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Abstract: As an important replacement resource for conventional oil and gas, tight oil and gas are
quite abundant. Long horizontal wells and multi-stage fracturing have become key technologies for
developing tight oil and gas, and reasonable shut-in measures can improve the utilization efficiency of
fracturing fluid. Therefore, it is especially critical to master the pressure transfer law during the shut-
in process in tight reservoirs to further improve the energy efficiency of fracturing fluid. However,
many studies have mostly focused on the separate design of fracturing, shut-in and production, and
have not yet revealed the pressure transfer law during shutting in well based on the integration
of fracturing, shut-in and production, which makes it difficult to realize the efficient development
of tight oil and gas. Taking the tight oil reservoir in Block M as an example, the geological model
of the target block was established using an integrated fracturing development software platform,
on which the simulation of fracture extension, well shut-in and production was carried out. The
changes in the reservoir pressure field during shutting in well were analyzed, and the influence law
of fracturing fluid volume, shut-in time, reservoir original formation pressure and fracture network
complexity on the effect of well shut-in were studied to optimize the shut-in system. It was found that
the retained fluid increases, the pore pressure of the near-fracture matrix increases, and the diffusion
distance of fracturing fluid to the distant matrix increases. The tight oil production increased after
shutting in well, and the optimal retained fluid volume of 9600 m3 was actually preferred based on
the model. The pore pressure of the near-fracture matrix decreases as the shut-in time increases, the
diffusion distance of fracturing fluid to the distant matrix increases, and the pore pressure decreases
with an increase in diffusion distance. The tight oil production increased after shutting in well, and
the optimal shut-in time was actually preferred to be 90 days based on the model. The increase
in formation pressure on abnormal low pressure formation is larger, and the production can be
significantly improved after shutting in well. The more complex the fracture network is, the more
obvious the non-uniform variation in matrix pore pressure during shutting in well. The research is of
great significance for the optimal design of a shut-in system for tight reservoirs and the sustainable
development of oil and gas resources in China.

Keywords: integration of fracturing; shut-in and production; tight reservoirs; sustainable development
of resources; well shut-in after fracturing; pressure transfer; numerical simulation

1. Introduction

With the increasing depletion of conventional oil and gas, the development of con-
ventional oil and gas in China has entered the middle and late stage, and unconventional
oil and gas have gradually become the focus of oil and gas development [1–5]. As the key
resource for unconventional oil and gas development, tight oil is quite abundant. So far,
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tight oil with commercial exploitation potential has been found in Junggar, Ordos, Sichuan,
Songliao and other basins [6–10].

Horizontal wells and volumetric fracturing technology can form a complex network
of fractures in the reservoir. The ability to increase the volume of reservoir modification
while increasing the flow conductivity of the fractures can lead to an increase in single-
well production [11–15]. The oil field site shows that a reasonable shut-in system can not
only strengthen the displacement of fracturing fluid with reservoir crude oil to increase
production [16–20], but also effectively replenish formation energy to avoid production
decline due to rapid depletion of formation energy [21–25]. In recent years, scholars at
home and abroad have conducted a lot of research on this. Meng et al. [26] found that
an important reason for the improvement of core permeability during well shut-in is the
generation of microfractures induced by percolation. Gupta [27] and Fan [28] investigated
the effect law of fracture fluid flowback rate on short- and long-term production during
well shut-in by indoor experiments and numerical simulations, respectively. They found
that the lower the fracture fluid rejection, the higher the early recovery rate. Based on
spontaneous percolation of cores and NMR experiments, Mianmo et al. [29] found that
the larger capillary forces within the micropores of tight reservoirs can facilitate the entry
of fracturing fluid into the reservoir matrix, which in turn can release water-lock damage.
Nur et al. [30] established a single-hole discrete fracture network for tight reservoirs with
severe water-lock effects to simulate production after well shut-in. They found that shutting
in well can weaken reservoir water-lock damage. Wang et al. [22] developed an analytical
model to calculate the pressure distribution in the fracture fluid seepage area during
fracturing and shutting in well. They found that the fracture fluid seepage area increased
with the increase in shut-in time. Cheng et al. [31] simulated the dynamic distribution of
fluid in the fracture and matrix over time during shutting in well and production. They
found that extending the shut-in time can significantly increase production. Le et al. [32]
used a numerical simulation to study the imbibition of fracturing fluid into the reservoir
matrix after shutting in well and calculated the change in permeability within the reservoir.
The results showed that shutting in well can promote the recovery of reservoir permeability
to some extent.

