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Abstract: The global demand for energy is increasing rapidly due to population growth, urbaniza-
tion, and industrialization, as well as to meet the desire for a higher standard of living. However,
environmental concerns, such as air pollution from fossil fuels, are becoming limiting factors for
energy sources. Therefore, the appropriate and sustainable solution is to transition towards renewable
energy sources to meet global energy demands by using environmentally friendly sources, such as
geothermal. The Harrat Rahat volcanic field, located in the western region of the Kingdom of Saudi
Arabia (KSA), gets more attention due to its geothermal potential as a viable site for geothermal
energy exploration due to its high enthalpy. The prime objective of this study is to present up-to-date
and comprehensive information on the utilization of borehole temperature and remote sensing data to
identify the most prospective zones with significant geothermal activity favorable for exploration and
drilling. A brief description of the selected wells and the methodology used to determine the petro-
physical parameters relevant to the geothermal potential assessment are presented. Special emphasis
is given to gamma-ray ray and temperature logs for calculating heat production and the geothermal
gradient. The effectiveness of various machine learning techniques are assessed throughout this study
for predicting the temperature-at-depth to evaluate the suitability of employing machine learning
models for temperature prediction, and it is found that XG Boost provided excellent results. It can be
observed that some linear anomalies can be traced in the NW, trending on the west side of the Harrat
volcanic field based on magnetic data interpretation. The land surface temperature in 2021 exhibited
higher temperatures compared to 2000, suggesting potential volcanic activity in the subsurface. It
is concluded that the integration of remote sensing data with subsurface data provides the most
reliable results.

Keywords: renewable energy; geothermal resources; remote sensing; LST; magnetic data temperature;
borehole temperature

1. Introduction

In order to mitigate global warming and limit the rise in global temperature to 2 ◦C by
2100, as stipulated in the 2015 Paris Agreement, it is necessary to decarbonize the energy
sector by utilizing renewable energies as a fundamental strategy. To achieve this objective,
the world must shift its thermal energy sources towards renewable sources, including
geothermal, solar, and bioenergy. However, despite the suitability of geothermal energy
for addressing modern thermal needs, it only accounted for 0.77% of all thermal energy
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use worldwide in 2021 [1,2], while fossil fuels and firewood accounted for 40% and 49%,
respectively [3].

Transitioning to an energy system based on renewable sources and energy efficiency,
and away from fossil fuels, could be a game changer for creating a more secure, resilient,
low-cost, and sustainable energy future. The utilization of renewable energies has become
a crucial factor in meeting the increasing electricity demand [4]. Each nation has its own set
of objectives and responsibilities regarding leveraging its potential for renewable energy
(RE) sources [5]. The energy sector has witnessed a remarkable achievement for RE sources.
The majority of RE is utilized in the power sector and building sector. However, except
for the power sector, the share of RE in all other sectors is increasing slowly. Between 2011
and 2021, the share of RE in global electricity generation increased by 8%, with solar and
wind power accounting for over 10% of the total electricity produced for the first time in
history. The share of RE in electricity generation increased by 7.9% between 2011 and 2021,
as shown in Figure 1. Despite this progress, the current adoption rate of RE is insufficient
to achieve the net-zero emissions goal by 2050 [4].
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One reason for the low percentage of geothermal resource usage is the limited avail-
ability of high-enthalpy geothermal resources and the high costs and risks associated with
developing geothermal fields. Nevertheless, the direct use of geothermal energy, which
involves utilizing geothermal resources for meeting thermal needs, such as residential and
space heating, horticultural greenhouse warming, and industrial heating, has experienced
steady annual growth over the past two-and-a-half decades, with residential and space
heating, and bathing and swimming increasing by 8.3% and 6.6%, respectively [1,2]. In-
cluding ground-source heat pumps in geothermal energy utilization boosts the direct use
of geothermal energy to 1.55% of the total global thermal energy usage [4].

A literature survey reported that numerous studies have been performed to investigate
HR geothermal potential using various techniques, which have included: geochemical anal-
ysis, major-elements and trace-elements analysis, geothermal gradient analysis, geothermal
fluid characterization, gravity and magnetic analysis, structural trend analysis, and geother-
mal well drilling [6–10]. However, previous studies have not fully mapped prospective
zones, which are crucial for understanding and assessing geothermal potential. Conven-
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tional geophysical approaches have limitations in identifying geothermal potential in the
study areas. Therefore, worldwide researchers have suggested that Remote Sensing (RS)
and Geographic Information System (GIS) techniques, including thermal bands on satellite
images like Landsat−8 OLI/TIRS, be considered as valuable and cost-effective tools for
evaluating geothermal resources. These methods estimate the land surface temperature
(LST) and have been employed by researchers to delineate areas with geothermal potential
in different geological settings [11–14].

Geothermal energy is harnessed from the Earth’s interior, utilizing the heat stored in
underground reservoirs as steam and hot water, making it an RE source. Its advantages
include its environmentally friendly nature and the minimal space required for exploration
and extraction processes. Additionally, geothermal energy has the potential to contribute
to the local economy through geo-tourism initiatives [15,16]. Thermal infrared RS is an
emerging technique that has proven to be valuable in detecting thermal anomalies within
geothermal and volcanic regions. Mapping geothermal anomalies is crucial in identifying
target areas for geothermal prospects and the further development of geothermal resource
utilization. Infrared RS has emerged as a popular technology for detecting geothermal
anomalies on a larger scale in remote areas. RS data enable the effective retrieval of LST,
accurately identifying hot spring locations and estimating thermal anomaly distribution
characteristics [17,18]. Recent advancements in machine learning (ML) techniques and their
application to geology and geoscience have greatly benefited geothermal energy during
exploration. The applications of ML techniques to characterizing geothermal exploration
processes have led to more efficient and cost-effective research [19,20].

