the parameter (nβ):

nβ = G + H·β + I·β2 + J·β3 (18)

Under TLUT, for the parameter (nβ):

nβ = −4.85 (19)

where K, L, O, U, G, H, I and J are fitting coefficients, and the corresponding coefficients are
shown in Figure 13.
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under CTLT and TLUT in view of modified H-B strength criteria.

Coupling Equations (16)–(18), the modified H-B strength criteria under CTLT could be
obtained, and the specific expression was as follows:

σ1c f β = σ3 + A·σUCS−β·(σ3 + nβ)
γβ β ∈ [0, 90]; σ3 ∈ [0,+∞) (20)

Coupling Equations (16), (17) and (19), the modified H-B strength criteria under TLUT
could be obtained, and the specific expression was as follows:

σ1c f β = σ3 + A·σUCS−β·(σ3 − 4.85)γβ β ∈ [0, 90]; σ3 ∈ [0,+∞) (21)

According to Equations (20) and (21), the theoretical peak strength under CTLT and
TLUT could be calculated (see Table 7).
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Table 7. Calculation results of the modified H-B strength criteria under CTLT and TLUT.

Specimens No. σ3/MPa β/◦ Actual σ1cf /MPa Theoretical σ1cf
’/MPa 4σ1cf /MPa 4χ/%

UCT-0-0 0 0 70.5882 70.56187 0.02633 0.037301
UCT-0-30 0 30 63.1373 63.12045 0.01685 0.026688
UCT-0-45 0 45 36.4706 36.468495 0.002105 0.005772
UCT-0-60 0 60 52.1569 52.450756 0.293856 0.563408
UCT-0-90 0 90 75.2941 75.096037 0.198063 0.263052

CTLT-5-0 5 0 134.1575 138.077143 3.919643 2.921673
CTLT-5-30 5 30 128.512 131.196554 2.684554 2.088952
CTLT-5-45 5 45 95.6064 95.825809 0.219409 0.229492
CTLT-5-60 5 60 95.8986 93.977556 1.921044 2.003203
CTLT-5-90 5 90 108.722 110.012396 1.290396 1.186877
CTLT-10-0 10 0 164.289 157.329419 6.959581 4.236182

CTLT-10-30 10 30 155.263 150.515898 4.747102 3.057459
CTLT-10-45 10 45 115.7094 115.338119 0.371281 0.320874
CTLT-10-60 10 60 120.081 122.409173 2.328173 1.938835
CTLT-10-90 10 90 135.1286 133.530415 1.598185 1.182714
CTLT-20-0 20 0 180.0923 183.191738 3.099438 1.721027

CTLT-20-30 20 30 174.4253 176.532883 2.107583 1.208301
CTLT-20-45 20 45 142.108 142.265970 0.15797 0.111162
CTLT-20-60 20 60 167.236 166.508056 0.727944 0.435279
CTLT-20-90 20 90 168.774 169.291193 0.517193 0.306441

TLUT-5-0 5 0 120.494 120.023404 0.470596 0.390556
TLUT-5-30 5 30 110.902 108.847201 2.054799 1.852806
TLUT-5-45 5 45 56.6327 54.820759 1.811941 3.199461
TLUT-5-60 5 60 70.3082 70.469598 0.161398 0.229558
TLUT-5-90 5 90 76.7481 76.950906 0.202806 0.264249
TLUT-10-0 10 0 132.48 134.636994 2.156994 1.628166

TLUT-10-30 10 30 131.083 141.665518 10.58252 8.073143
TLUT-10-45 10 45 88.451 101.4049927 12.95399 14.64539
TLUT-10-60 10 60 125.119 123.906407 1.212593 0.969152
TLUT-10-90 10 90 136.373 134.860098 1.512902 1.109385
TLUT-20-0 20 0 149.447 147.72747 1.71953 1.150595

TLUT-20-30 20 30 170.939 161.55488 9.38412 5.489748
TLUT-20-45 20 45 143.667 129.99982 13.66718 9.513096
TLUT-20-60 20 60 153.784 154.876549 1.092549 0.710444
TLUT-20-90 20 90 166.376 167.730403 1.354403 0.814062