However, most of the research focuses on the separate design of fracturing and well
shut-in, and few scholars have conducted comprehensive research on both, which is difficult
to meet the requirements of actual oil and gas development. Therefore, taking the tight
oil reservoir in Block M as the target of the study, an integrated fracturing, shut-in and
production model was constructed with the help of a Petrel-integrated software platform.
Based on this, the optimized design of a production enhancement method after shutting
in well is carried out according to the reservoir characteristics. As an important link in
the integration of geological engineering, the numerical simulation results in this paper,
if combined with the indoor experimental means, can more accurately reflect the actual
oilfield site and formulate the optimal design of fracturing and well shut-in solutions in
the future. This research is expected to make a greater contribution to the sustainable
development of oil and gas and ensure a stable supply of energy security.

2. Block Background
2.1. Geological Characteristics

The target block of the simulation is the M block tight oil reservoir. The main oil
reservoir is the C1 reservoir with a depth of 2070 m and an average effective oil thickness
of 12.5 m. The target reservoir is dominated by feldspar lithic sandstone and lithic feldspar
sandstone. The pore is mainly the solubility-intergranular combination type, and the
brittleness index of the reservoir rock is 35–40% [33]. The porosity of the C1 reservoir in the
target block is mainly distributed in 8–10%. The permeability is mainly distributed below
0.05 mD. The average porosity and permeability are 9.9% and 0.13 mD, respectively. The
distribution of porosity and permeability are shown in Figures 1 and 2. The original forma-
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tion pressure of the target reservoir is 15.8 MPa, with a horizontal stress difference between
two directions of 5–8 MPa and a more developed natural microfracture in the reservoir.
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2.2. Development Characteristics

The tight oil reservoir in the target block is characterized by a small horizontal stress
difference, a high rock brittleness index, the development of natural fractures and a quasi-
natural energy development of the/a staggered horizontal well network in the early stage.
The multi-stage fracturing technology of “long horizontal section, multi-fluid volume,
large displacement, multi-cluster injection, low-viscosity fracturing fluid and multi-scale
proppant” in the later stage form a complex fracture network in the reservoir and increase
the production of a single well.

High production was achieved by shutting in well for a period of time after fracturing.
The conventional fracturing fluid immediate backflow system can no longer meet the new
requirements for the efficient development of tight oil. A reasonable shut-in system is
gradually becoming a new trend for exploring effective ways to use tight oil and an efficient
development mode [34].

3. Integrated Model Establishment

The integrated model includes a geological model of the target block, a hydraulic
fracture extension model, a shut-in and production model. The modeling workflow is
shown in Figure 3. First, data on the target block need to be collected, and geological
modeling and well construction need to be performed as required. Then, a hydraulic
fracturing simulation can be performed after completion of a perforation and pumping
program design. Before shutting in well, it is necessary to divide the grid to display
the fracture extension simulation results. A well shut-in simulation can be performed
after completion of the shut-in system design. Finally, for production, the output can be
calculated according to the production system.
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The geological model is a simple theoretical model, considering only oil and water
phases, without complex structures such as faults and folds. The model only describes the
porosity and permeability characteristics of tight oil reservoirs. Assume that the reservoir
in the target block is a regular cubic reservoir with 720 m × 1200 m × 100 m in X, Y and Z
directions, respectively, and porosity of the model Poro = 0.099, permeability in X and Y
directions PermX = PermY = 0.13 mD, permeability in Z direction PermZ = 0.013 mD. The
reservoir porosity and permeability models in the target block are shown in Figures 4 and 5.
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Figure 5. The reservoir permeability model. (a) Permeability model in X and Y directions. (b) Perme-
ability model in Z-direction.