Harrat Rahat is located in the central-western Kingdom of Saudi Arabia and is among
the many large volcanic fields dominated by basalt. HR is an excellent example of conti-
nental intraplate volcanism. Its exceptional exposure makes it an ideal site for studying
the evolution of volcanic flux and composition evolution over time in a continental basalt
field [21]. Pre-feasibility studies for low- and medium-temperature resources should be
initiated to promote further development. The demand for medium-temperature prospect
mapping and diesel power plant substitution using geothermal energy is increasing to meet
the electricity needs of rural and remote areas. Low- and medium-temperature resources
have various direct and indirect applications that can be developed [5].

The present study aims to evaluate the geothermal potential of the HR volcanic field
through the petrophysics data from twenty-one (21) wells and RS data. Subsurface temper-
ature mapping was performed to determine the variation in temperature distribution. The
research provides a comprehensive discussion of the various geophysical and geological
datasets and their interpretation, highlighting the importance of combining different geo-
physical methods to understand geothermal systems. Furthermore, supervised machine
learning techniques have been applied to predict the temperature from the borehole data.
This study has attempted to build a model that connects input vectors/scalars (including
temperature and magnetic field) spatially, such as geothermal energy sites around the
volcanic region of the HR volcanic field. Machine learning techniques were applied to
solve technical problems like the absence of borehole temperature records or inaccuracies
in the locations of wells. Researchers around the globe have utilized bottom-hole temper-
ature data from well datasets to create temperature-at-depth maps to identify potential
geothermal active zones. Multiple datasets, including geological maps, subsurface borehole
temperature distribution maps, and LST maps, were used to determine the distribution
of geothermal anomalies. Furthermore, the analysis of LST data using GIS indicated the
presence of volcanic activity in the subsurface, which could potentially act as pathways for
the flow of heated fluids.

2. Geological Setting and Study Area Description

The current study aims to assess the potential for geothermal reservoirs within the HR
volcanic field through geophysical and geological datasets. Integrated research has been
carried out to assess the geothermal potential. This study’s benefit would be accurately
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predicting the temperature and finding other sites from the trained data to help predict sites
for exploration and drilling operations. The largest volcanic field in Saudi Arabia is the HR
volcanic field, which has an area ranging from 50 to 75 km wide (east–west direction) and
around 300 km long (north–south direction). Within the Arabian Plate, it is the biggest of
the fifteen Harrats or volcanic fields [22–24]. It comprises over 900 volcanic events across an
area of over 20,000 km2 [7,25]. From north to south, it comprises the smaller volcanic fields
of Harrat Turrah, Rukhq, Abu Rashid, and Bani Abdullah (Figure 2). Due to the location of
the holy city of Al-Madinah, the north part of the HR volcanic field is a highly well-known
region, as shown in Figure 2. Seismicity data have been used to explore the ground beneath
the lithospheric sequence of the Harrats and Arabian tectonic plate in extensive detail with
the help of geological and geophysics data [24,26–28].
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Figure 2. (a) The Arabian Peninsula is home to the Cenozoic volcanic fields (Harrats) characterized
by vast lava expanses, and their eruption duration range is presented 10 Ma - present. (b) Geological
map of HR with the main volcanic lithostratigraphy units [22,23].

Due to the expansion of the Red Sea and the Gulf of Aden rifts, the Arabian Plate split
apart from the African Plate (30–25 Ma). The better-developed silicic rocks and localized
volcanic and plutonic basalt sequences in the western portion of the Arabian Plate provide
evidence of Late Cenozoic volcanism [24]. The Arabian Plate has experienced at least
21 eruptions during the last 1500 years; the last one was in Yemen in 1937 [7]. The Afar
plume (located at the triple junction of the Gulf of Aden, the Red Sea, and East African
rift systems) has been interpreted as being connected to eruptive processes on the Arabian
Plate that are older than ten million years. Under the Arabian Plate, the Afar plume moves
in a north-side direction. This movement is consistent with the aligned N-S tendency of
volcanic fields, such as HR and Harrat Khaybar [29]. The Makkah-Al-Madinah-Nafud
Desert (MMN)’s distinctive volcanic line contains HR (Figure 2). Makkah on the southern
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side, Al-Madinah in the middle, and the Nafud Desert in the north comprise the 600 km
long MMN. Numerous experts contend that the Red Sea rifting is not the only source of
elevating and tectonics for the MMN [30,31]. The crust of the continent at HR is almost
40 km thick, and the crust and mantle boundary are 60–90 km below the Arabian volcanic
fields, while it can extend 150 km on the east side [7,28]. The tectonic features in HR
and the nearby Pre-Cambrian settling were initially divided into north-to-east trends at
sewed boundaries and thrust faults produced by the Late Proterozoic collision of an island
arc, north-to-northeast drifts in the middle vent zone, N-E moment associated with the
Cambrian Najd fault phenomena, and E-W trends [29].

Faults and fractures act as pathways for the upward movement of fluids in geothermal
fields. This is especially the case in geothermal systems found in extensional and trans-
tensional domains, where both normal and strike-slip faults serve as conduits for fluid
flow [32]. The geological structure and dataset play a significant role in finding fluid flow
within geothermal systems. Conventionally, geothermal systems have been discovered
by drilling near visible geothermal features like fumaroles, hot springs, or known ther-
mal anomalies. Additional methods, such as geological and geophysical data, borehole
data, fault mapping, and other tools have been used to understand subsurface geological
structures. However, the future growth of geothermal development in Saudi Arabia relies
on finding new undiscovered geothermal systems which are not visible on the surface.
Subsurface exploration techniques must adapt to rely less on surface geothermal features.
It is crucial to incorporate accurate geological and geophysical data to delineate subsurface
structural features when analyzing geothermal processes [14,32].

