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Abstract: Underground mines are a vital part of the European raw material industry. The subsurface
mining process is related to the large-scale development of underground structures like tunnels,
chambers, workings, etc. These structures are abandoned or liquidated during the process of
exploitation or after the termination of works. Still, due to the unique environment, post-mining
facilities may be adopted for different purposes. There are few examples of implementations of
this capacity in practical terms such as underground laboratories (ULs), energy storages, landfills
of dangerous wastes, or food production plants. Unfortunately, the unique environment offered
by underground space is also related to the occurrence of exceptional hazards, like seismicity and
ground control problems, gases, floods, the lack of natural ventilation, and high temperatures. This
results in low interest in investing in such facilities. Within this paper, some ways to repurpose
underground mines have been presented, and possible challenges that need to be faced have been
described. An extensive database of threats to post-mining repurposing and ways to mitigate them
has been prepared based on surveys and interviews conducted with representatives of currently
existing Uls and mining companies and a literature review. Finally, this manuscript provides a general
look at post-mining infrastructure in Europe’s current situation and in the future.

Keywords: underground facilities; post-mining repurposing; sustainable development

1. Introduction

The objectives of sustainable development concern harmonised relations between
humans and natural environments. Policy in this matter was officially discussed at the
United Nations (UN) forum and focused on the wide scope of issues related to human well-
being and the health of the planet [1]. As a result, the United Nations prepared guidelines
in the form of 17 Sustainable Development Goals (SDGs). The function of the goals is to
stimulate action in areas of critical importance to humankind and the planet. The goals
are global and universal [2]. The achievement of the SDGs is strongly supported by the
European Union. All aspects of the SDGs were implemented in long-term European policy,
which was reflected in European treaties, core projects, and sectoral strategies. One of the
objectives listed in the SDGs is related to industry, innovation, and infrastructure. Part of
these initiatives is industrial development, which positively impacts the improvement of
living standards [3]. Thanks to this policy, the EU supports activity in the field of research
and development as a source of innovations. This strategy also involves the mining sector,
a significant part of European industries and economies.
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Different industries and industrial operators commit to the UN SDGs in their opera-
tions and operational practices. However, the potential of the established infrastructure
is often forgotten after the end of its original use. In the case of the mining industry, the
established infrastructure is not limited to surface infrastructure but can consist of quarries,
open pits, and a vast network of underground tunnels, galleries, and workings. Many of
these facilities could be beneficial for non-mining activities, but in reality, most of them
become abandoned during or after the end of the mining activities. Still, as pointed out by
the authors of [4], these underground constructions are well fitted to hosting earth science
and astroparticle and particle physics experiments [5], which in the long term, could be
profitable as well. One of the most utilised properties of the underground environment
is its natural shielding and even isolation from surface factors, including seasonal and
weather changes, electromagnetic waves, and cosmic radiation [6]. All these aspects cre-
ate many chances to adopt these available spaces for different types of activities, which
can create benefits in various branches of science, industry, education, tourism, or even
agriculture [6–9]. Additionally, facilities located deep underground may be well suited for
long-term or permanent storing of mining and post-flotation [10], chemical [11], or radioac-
tive wastes [12,13], which may bring positive effects on local society and the environment.
For example, underground nuclear waste storages are safer than surface storage places.

The extension of the use and the life cycle of infrastructure that has already been
heavily invested in is important for economic and social sustainability. Concerning mines,
investments both before and during operations in the supporting civil infrastructure,
the surface facilities, and the actual underground infrastructures have faced enormous
investment costs, which are much greater than in other industries. The investment cost is
spread over many years of mineral exploitation, and the first profits appear after many
years of operation. Moreover, mining investments are subject to technical and market
uncertainty [14,15]. Repurposing some parts, or the whole mine site, and having different
businesses after the termination of excavation means a more efficient return of investment
for local societies, mining companies, or other infrastructure operators managing the site.
Using a site for a longer period, even if for a different type of operation, benefits the local
communities and societies in mitigating the negative effects that ending mining operations
has on employment, taxation, and, eventually, accessibility to services. Such a way of
improving typical mining activity will help develop other branches of science and industries
and should help change the public perception of the mining industry. Furthermore, in the
process of transforming the region, it will protect against its degradation (mainly economic
and spatial management).

The reuse of mine infrastructures fits into both the SDGs and the principles of a circular
economy [16]. Therefore, post-mining site reuse is significant as long as the risks associated
with the closure of the mine have been identified [17].

Additionally, the underground environment, despite having visible advantages, is also
affected by the harsh and hazardous environment. The biggest challenges in repurposing
underground workings into laboratories, tourist routes, etc., are strongly connected with
safety. According to a report [18,19], underground mining is characterised by the highest
accident rate among all industrial branches. As pointed out by Lööw et al. [20], the
underground environment creates many different hazards, including physical, chemical,
and ergonomic hazards, which may cause health problems connected with musculoskeletal
disorders, hearing loss, and respiratory system diseases [20,21]. Considering the EU’s
policy concerning safety [22] and observed trends in mining companies in recent years,
one may conclude that safety must be prioritised in mine reuse, beginning with initial
plans [23]. This means that dealing with risks is currently the most significant challenge
jeopardising new projects.