Target well A1 is a horizontal well with a depth of 4281 m and a horizontal section
length of 2237 m. The basic data such as well head data, well trajectory data, and well
attribute data of the target well are imported into the platform, and the target well is
displayed inside the geological model as shown in Figure 6.
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The rock physical parameters and fluid physical parameters of the model are designed
based on the actual data of the target block, and the specific data are shown in Table 1.
The relative permeability curve used were obtained from the core experiments, and the
oil–water relative permeability curves are shown in Figure 7. The matrix capillary pressure
used was obtained from the core mercury injection experiment, and the matrix capillary
pressure curve is shown in Figure 8.

Table 1. Table of reservoir and fluid properties parameters.

Type of Parameter Value

Crude oil parameters

Viscosity of crude oil on Viscosity of
crude oil in the subsurface/MPa·s 6.12

Viscosity of crude oil in the
subsurface/MPa·s 1.5

Density of crude oil on the
ground/(kg/m3) 840

Oil volume factor 1.293

Formation water
parameters

Viscosity of formation water/MPa·s 1
Volume factor of formation water 1.02

Density of formation water/(kg/m3) 1000

Reservoir parameters
Reservoir temperature/◦C 76

Original formation pressure/MPa 15.8
Rock compression coefficient/MPa−1 7.69 × 10−4
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Based on the geological model for the fracture extension simulation, the unconven-
tional fracture model (UFM model) is used as follows:

(1) Well construction. The target well A1 created in the geological model is converted
into a horizontal well to be fractured in the Kinetix module. The well structure design of
well A1 is shown in Table 2.

Table 2. The well structure design of well A1.

Name of Pipe
Column

Outer
Diameter/mm

Wall
Thickness/mm Steel Grade The Maxim

Setting Depth/m
Cement Return

Depth/m

Surface casing 244.48 8.94 J55 1189 The ground
Tubing casing 139.70 7.72 P110 4281 -

(2) Reservoir layering. Set the oil layer and interlayer parameters based on the electrical
interpretation data of the oil formation in the target block. The physical and rock mechanics
parameters of the model are shown in Table 3.
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Table 3. The physical and rock mechanics parameters.

Parameters Upper Interlayer Oil-Bearing
Formation Lower Interlayer

Reservoir physical
parameters

Formation Pressure/MPa 15.8 15.8 15.8
Reservoir thickness/m 8 15 8

Porosity/% 2 9.9 2
Permeability/mD 0.013 0.13 0.013

Rock mechanics
parameters

Young’s modulus/GPa 35 30 35
Poisson’s ratio 0.35 0.2 0.35

Horizontal maximum principal
stress/MPa 38 36 40

Horizontal minimum principal
stress/MPa 30 28 32

(3) Perforation design. Perforation design based on field completion data. The target
well A1 is 4281 m deep with a horizontal section length of 2237 m, designed to be fractured
in 10 sections, with 3 clusters in each section. Table 4 shows perforation data.

Table 4. Perforation data of well A1.

Section
Number

Cluster
Number

Top
Depth/m

Bottom
Depth/m Thickness/m Spacing/m

1
1 2736 2741 5 13
2 2723 2728 5 13
3 2710 2715 5 13

2
1 2681 2686 5 13
2 2668 2673 5 13
3 2655 2660 5 13

3
1 2626 2631 5 13
2 2613 2618 5 13
3 2600 2605 5 13

4
1 2571 2576 5 13
2 2558 2563 5 13
3 2545 2550 5 13

5
1 2516 2521 5 13
2 2503 2508 5 13
3 2490 2495 5 13

6
1 2461 2466 5 13
2 2448 2453 5 13
3 2435 2440 5 13

7
1 2406 2411 5 13
2 2393 2398 5 13
3 2380 2385 5 13

8
1 2351 2356 5 13
2 2338 2343 5 13
3 2325 2330 5 13

9
1 2296 2301 5 13
2 2283 2288 5 13
3 2270 2275 5 13

10
1 2241 2246 5 13
2 2228 2233 5 13
3 2215 2220 5 13
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(4) Natural fractures design. Keeping the length of natural fractures unchanged,
a model of hydraulic fracture expansion under different angles is established. Specific
parameters of natural fractures are shown in Table 5.

Table 5. Parameters of natural fracture.