3. Materials and Methods

Bottom hole temperature (BHT) data were collected from twenty-one (21) wells drilled
in the HR volcanic field. These data were obtained from Ministry of Environment, Water,
and Agriculture (MEWA). Details of the available borehole datasets and well logs cures
are described in Table 1. The boundary of the HR volcanic field and well locations is
shown in Figure 3. These BHT data were then used to estimate heat flow and temperature
distribution at various depths. This study utilized data from the Shuttle Radar Topography
Mission (SRTM), obtained from NASA, with a spatial resolution of 30 m, to analyze the
HR volcanic field. In addition, Landsat satellite data were employed to calculate LST and
NDVI during the summer season for 2000 and 2021. Landsat 5 TM satellite data were used
to gather information about the Earth’s surface for 2000. The Operational Land Imager
(OLI) of the Landsat-8 satellite images acquired in 2021 was utilized to calculate LST and
NDVI. Digital image processing methods were employed for said purpose.

Table 1. Details of available borehole dataset and well logs cures.

Well Name CALP NGAM HRD SHORT LONG SP TEMP TIME Th U K DENS Porosity

RAH-01 X X X X X X X × X X X × ×

RAH-02 X X X X X X X X X X X X X

RAH-03 X X X X X X X X X X X X X

RAH-05 X X X X X X X × X X X X X

RAH-06 X X X X X X X X X X X X X

RAH-07 X X X X X X X X X X X × ×

RAH-08 X X X X X X X × × × × × ×

RAH-10 X X X X X X X × × × × × ×

RAH-11 X X X X X X X × × × × × ×

RAH-12 X X X X X X X × X X X × ×

RAH-13 X X X X X X X X X X X × ×

RAH-15 X X X X X X X × X X X × ×
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Table 1. Cont.

Well Name CALP NGAM HRD SHORT LONG SP TEMP TIME Th U K DENS Porosity

RAH-16 X X X X X X X × X X X × ×

RAH-17 X X X X X X X × X X X × ×

RAH-19 X X X X X X X X X X X × ×

RAH-20 X X X X X X X X X X X × ×

RAH-21 X X X X X X X X X X X X ×

RAH-22 X X X X X X X × X X X × ×

RAH-23 X × × × × × × × × × × × ×

RAH-25 X X X X X X X X X X X × ×

RAH-27 X X X X X X × × X X X × ×
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This study utilized thermal infrared sensor (TIRS) and OLI images from Landsat 5 TM
and Landsat 8 for the years 2000 and 2021, respectively. These images were employed for
vegetation changes (measured through the NDVI) and LST within the study area. These
parameters are known to be indicative of geothermal characteristics, such as the presence
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of hydrothermal and warm ground on the surface. By analyzing these thermal infrared
images, this study aims to provide insights into the geothermal activity and prospecting
potential of the HR volcanic field. The Emissions Database for Global Atmospheric Re-
search (EDGAR) dataset was used to develop the CO2 emission distribution map of the
study area.

3.1. Well Logs Analysis

First, we perform a data quality check and select four wells based on their temperature
value being less than 50 ◦C and depth being higher than 450 m. RAH-02, RAH-07, RAH-
13, and RAH-17 are used for further well logs analysis to perform machine learning for
predicting the temperature. The available log curves for the four selected wells are natural
gamma ray (NGAM), self-potential (SP), long normal resistivity (LONG), short normal
resistivity (SHRT), high resolution density (HRD), formation density (DENS), porosity,
borehole temperature (TEMP), time, thorium (Th), uranium (U), and potassium (K). The
graphical display of the well log curve of RAH-13 is shown in Figure 4. The detailed
methodology of the work performed based on the curves is described step-by-step in
Figure 5.
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3.1.1. Subsurface Temperature Mapping

The subsurface temperature maps were made with the help of temperature log curves.
The subsurface temperature mapping was generated. The reason for making these maps
was to know the thermal potential of the subsurface. The temperature mapping was made
at depth intervals of initial depth, 50 m, 100 m, and 125 m, encounters in wells.

3.1.2. Heat Production (HP)

GR spectrometry is frequently used in the lab to assess HP [33]. Numerous researchers
have used various methods to evaluate HP, including the airborne spectrometry GR ap-
proach [34,35] and the GR logging method [36]. When calculating HP as a function of depth,
the natural GR log using API (American Petroleum Institute) units is quite helpful [37].
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So, for calculating the HP parameter, we employed the GR log. We used Equation (1) to
determine the HP.

HP(µw/m3) = 0.0158 (GR (API) − 0.8) (1)
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3.1.3. Geothermal Gradient

A subsurface well reveals a consistent increase in temperature with depth [38]. Ac-
cording to Lashin et al. (2014), the temperature increase is typically expressed as a function
of a geothermal gradient (GG) and rises per kilometer of depth. The existence of a ra-
dioactive element, which raises temperatures without regard to depth, gradually causes
the subsurface temperature to increase. According to Cooper and Cowan (2006) [39], the
geothermal gradient can be calculated using Equation (2).

GG =
Tf ormation − Tsur f ace

Depth
(2)

3.1.4. Temperature Prediction Using Machine Learning

Machine Learning (ML) has arisen as a novel method for solving technical issues,
such as missing wellbore logs or errors in observed logs [20]. Supervised machine learning
is the fundamental method of ML, which means that once both the data input and the
associated identify are known and supplied to the technique, its algorithms build a model
to connect the input (or feature) vector to a conforming label or objective vector using
training information [40]. The component of the regression technique, called log curve
prediction or correction, is employed to forecast discrete values [20].