As shown in Table 7, in stress path CTLT, when the confining pressures were 0 MPa,
5 MPa, 10 MPa and 20 MPa, the averages of4σ1cf were 0.10744 MPa, 2.007 MPa, 3.20 MPa
and 1.322 MPa, respectively, and the averages of 4χ were 0.179%, 1.686%, 2.147% and
0.756%, respectively. Correspondingly, in stress path TLUT, when the confining pressures
were 5 MPa, 10 MPa and 20 MPa, the averages of 4σ1cf were 0.94 MPa, 5.683 MPa and
5.44 MPa, respectively, and the averages of4χ were 1.187%, 5.285% and 3.536%, respec-
tively. Additionally, the comparison between the theoretical curve and the actual test data
of the modified H-B strength criteria under CTLT and TLUT is shown in Figures 14 and 15.
According to the above comparative analysis, the evolution trend of the theoretical curve
of modified H-B strength criteria was basically consistent with the actual test data. Further-
more, compared with the M-C strength criteria, the accuracy and reliability of the modified
H-B strength criteria were significantly higher. It indicated that the modified H-B strength
criteria were more appropriate to estimate the peak strength of layered sandstones.
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4. Discussion

The M-C and the modified H-B strength criteria were established. Due to the limita-
tions in the types of rocks and the quantity of test data, the criteria obtained herein are only
preliminary. Therefore, two aspects regarding the research need to be further emphasized.

First, for intact rocks, the parameters (n) and (γ) in the H-B strength criteria are 1 and
0.5, respectively, which are constants [51–55]. Nevertheless, layered sandstone was used
in this study which suffered from high initial stress state and had significant anisotropy,
leading to the modification of H-B strength criteria. Among them, the parameters (n)
and (γ) in the modified H-B strength criteria had a strong nonlinear function relationship
with the bedding angle. It indicated that the anisotropy could significantly affect the
accuracy and reliability of rock strength criteria. Meanwhile, the geological situation in
actual engineering is extremely complicated, and complex structures with weak planes
such as joints, cleats and bedding are all over the sites. Therefore, it was necessary to
deeply conduct the identification and characterization of the rock samples (especially those
containing bedding, cleats, joints and other series of similar structures) before conducting
numerous mechanical tests. In this way, it could not only avoid blindly identifying the
integrity of test samples, but also provide reliable criterion for accurate analysis of rock
strength criteria and the rock failure mechanism in the later stage.

Additionally, the unloading effect could significantly affect the cohesion, internal
friction angle and the peak strength. Nevertheless, it was easy to ignore the influences of
the unloading effect on the rock strength criteria [56–61]. Therefore, a study perspective
considering the unloading effect of rocks should be deeply considered to establish the rock
strength criteria in the later stage. In this way, it is expected that further breakthroughs
and improvement in the accuracy and reliability of field engineering applications will
be achieved.

5. Conclusions

(1) With increasing bedding angle, the peak strength first decreased and then increased.
When the bedding angle was 45◦, the peak strength was the smallest. In addition,
with increasing confining pressure, the peak strength also showed a continuous in-
creasing nonlinear evolution trend. Additionally, the peak strength under TLUT was
significantly lower than that under CTLT;

(2) With increasing bedding angle, the cohesion with CTLT decreased first and then
increased, while the evolution trend of the internal friction angle with CTLT was
opposite. Additionally, with increasing bedding angle, the cohesion with TLUT also
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decreased first and then increased, but the cohesion with TLUT increased first, then
decreased, and finally increased again;

(3) The cohesion and internal friction angle, parameters (n) and (γ), were not constants
and changed with increasing bedding angle. Compared with CTLT, the variation
degree of the cohesion and internal friction angle under TLUT was more significant
with increasing bedding angle;

(4) Compared with the M-C strength criteria, the modified H-B strength criteria were
more suitable to estimate the peak strength of layered sandstones.
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