Types Names Length/m Angle/◦

No natural fracture - - -

Change the angle of
natural fractures

FN1 30 0
FN2 30 20
FN3 30 40
FN4 30 60
FN5 30 80

(5) Pumping schedules design. The same pumping schedules are used for all sections
regardless of the presence of natural fractures, with a single section fracturing fluid volume
of 1200 m3. Specific pumping schedule for a single section is shown in Table 6.

Table 6. Pumping schedule for a single section.

Construction
Stage Type of Liquid Pumping Rate/

(m3/min)
Liquid

Volume/m3 Proppant Type Proppant
Concentration/(kg/m3)

pad fluid Low viscosity
slickwater 6 230 - 0

Sand-carrying
liquid

High viscosity
slickwater 6 150 30/50 low density

ceramsite 120

Sand-carrying
liquid

High viscosity
slickwater 6 160 30/50 low density

ceramsite 140

Sand-carrying
liquid

High viscosity
slickwater 6 160 30/50 low density

ceramsite 160

Sand-carrying
liquid

High viscosity
slickwater 6 160 30/50 low density

ceramsite 200

Sand-carrying
liquid

High viscosity
slickwater 6 160 30/50 low density

ceramsite 240

Sand-carrying
liquid

High viscosity
slickwater 6 180 30/50 low density

ceramsite 280

(6) Hydraulic fracturing simulation. After completing parameter input and design,
hydraulic fracturing simulation can be performed. The distribution of fractures without
natural fractures is shown in Figure 9. When there are natural fractures, take the natural
fracture FN1 as an example, and the distribution of fractures is shown in Figure 10.

The shut-in and production simulation based on the fracture extension model is
performed as follows:

(1) Grid division. The fracture extension simulation results are displayed in the grid,
and the reservoir matrix pore pressure changes can be observed in the grid when simulating
shut-in well. Figure 11 shows the fracture grid in both cases of no natural fracture and 0◦

natural fracture. The purple area in the figure represents the reservoir matrix and the thick
black line represents the fracture network of the reservoir.
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lation results (No natural fractures). (b) Top view of fractures distribution (3D diagram (left), 2D
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Figure 10. Distribution of hydraulic fractures when the natural fracture angle is 0◦. (a) Fracture
propagation simulation results (0◦). (b) Top view of fractures distribution (3D diagram (left), 2D
diagram (right)).
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Figure 11. Fracture network in two cases.

(2) Shut-in system development. Part of the fracturing fluid entering the reservoir
flows back, while the other part stays in the reservoir. Keeping the fracture network
parameters constant, the amount of fracturing fluid used to shut-in well is calculated by
the ratio to the total fracturing fluid volume. The ratio is shown in Table 7.

Table 7. Ratio of retained fluid volume to total fracturing fluid volume.

Retained Fluid Volume/Total Fracturing
Fluid Volume/(%) Retained Fluid Volume/m3

10 1200
20 2400
30 3600
40 4800
50 6000
60 7200
70 8400
80 9600
90 10,800
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(3) Shut-in well simulation. While pressure changes within the fracture network
during shutting in well cannot be directly monitored, the bottom hole pressure can reflect
the flow of fracturing fluid into the reservoir matrix and pressure propagation. Therefore,
it is necessary to monitor and analyze the bottom hole pressure.

(4) Production simulation. All production models were produced for 3 years at a
constant bottom hole flow pressure as the original formation pressure in order to compare
the effect of production increase. The 0.5% increase in cumulative oil production is taken as
the threshold value for the optimal design of well shut-in. When the increase in production
is less than 0.5%, the effect of shutting in well on production is considered insignificant.

The integrated fracturing, shut-in and production model established in this paper can
directly observe the change in reservoir matrix pore pressure on the one hand, and reflect
the fluid flow and pressure transfer in the fracture network from the bottom hole pressure
on the other hand. It can well-characterize the pressure change during shutting in well of
tight reservoirs.

4. Simulation Result Analysis
4.1. Fracturing Fluid Volume

The total amount of fracturing fluid is kept constant at 12,000 m3 and different injection
volumes are set to simulate well shut-in.