Unattainable or insufficient observations were eliminated from the chosen log curve
before training with the selected model. The splitting of data over three standard deviations
(SD) from the data average was considered to be an outlier. The outlier was removed with
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the SD filter’s help, and the SD result is shown in Figure 6. The pair plot with and without
removing the outlier are shown in Figures S1 and S2, respectively.

Before Outlier Removal After Outlier Removal with Standard Deviation Filter 
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Figure 6. Before and after the removal of the outlier with the standard deviation filter of RAH-13.

Several strategies were used to identify the missing numbers, comprehend the data
distribution, and visualize the available data after the data were imported into Excel.
Python’s Panda’s Library was employed for this intended purpose. The exploratory
data analysis (EDA) method was used to manage the data. Exploratory research is the
evaluation procedure for conducting the first analysis of the provided data to investigate
hypotheses, discover abnormalities, identify trends, and check assumptions with the aid
of visualizations [41]. We evaluated the data at this step to see if further processing or
purifying was required. The import of CSV into Python, a bar plot (Figure 7) that aids in
assessing the accuracy of the data, was created using the ‘missingno’ package. The Seaborn
module for Python was utilized to examine the multi-factor variation in the information [42].
We plotted a pair plot that provided essential details regarding the data quality. It provided
the data’s dispersion type.
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Temperature logging refers to the subsurface temperature measure in centigrade for a
geothermal formation analysis. We calculated the temperature log data by constructing
a predictive model using regression techniques. Linear regression (LR) is the name of
the model where a dependent variable, (y), is related to a single independent variable,
(x). Linear regression is a statistical tool that estimates the linear connection between a
supported variable and one or more independent features [43,44]. Regression modeling is
used to assess the connection among many variables. The corresponding characteristics
between the two parameters are unaffected by the data linkage. This model needs a goal
position to be forecasted and a variable that closely connects to the objective point. The
parameter was chosen using a correlation matrix, and the chances were scaled from 1
to 1 (Figure 7). The training and prediction stages comprised the supervised-learning
workflow [45]. It was observed that temperature, with a value of 0.98, closely corresponds
to the temperature curve values. The model was trained using 80% of the points in Euclidian
space and tested using the remaining 20% of the data points. The evaluation of performance
matrices was used to verify the precision of the created framework. There are numerous
evaluation metrics for distinct models. The root mean squared error (RMSE), R2 scores,
the correlation between testing data and predicted data, and a graph of actual values vs.
predicted ones, are common performance indicators for most algorithms.

3.2. Magnetic Data

Regional aeromagnetic surveys were conducted over the Precambrian rocks of the
Arabian Shield during the years 1962, 1965–1966, and subsequently in smaller areas between
1976 and early 1983. The purpose of these surveys was to support mineral prospecting
activities in the region. The surveys employed different specifications and techniques
depending on the time and area being surveyed.

The initial surveys in 1962 and the comprehensive survey in 1965–1966 utilized terrain
clearances of 150 m and 300 m, respectively. The line spacing varied between 500 m and
2000 m, with an approximate spacing of 800 m. Analog recording methods were used
during these surveys.

To complete the coverage of the Arabian Shield, additional surveys were conducted
in smaller areas, including the volcanic areas known as Harrats, between 1976 and early
1983. These surveys had a line spacing of 2500 m and a terrain clearance of 300 m. In 1976,
a survey commissioned by the Saudi–Sudanese Commission focused on the central Red
Sea region.

The Phanerozoic rocks, which represent a more recent geological period, were sur-
veyed separately in 1982 and 1983. These surveys employed digital data recording methods
and had a terrain clearance of 120 m and a line spacing of 2000 m.

These aeromagnetic surveys were instrumental in gathering information about the
magnetic properties of the rocks in the Arabian Shield and the surrounding areas. The data
obtained from these surveys can be analyzed to identify potential mineral deposits and
geological structures, aiding in mineral prospecting and exploration efforts [46].

Georgel et al. (1990) [46] digitized the early analog data and produced TMI (total
magnetic intensity) and RTP (reduced-to-pole) maps in which the data were continued
upward to 800 m above ground level. These maps yielded useful information on the
regional variations in the magnetic anomaly field, although they tend to lack fine detail.
Hase (1970) [47] analyzed the shield’s magnetic data, and Johnson and Vranas (1992) [48]
conducted an overall analysis of the magnetic patterns in the shield. The cover rock survey
data were analyzed at a regional scale by Phoenix Corporation (1985) [49], and locally, the
data were analyzed in greater detail (e.g., [50,51]).

The aeromagnetic data were obtained from the Saudi Geological Survey (SGS). An
early interpretation of the magnetic data over the Red Sea was provided by [52]. The CET
Grid Analysis contains tools for texture analysis, phase analysis, and structure detection.
These algorithms are useful for grid texture analysis, lineament detection, edge detection,
and threshold detection. More details on the CET can be found in [53–57].



Sustainability 2023, 15, 12718 12 of 36

3.3. LST and NDVI and CO2 Emissions

Conventional surface exploration methods for characterizing potential geothermal
areas involve time-consuming and costly field surveys and the gathering of local knowl-
edge through literature surveys. However, these methods are unreliable for inaccessible or
remote geothermal areas. To address this issue, this study explored the cost-effectiveness
and efficacy of satellite RS in providing an initial land surface characterization for compre-
hensive geothermal exploration. Surface thermal anomalies associated with geothermal
features were delineated [15,18,58,59]. RS and GIS approaches were integrated to map
geothermal manifestations and evaluate potential geothermal zones. The mapping process
utilized data from Landsat 8 OLI. The utilization of GIS and RS in geothermal exploration
proved to be crucial, as these tools offer a more powerful and cost-effective appraisal of
geothermal resources [11,60].

The measurement of LST plays a vital role in identifying potential locations for hot
springs sites. Landsat satellite images can estimate the surface temperature for the entire
study area [13]. The LST derived from RS image inversion was utilized for quantitative
analysis, enabling the detection of geothermal anomaly zones to mitigate the impact of
solar radiation on the land surface [61]. The collection of LST data offered valuable insights
into the distribution and characteristics of geothermal reservoirs and subsurface areas
containing hot rocks or fluids suitable for geothermal energy production [61,62].

In this study, 100 different sample locations within the study area were selected to
obtain LST and NDVI data within the study area. These sample points, representing the
collection sites for LST and NDVI measurements, are depicted in Figure 8, with orange
indicating the sample points and black squares representing the boundary of the area under
study. The NDVI was calculated using the near-infrared and red bands of the Landsat
satellite, as described in Equation (3) [12].

NDVI = NIR − RED/NIR + RED (3)

where NIR is near-infrared and RED is red reflectance.
The values of NDVI and LST were then extracted for the observed years, namely,

2000 and 2021. The relationship between LST and NDVI was determined using Pearson’s
correlation coefficient approach.

The EDGAR dataset was used to develop the CO2 emission map over the study field.
The prime objective of EDGAR is to provide scientists and policymakers with information
on the evolution of emission inventories for all countries worldwide over time. It also
offers the scientific community grid maps at a resolution of 0.1 × 0.1◦, illustrating the
sources of emissions [63]. It has become evident that a strong correlation exists between
active tectonic regions and unusual emissions of CO2 from the Earth’s crust. Their high
permeability characterizes faults and fractures and serves as preferential pathways for
the upward migration and release of deep-seated gases into reservoirs or the atmosphere.
Indeed, present-day volcanoes release relatively very small quantities of CO2 compared to
land-use changes [64,65]. An increase in geochemical parameters, specifically the LST as
well as CO2 emission within the volcanic active area, were observed [66].
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4. Results and Discussions

Saudi Arabia has a wealth of geothermal energy resources. Still, little research has
been performed to assess their potentials, notably in the west side of the country near the
Red Sea coast, where volcanic fields and hot springs are present [6]. It has been proposed
that the volcanic fields in Rahat and Khaybar have geothermal potential. Additionally, the
largest potential of geothermal zones is found on the west side, sideways in the direction of
the Red Sea, corresponding to the geothermal resources record recognized for Saudi Arabia.
Moreover, Rehman and Shash (2005) [67] evaluated the scientific research on geothermal
potential and concluded that little geothermal phenomena were currently taking place at
the existing geothermal features (such as volcanic fields and hot springs). Hussein et al.
(2013) [68] and Lashin et al. (2020) [9] argued that, according to research on the geothermal
characteristics of Saudi Arabia, these volcanoes’ highly intensive explosive volumes present
viable opportunities for constructing geothermal energy plants. Geothermal energy sources
with temperatures of up to 150 ◦C and 300 ◦C may be found in the indicated geological
formations. Because of the lack of deep drilling, there are various doubts regarding the
potential. As a result, Saudi Arabia’s geothermal resources are sufficient for use on a
commercial basis.

4.1. Well Logs Interpretation

A statistical analysis of the temperature logs confirms that RAH-02, 7, 13, and 17 wells
have geothermal potential. The maximum temperature range of the wells is approximately
50 degrees Celsius, and the depth of these wells is greater than 450 m. The potential
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geothermal wells are shown in red, and the remaining wells are highlighted in blue, as
shown in Figure 9.
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Figure 9. Well logs temperature graphical presentation, which shows the names of the wells plotted
on the X-axis and the temperature on the Y-axis.

4.1.1. Subsurface Temperature Mapping

Subsurface temperature mapping was performed to assess the temperature variation
with respect to depth. Temperature maps were developed at depths of 10 m, 50 m, 100 m,
125 m, and 150 m, as shown in Figure 10. The range of temperature varies from 0 to 40 ◦C.
It can be observed that the south portion of the map shows geothermal potential because
the highest temperature is encountered in that area.

4.1.2. Heat Production and Geothermal Gradient

The temperature log curves, which show a rising consistency with the logs at depth,
demonstrate that various elements, including timely response, position, depth, and geol-
ogy, can generate temperature differences. Using a probe to determine the temperature
distribution among numerous logs is also feasible due to variations in speed, temperature
inclination, and duration [69,70]. All the wells had their results evaluated based on the
available well data. The optimal outcome revealed that the higher typical temperatures
for borehole RAH 02, 07, 13 are less than 50 C ◦. Due to the significant fluctuations in the
drillings, the calculated temperature accurately reflects the formation temperature. Usually,
a great radioactive substance is involved in the measurement formation of the GR log. The
GR log was used in the calculation of HP. The HP curve shows the variation within the
total log profile that indicates there is the presence of a geothermal anomaly below ground.
The well logs are illustrated in Figures 11–14, for both the heat production and geothermal
gradient for wells RAH-02, RAH-07, RAH-13 and RAH-17, respectively. The depth between
135 and 142 m shows the presence of a geothermal body, and the spike in HP and GG are a
clear indication of a geothermal anomaly in the RAH-08 well. Geothermal resources are
present in the subsurface, according to the results of GG and HP.
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4.1.3. Temperature Prediction

For the evaluation, we adopted the corrected temperature data to estimate the lin-
ear regression, random forest, and XG Boost alongside the temperature model. Jordan
et al. (2016) [71] described the anticipated subsurface temperatures (from the actual tem-
perature) across the depth. Up to four wells’ worth of forecasted temperature data are
accessible, each with the highest forecasts at various depths. Using a linear regression
model, we interpolated the temperature-profile estimations for the real temperatures (in
the temperature-profile dataset). The mean absolute errors of the linear regression, random
forest, XG Boost, and the actual temperature were determined for the four boreholes after
the findings were analyzed. A summary of the ML algorithm results that were applied to
the well data is shown in Table 2.
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Figure 11. Calculation of HP and GG for the RAH-02 well. The depth is between 0 m and 145 m. The
higher the gamma ray log is means the HP is higher and indicates a potential source.