The pore pressure distribution of the reservoir matrix in 90 days of shutting in
well with different retention volumes is shown in Figure 12. It can be seen that the
fracturing fluid trapped in the fracture during shutting in well slowly diffuses into
the matrix. The near-fracture matrix pore pressure increases first, then the fracturing
fluid slowly enters the distant matrix whose pore pressure increases, but the increase
is small. The more retained fluid in the reservoir, the greater the pore pressure of the
near-fracture matrix under the same shut-in time, and the greater the diffusion area
of fracturing fluid to the distant matrix. However, retained fluid cannot be increased
indefinitely. When the ratio of retained fluid volume to total fracturing fluid volume
is greater than 80%, that is, when the retained fluid volume exceeds 9600 m3, the
diffusion area of fracturing fluid hardly expands anymore. This indicates that only
increasing retention fluid has a limited effect on increasing production after shutting
in well.
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Figure 12. Reservoir matrix pore pressure distribution with different fluid volumes.

The variation in bottom hole pressure at different fluid volumes is shown in Figure 13.
It can be seen that the more retained fluid, the higher the initial pressure at the bottom
of the well. The rapid flow of fracturing fluid in the fracture network at the beginning of
shutting in well causes a rapid drop in bottom hole pressure. The less fracturing fluid is
retained, the greater the reduction rate. In the later period, fracturing fluid diffused into the
reservoir matrix and the rate of bottom hole pressure reduction slowed. The more retained
fluid, the higher the bottom hole pressure at the end of well shut-in.
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Figure 13. The variation of bottom hole pressure at different fluid volumes.

To determine the optimal retained fluid volume, production is performed after shutting
in well. The changes in cumulative oil production and cumulative water production under
different fluid volumes are shown in Figures 14 and 15. It can be seen that the cumulative
production all showed a trend of rapid increase in the early stage and a gradual, slowdown
increase in the later stage. The more retained fluid, the more cumulative oil production,
but the increase in cumulative oil production gradually decreases.
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Figure 14. The change in cumulative oil production under different fluid volumes.
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Figure 15. The change in cumulative water production under different fluid volumes.

According to the above results, the relationship of cumulative oil production and
its increase under different fluid volumes is shown in Figure 16. It can be seen that
the cumulative oil production increases with the increase in retained fluid. When the
ratio of retained fluid volume to total fracturing fluid volume equals 30%, the increase
of cumulative oil production starts to decrease, but the cumulative oil production is still
relatively significant. When the ratio of retained fluid volume to total fracturing fluid
volume is greater than 80%, that is, when the retained fluid volume exceeds 9600 m3, the
increase in cumulative oil production has been reduced to 0.36%. When the increase of
cumulative oil production is less than 0.5%, increasing retained fluid has little effect on
increasing production. According to the model, the optimal fluid volume is 9600 m3.
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Figure 16. The relationship of cumulative oil production and its increase under different
fluid volumes.

4.2. Shut-in Time

Keeping the fracture network parameters unchanged, the simulated fluid volume is
9600 m3, and different shut-in times are set to simulate well shut-in.

The pore pressure distribution of the reservoir matrix in different shut-in times is
shown in Figure 17. It can be seen that the fracturing fluid gradually diffuses to the distant
matrix with the increase in shut-in time, the near-fracture matrix pore pressure gradually
decreases, and the distant matrix pore pressure has increased. The longer the well is shut-in,
the farther and wider the diffusion distance of fracturing fluid to the distant matrix. When
the shut-in time exceeds 90 days, the diffusion area of fracturing fluid hardly expands
anymore. This indicates that only increasing shut-in time has a limited effect on increasing
production after shutting in well.
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Figure 17. Reservoir matrix pore pressure distribution with different shut-in times.
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The variation in bottom hole pressure at different shut-in times is shown in Figure 18.
The rapid flow of fracturing fluid in the fracture network at the beginning of shutting in
well causes a rapid drop in bottom hole pressure. The bottom hole pressure of the well
shut-in for 5 days was reduced by about 6 MPa, compared to that of the initial period. In
the later period, fracturing fluid diffused into the reservoir matrix and the rate of bottom
hole pressure reduction slowed. The bottom hole pressure of the well shut-in for 150 days
was reduced by about 12 MPa, compared to that of the initial period.
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Figure 18. The variation of bottom hole pressure at different shut-in times.