Figure 12. Calculation of HP and GG for the RAH-07 well. The trend of NGAM and HP follow the
same pattern; the higher the values of NGAM are, the higher HP is observed.
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Figure 13. All log curves are available for calculating HP and GG for the RAH-13 well. The maximum
HP of this well was observed between depth of a 140 and 160 m. At that depth, higher values of HP
were observed.

Figure 14. Estimation of HP and GG for the RAH-17 well.
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Table 2. A summary of ML algorithm results applied to the well data.

Well Name Machine
Algorithms Training R2 Score Testing R2

Score Adjusted R2 Mean Absolute
Error

RAH-02

Linear Regression 0.749 0.663 0.661 0.995

Random Forest 0.999 0.999 0.118 0.010

XG Boost 0.999 0.997 0.997 0.014

RAH-07

Linear Regression 0.259 0.231 0.229 1.185

Random Forest 0.999 0.993 0.261 0.015

XG Boost 0.999 0.990 0.997 0.012

RAH-13

Linear Regression 0.540 0.561 0.559 0.628

Random Forest 0.998 0.998 0.291 0.008

XG Boost 0.999 0.999 0.999 0.007

RAH-17

Linear Regression 0.445 0.409 0.405 1.110

Random Forest 0.999 0.996 0.091 0.031

XG Boost 0.999 0.999 0.999 0.015

The residuals plot is frequently used to examine the variation in the regression er-
ror. A linear regression approach is typically adequate for the data if the points have
an even distribution across the horizontal axis; alternatively, a nonlinear model is prefer-
able. Figures 15 and 16 below show the residual cross-plot generated based on XG Boost
algorithms. The training data are shown by the green color, and the predicted datasets
are shown by the blue color. The RAH-02, 07, 13, and 17 wells show the best results for
temperature prediction (Figure 16).
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Figure 15. Predicted vs. residual cross plot of the RAH-02 and RAH-07 wells. The green color shows
the training point, and the blue color shows the testing point. The residual plot is generated based on
the XG Boost algorithm.
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Figure 16. Predicted vs. residual cross plot of the RAH-13 and 17 wells. The green color shows the
training point, and the blue color shows the testing point. The residual plot is generated based on the
XG Boost algorithm. The black line represents the zero values in the graph; the RAH-13 and RAH -17
give the best results with the XG Boost techniques.

4.1.4. Predicted Temperature

On the basis of all the algorithms, the XG Boost gave the best result for training and
testing. So, we used XG Boost for the prediction of the temperature curve. Figures 17–20
are the predicted vs. actual temperature for the RAH-02, 07, 13, and 17 wells, respectively.
The predicted temperature is shown in purple, and the true temperature is shown in
green. The scattered points show the high-temperature values, which are an indication of a
geothermal reservoir.
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4.2. Magnetic Data Interpretation

Figure 21 shows the TMI magnetic map over the HR volcanic field. It can be observed
that some linear anomalies can be traced in the NW, trending on the west side of the
HR volcanic field. It is well-known that a magnetic trend does not occur randomly; it is
associated with a geologic structure. When analyzing the trends in the magnetic data, it
can be recognized that minor trends can be seen on the eastern side of the HR volcanic field.
In order to enhance the lineaments of the area of interest, an edge detection technique will
be used, CET grid analysis.
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Figure 21. TMI of HR volcanic field and surrounding areas.

CET Grid Analysis

This tool is specifically designed for mineral exploration by geophysicists and geolo-
gists looking for discontinuities within magnetic and gravity data. The CET grid analysis
provides a step-by-step trend detection menu which offers two different approaches to
trend estimation. The first method, texture analysis-based image enhancement, is suitable
for analyzing regions with subdued magnetic or gravity responses, where texture analy-
sis can first enhance the local data contrast. The second method, discontinuity structure
detection, is useful in identifying linear discontinuities and edge detection.

In the current study, we applied a CET filter to the TMI data in order to detect
lineation/edges inside and outside of the HR volcanic field. Figures 22 and 23 show the
results for where lineation (e.g., regional) inside and outside of the HR volcanic field was
detected. It can be observed that the main trend for inside lineation is in the NE direction,
while it is in the NW direction for the outside, as seen in the rose diagrams shown in
Figures 24 and 25.



Sustainability 2023, 15, 12718 25 of 36

Sustainability 2023, xx, x FOR PEER REVIEW 27 of 38 
 

while it is in the NW direction for the outside, as seen in the rose diagrams shown in 
Figures 24 and 25. 

 
Figure 22. Major trends for inside the HR, from an analysis of magnetic data, are in blue color while 
the minor trends are in red color. 

Figure 22. Major trends for inside the HR, from an analysis of magnetic data, are in blue color while
the minor trends are in red color.



Sustainability 2023, 15, 12718 26 of 36

Sustainability 2023, xx, x FOR PEER REVIEW 28 of 38 
 

 
Figure 23. Major trends for the outside are in red color while the minor trends are in blue color. 

Figure 23. Major trends for the outside are in red color while the minor trends are in blue color.



Sustainability 2023, 15, 12718 27 of 36Sustainability 2023, xx, x FOR PEER REVIEW 29 of 38 
 

 

Figure 24. Rose diagram for major trends inside the HR volcanic field. 