To determine the optimal shut-in time, the changes in cumulative oil production and
cumulative water production under different shut-in times are shown in Figures 19 and 20.
It can be seen that when producing immediately after fracturing, the cumulative oil produc-
tion continues to increase but the total amount is small and almost no water is produced.
The cumulative oil production of the well shut-in for 5 days increased by about 4000 m3,
compared to the immediate production after fracturing. For long-term production, with
the increase in shut-in time, the greater the cumulative oil production and the better the
stimulation effect.
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Figure 19. The change in cumulative oil production under different shut-in times.
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Figure 20. The change in cumulative water production under different shut-in times.

According to the above results, the relationship of cumulative oil production and
its increase under different shut-in times is shown in Figure 21. It can be seen that the
cumulative oil production increases with the increase in shut-in times. When the shut-in
time reaches 30 days, the increase of cumulative oil production starts to decrease, but the
cumulative oil production is still relatively significant. When the shut-in time exceeds
90 days, the increase in cumulative oil production is reduced to 0.43%. When the increase
of cumulative oil production is less than 0.5%, increasing shut-in time has little effect on
increasing production. According to the mode, the optimal shut-in time is 90 days.
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4.3. Original Formation Pressure

Set abnormal low pressure formation with original formation pressure coefficient of
0.6 and 0.8 (p = 12.2 MPa, 15.8 MPa), normal pressure formation with original formation
pressure coefficient of 1.0 and 1.2 (p = 20.3 MPa, 24.4 MPa), and abnormal high pressure for-
mation with original formation pressure coefficient of 1.4 and 1.6 (p = 28.4 MPa, 32.5 MPa),
respectively. The simulation uses the preferred results of Sections 4.1 and 4.2, that is, the
effect of different original formation pressures on the shut-in effect when the simulated
fluid volume is 9600 m3 and the shut-in time is 90 days.

The variation in bottom hole pressure at different original formation pressures is
shown in Figure 22. It can be seen that the declining curve pattern of bottom hole pressure
at different original formation pressures is similar. The rapid flow of fracturing fluid in the
fracture network at the beginning of shutting in well causes a rapid drop in bottom hole
pressure. In the later period, fracturing fluid diffused into the reservoir matrix and the rate
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of bottom hole pressure reduction slowed. Low bottom hole pressure at the end of shutting
in well results in abnormal low pressure.
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Figure 22. The variation of bottom hole pressure at different original formation pressures.

The change and increase ratios in formation pressure under different original formation
pressures are shown in Figure 23. It can be seen that the smaller the original formation
pressure coefficient, the better the supplement effect of formation pressure after shutting in
well. The energy supplement effect of shutting in well on abnormal low pressure formation
is the best, on normal pressure formations the second, and on abnormal high pressure
formations the worst.
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Figure 23. The change and increase ratios in formation pressure under different original forma-
tion pressures.

The changes in cumulative oil production and cumulative water production under
different original formation pressures are shown in Figures 24 and 25. It can be seen that
the lower the formation pressure coefficient, the higher the cumulative oil production and
the lower the cumulative water production. The abnormal low pressure formation with a
formation pressure coefficient of 0.6 increased cumulative oil production by about 700 m3,
compared to the abnormal high pressure formation with a formation pressure coefficient of
1.6 after shutting in well. It indicates that well shut-in is more effective in supplementing
the energy of abnormal low pressure formations and can produce more tight oil compared
to normal pressure formations and abnormal high pressure formations.
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Figure 24. The change in cumulative oil production under different original formation pressures.
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4.4. Complexity of Fracture Network

Natural fractures are an important factor in the complexity of the hydraulic fracture
network [35–43]. Based on the optimal fluid volume of 9600 m3 and the optimal shut-in
time of 90 days, the natural fracture angle was changed to simulate well shut-in.