 

Figure 25. Rose diagram for major trends outside of the HR volcanic field. 

It can be recognized that the main regional trend outside of the HR volcanic field is 

in the NW direction, parallel to the Red Sea, while inside the HR volcanic field it was in 

the NE direction. The two trends are perpendicular to each other, which means they have 

a direct relationship during the forming process. 

Figure 24. Rose diagram for major trends inside the HR volcanic field.

Sustainability 2023, xx, x FOR PEER REVIEW 29 of 38 
 

 

Figure 24. Rose diagram for major trends inside the HR volcanic field. 

 

Figure 25. Rose diagram for major trends outside of the HR volcanic field. 

It can be recognized that the main regional trend outside of the HR volcanic field is 

in the NW direction, parallel to the Red Sea, while inside the HR volcanic field it was in 

the NE direction. The two trends are perpendicular to each other, which means they have 

a direct relationship during the forming process. 

Figure 25. Rose diagram for major trends outside of the HR volcanic field.



Sustainability 2023, 15, 12718 28 of 36

It can be recognized that the main regional trend outside of the HR volcanic field is in
the NW direction, parallel to the Red Sea, while inside the HR volcanic field it was in the
NE direction. The two trends are perpendicular to each other, which means they have a
direct relationship during the forming process.

The Red Sea is a tectonic rift zone which separates the Arabian Peninsula, on which
the HR volcanic field is located, and the African Plate. This rift zone has resulted in the
formation of several faults along the coastal sides. These faults are parallel and extend
along the Red Sea. They can be easily recognized in Figure 23, which was obtained from
the analysis of the magnetic data.

The majority of volcanic activity in the HR volcanic field is associated with the tectonic
process occurring along the Red Sea rift, even the formation of the HR due to the Red Sea
tectonic system.

These volcanic activities are represented by volcanic eruption and the flow of lava on
the ground, and the formation of volcanic cones.

In addition, it can be recognized that the main faults inside the HR (Figure 24) are in
the NE direction while the faults outside (Figure 25) are in the NW direction (parallel to the
Red Sea), which implies that the formation of the HR was due to the Red Sea rift system,
while the formation of faults inside the HR volcanic field were due to its local or small-scale
tectonic activity.

4.3. LST and NDVI and CO2 Emissions Interpretation

Integrating various datasets (such as geological, geophysical, field observation, geo-
chemical, remote sensing, and drilling technologies) is necessary to effectively manage
costs and reduce uncertainties in geothermal projects. RS offers a unique opportunity to
streamline and reduce costs at each stage of geothermal project development, including the
preliminary survey and potential site selection. RS data can be utilized to analyze surface
manifestations of geothermal sites, including examining surface deformations related to
geothermal activity, assessing gas emissions, and measuring surface temperature and heat
flux. RS techniques are valuable for exploring and identifying fumaroles and hot springs
through infrared analysis and surface topography. Although a wide range of exploration
tools are available for geothermal prospecting, previous exploration strategies within the
HR have been largely centered on geological and geophysical data interpretations. Gener-
ally, the identification of hydrothermal signatures related to geothermal prospects zones
identification must be interpreted with care. However, for the effective and sustainable
management of geothermal exploration programs, it is important to integrate spatial data
as a means of identifying the most suitable location and its extent [8,72,73]. Satellite RS of
thermal infrared radiation has proven effective in monitoring high-temperature volcanic
features. Satellites were equipped with sensors operating in the visible, infrared, and
thermal wavelength regions that could capture reflected and emitted radiation from the
surface [74]. The LST has undergone a qualitative classification using the classification
method described by [8,12] and presented in Table 3.

Table 3. LST indices were used to establish five qualitative classifications using satellite data [8,12].

Index Temperature Range (◦C) Qualitative Classification

1 <39 Very Low

2 39–41 Low

3 41–43 Medium

4 43–50 High

5 >50 Very High

Geothermal exploration involves the identification of regions with high subsurface
temperatures. One crucial parameter for such identification is the LST. In the current study,
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we examine the role of LST in exploring geothermal resources within HR. High LST values
can indicate volcanic activity, such as the presence of lava flows or hot gases, which can
cause an increase in LST. The HR volcanic field exhibited no active eruptions or significant
volcanic activity between 2000 and 2021. A comprehensive geological investigation of
mafic volcanism in the northernmost region of the HR volcanic field mapped 32 eruptive
units, which erupted from around 1014 ± 14 ka to a single Holocene event in 1256 A.D.
The lava flows in HR typically range from 10 to 15 km long, although some extend up to
23 km [24]. HR is a seismologically active area that experienced significant seismic activity
and encountered a swarm of earthquake events in 1999 [7]. Therefore, any rise in LST
recorded between 2000 and 2021 would likely be attributed to environmental factors rather
than volcanic influences. LST data from 2021 would likely exhibit a noticeable increase in
high LST as compared to 2000, as shown in Figure 26.
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The qualitative classifications of LST for the study area have determined that a maxi-
mum temperature-range data cluster lies within the high-to-very-high geothermal anomaly
zones (Figure 26). The pie charts in Figure 27 present the qualitative classifications of LST
for 2000 and 2021. In summary, it was concluded based on the qualitative classifications
of LST that in 2021, 86% of the area falls within the high-to-very-high temperature zone,
compared to 73% of the area in 2000, as shown in Table 4.
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and 2021.

Table 4. A summary of statistical analysis of qualitative classifications of LST for the years 2000
and 2021.

Year
Qualitative Classifications of LST

Very High High Medium Low Very Low

2000 2% 71% 12% 3% 12%

2021 24% 62% 6% 1% 7%

The presence of very high LST values in the northeastern parts of the HR suggests the
potential existence of geothermal resources in these areas. However, further geophysical
exploration is highly recommended to assess this region’s viability and development
prospects. The presence of very high LST values in 2021 in a very small zone in the
southwest parts of the HR suggests the potential existence of geothermal resources. Table 5
provides a comprehensive statistical analysis of LST and NDVI at various locations within
HR for the years 2000 and 2021.

Table 5. Details of the statistical analysis of LST and NDVI of the HR volcanic field, considering a
100-sample point.

Year
LST NDVI Correlation Coefficient

for LST-NDVIMin Max Mean Std Min Max Mean Std

2000 24.18 50.48 43.74 5.50 0.01 0.10 0.06 0.02 0.031

2021 28.42 53.81 46.36 5.24 0.01 0.13 0.07 0.02 0.095

RS was employed to gather data about an object and its surroundings from a con-
siderable distance. RS techniques, such as LST and NDVI methods, are an alternative
approach to detecting the presence of geothermal energy during geothermal exploration,
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addressing challenges related to time efficiency, economic feasibility, and accessibility to
exploration sites. The high level of vegetation presents a challenge to accurately iden-
tifying geothermal conditions, due to its ability to absorb heat energy from geothermal
surface features. This absorption results in lower LST recordings, impacting the geother-
mal identification process [58]. In this study, no vegetation is reported; almost 100% of
the land is classified as bare soil based on the classification of NDVI, which categorizes
three distinct types of surfaces based on their NDVI values: (a) bare soil (NDVI < 0.2), (b)
mixed surface (0.2 > NDVI < 0.5), and (c) fully vegetation (NDVI > 0.5), as described in
Figure 28 [8]. Figure 28 illustrates the variation in NDVI within HR for 2000 and 2021. It
is worth noting that the entire area was classified as bare soil for the years 2000 and 2021,
constituting almost 100% of the region, and a very limited area lies on the mixed surface on
the northwest corner of the map.
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The main primary sources of geogenic CO2 emission are generally most elevated in
thermal regions, which include the release of CO2 from the magmatic mantle, degassing
during metamorphic processes in active and dormant volcanoes and fault and fracture
zones, geothermal systems, and CO2-enriched groundwater [75,76]. In some cases, older
volcanic regions may also experience the emission of CO2 at low temperatures, but their
contribution is very low. Indicators of CO2 release include areas of disturbed or bare ground
and the presence of a rotten egg-like odor, which is associated with the presence of H2S.
Globally, our understanding of the contribution of volcanic CO2 is not as well-studied [75].
Volcanic and tectonic-related contributions account for less than 2% of anthropogenic
emissions [77]. CO2 is a prevalent gas emitted from volcanic areas. Changes in the release
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of CO2 from the soil over time and space are valuable for identifying the locations of
active faults and monitoring currently active volcanoes [78,79]. In addition to emissions
from living organisms, geogenic CO2 release typically originates from volcanic-magmatic,
mantle-related, or metamorphic sources. The quantity of accessible CO2 release data has
grown, prompting a timely assessment of the existing findings concerning one another [80].
The distribution map in Figure 29 shows the CO2 emission in the HR volcanic field,
highlighting the hotspots (red color) associated with active volcanic activities and their
connection to geothermal sources.
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5. Conclusions

This paper presents the land surface temperature and subsurface temperature distri-
bution of the study area, revealing the existence of geothermal resources with different
temperature ranges in the HR volcanic field. A crucial objective in advancing renewable
energy resources is the spatial prediction of geothermal zones in HR. This region holds
significant potential for geothermal energy production, particularly in the presence of
deep faults. Cenozoic volcanoes contribute to the favorable conditions for geothermal
energy exploitation in this area. The temperature logs confirm that the RAH-02, 07, 13, and
17 wells have geothermal potential, due to the maximum temperature range of around
approximately 50 ◦C. It was concluded that the south portion of the study area shows
the greatest geothermal potential because that zone had the highest temperature that was
encountered. Geothermal resources are present in the subsurface, as verified by GG and HP
results. We applied the CET filter to the TMI data in order to detect lineation/edges inside
and outside the HR volcanic field; the results indicate that lineation (e.g., regional) inside
and outside the HR volcanic field were detected. This study also examines thermal infrared
imaging for geothermal prospecting and the monitoring of thermal activity in HR. LST and
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NDVI analysis results indicate that the recorded temperatures range from 24.18 to 53.81 ◦C,
while the area exhibits bare soil with NDVI values ranging from 0.01 to 0.13. Therefore,
regions with temperatures greater than 43 ◦C are the best geothermal spots. The predicated
data found the HR region to be the best candidate with its high volcanic activity. CO2
emissions in the HR volcanic field highlight the hotspots associated with active volcanic
activities and their connection to geothermal sources. In summary, it can be inferred that
HR is abundant in geothermal resources, and the results presented in this paper provide
crucial information for identifying and prioritizing areas with high geothermal potential
for future exploration and development.

6. Future Research

Geothermal resources from volcanic fields like the Harrat volcanic field can provide a
sustainable and renewable energy source in the KSA. It is recommended that advanced
exploration techniques and acquisition methods are needed to further evaluate these
resources’ potential. Three-dimensional (3D) seismic data are required for a detailed knowl-
edge of the subsurface geometry of the geothermal reservoirs. Drilling a test exploratory
well to confirm the presence of high-temperature fluids and assess their flow rates could
provide valuable data about the subsurface conditions and help estimate the potential
energy output. It is suggested to perform a reservoir characterization study to analyze the
properties of the geothermal reservoir, such as permeability and the porosity of rocks, to
understand the fluids’ behavior and optimize the geothermal system’s design using 3D
seismic data and advanced well logs data. Furthermore, the evaluation of core data is also
essential for a better understanding of these reservoirs’ potential.
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