The fracture network formed by hydraulic fracturing at different natural fracture
angles is shown in Figure 26. Take the example of Figure 27 when the natural fracture
angle is 0◦ (partial enlargement of Figure 26a). A large number of second fractures with
a relatively short length and nearly uniform angle are formed by the main fractures com-
municating with natural fractures during the expansion. The second fractures reduce the
length of the main fractures, but make the network more complex. The complexity of the
fracture network changes as the angle of the natural fractures changes. As can be seen from
Figure 26, the larger the natural fractures angle, the fewer natural fractures are communi-
cated, the longer the main fracture length and the less complex the fracture network. When
the natural fractures angle increases to 80◦, as shown in Figure 28 (partial enlargement of
Figure 26e), only a small number of natural fractures are communicated during hydraulic
fracturing and a simple fracture network is formed.
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Figure 28. Fracture network of 80◦ natural fracture.

The pore pressure distribution of the reservoir matrix in different natural fracture
angles is shown in Figure 29. It can be seen that the matrix pore pressure around the
fracture network exhibits a non-uniform variation. The smaller the natural fracture angle,
the more complex the fracture network and the more obvious the non-uniform variation
in pore pressure. Take the pore pressure variation when the natural fracture angle is 0◦

in Figure 30 as an example (partial enlargement of Figure 29a). The denser the fracture
network, the faster the fracturing fluid diffuses into the matrix, and the faster the pore
pressure decreases, as the light-colored area in the figure. The thinner the fracture network,
the slower the fracturing fluid diffuses into the matrix, and the slower the pore pressure
decreases, as the dark-colored area in the figure. The matrix pore pressure around the
fracture network tends to vary uniformly when the natural fracture angle exceeds 40◦.
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Figure 29. Reservoir matrix pore pressure distribution with different natural fracture angles.
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Figure 30. Reservoir matrix pore pressure distribution with 0◦ natural fracture.

The variation in bottom hole pressure at different natural fracture angles is shown in
Figure 31. It can be seen that the smaller the natural fracture angle and the more complex
the fracture network, the more rapid the flow of fracturing fluid and the greater the decline
in bottom hole pressure at the early stage of shutting in well. As the fracturing fluid
gradually diffuses into the reservoir matrix, the rate of bottom hole pressure reduction
slowed. The minimum bottom hole pressure of the fracture network formed by the 0◦

natural fracture at the end of shutting in well was 29.0 MPa.
The changes in cumulative oil production and cumulative water production under

different natural fracture angles are shown in Figures 32 and 33. It can be seen that the
cumulative production under each natural fracture angle shows a trend of rapid increase at
the early stage and a slowdown increase at the later stage. The smaller the natural fracture
angle is, the more oil is produced cumulatively and the less water is produced cumulatively
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after shutting in well. Compared with the natural fracture angle of 80◦, the 0◦ natural
fracture increases oil production by about 600 m3, and compared with no natural fracture,
the oil production increases by about 900 m3 after shutting in well. This indicates that
natural fractures can improve the shut-in effect.
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5. Conclusions

(1) The amount of retained fluid increases, the pore pressure of the near-fracture matrix
increases, the diffusion distance of fracturing fluid to the distant matrix increases and
the pore pressure decreases with the increase in diffusion distance; the bottom hole
pressure after shutting in well is proportional to the amount of retained fluid; during
production, the cumulative oil production is proportional to the amount of retained
fluid, but the increment of oil production decreases with the increase of the amount of
retained fluid.

(2) The pore pressure of the near-fracture matrix decreases as the shut-in time increases,
the diffusion distance of fracturing fluid to the distant matrix increases, and the pore
pressure decreases with the increase in diffusion distance; bottom hole pressure after
shutting in well is inversely proportional to shut-in time; for long-term production,
cumulative oil production is proportional to the shut-in time, but the increment of oil
production decreases with shut-in time.

(3) The curve of the bottom hole pressure at different original formation pressures has a
similar pattern and the magnitude is proportional to the original formation pressure;
the increase of formation pressure on abnormal low pressure formation is larger, and
more tight oil can be produced after shutting in well.

(4) The smaller the natural fracture angle and the more complex the fracture network,
the more obvious the non-uniform variation in matrix pore pressure, and the lower
the bottom hole pressure after shutting in well. During production, the smaller the
angle of the natural fracture formed by the fracture network, the more oil is produced
after shutting in well.
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