In this manuscript, the current status of underground mining in Europe has been
analysed, and mines that are planned to be closed in the near future were identified.
Then, data regarding potential risks and challenges related to underground environment
repurposing have been collected and analysed based on a literature review and surveys
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and interviews conducted with representatives of universities, mining companies, and
research facilities. Finally, the most impactful challenges have been linked to particular
methods of underground space repurposing aimed at creating an underground laboratory.

2. Underground Mines in Europe and Potential Ways of Their Repurposing

The mining industry, including underground projects, has a solid base across Europe,
despite unfavourable conditions that enterprises must deal with, e.g., society’s resistance,
energy prices, and green deal requirements. There is still pressure from the social and
political side to limit activities in this field due to the negative impact on the environment.
This is evident in the case of coal underground mines, many of which are in the middle of
closure processes across Europe. The pressure is connected to energy transformation into
carbon-neutral energy, and critics hope that by 2050 there will be no energy or steaming
coal mines in the present form in any EU countries. Only coking coal mines will still be
open after EU energy transition. This is related to, among other things, the goals of the
European Green Deal to have zero greenhouse gas emissions by 2050 and the decoupling
of economic growth from natural resources [24]. On the other hand, mines excavating
critical raw materials are strongly supported by the EU in order to achieve independence
from global raw material dynamics and supply chain challenges [25]. According to United
States Geological Survey data, there are more than 100 active underground mines in the
EU, shown in Table 1.

Table 1. Number of main active underground mines in the EU [25].

No. Country Number of Mines Minerals

1 Austria 3 graphite, magnesite, and wolfram

2 Bulgaria 6 copper, gold, lead, and manganese,
silver and zinc

3 Czech Republic 3 coal
4 Estonia 2 oil shale
5 Finland 5 chromium, gold, and silver
6 France 1 salt
7 Germany 10 barite, fluorite, potash, and salt

8 Greece 8 bauxite, copper, gold, lead, magnesite,
and zinc

9 Ireland 3 gypsum, lead, salt, and zinc
10 Italy 4 potash, salt, and marble
11 Norway 3 coal, dolomite, and iron
12 Poland 26 coal, copper, silver, gypsum, and salt
13 Portugal 2 copper, tin, silver, and wolfram
14 Romania 6 coal, copper, salt, and silver
15 Slovakia 6 gold, magnesite, and talc
16 Slovenia 1 coal

17 Spain 10
coal, copper, fluorite, gold, lead, and

magnesite, potash, tin, zinc, and
wolfram

18 Sweden 8 copper, gold, iron, lead, and zinc
19 United Kingdom 5 barite, fluorite, potash, salt, and tin

Note: There are no significant underground mines in the remaining EU countries.

As one may conclude, underground mines still exist in most European countries. This
kind of exploitation is most prevalent in Poland and Serbia. This is because of the significant
number of coal mines in these countries. Due to the European green transition process, most
of these mines will be closed in the coming years, especially in Poland. This means that
there will be potential possibilities to transform part of these underground infrastructures
for different purposes instead of liquidation, which means, in many cases, permanent and
irreversible destruction of infrastructure. Considering the number of active underground
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mines in Europe, these issues will appear relatively often. Therefore, communities should
highlight the potential of repurposing available underground workings.

One of the possible uses of closed mines is as deep underground laboratories (DULs).
The definition of deep is related to having access to a depth of more than 1000 m below the
surface level. The main activity that DULs are currently used for is high-energy astroparticle
physics. The locations of DUL facilities in Europe is shown in Figure 1. However, some
mines that are soon to be closing, closed, or even operating, e.g., the copper mine Neves
Covro in Portugal and the coal mine Zinkgrovan in Sweden, in Europe could become DULs.
It could mean new possibilities in terms of mine reuse in Europe.
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As recent experiences show, physics is not the only field of science that can be explored
in underground laboratories [26]. A new area of research is connected with experiments
in astrobiology and biology in extreme conditions [27], space research (planetary or lu-
nar analogue environments) [28], underground food production [29,30], education [31],
tourism [32] and the development of more efficient and environmentally friendly mining
technologies [27]. There are also multipurpose facilities that allow performing various
activities in different areas of the mine. Still, repurposing underground space is challenging
due to the unique environment and the number of hazards observed in underground
conditions. Thus, in most cases, there is no interest in taking actions aimed at the further de-
velopment of mines after the termination of excavation activities among society, investors,
and other stakeholders. Moreover, the involvement of these groups is a complex and
demanding task [33]. One of the recent initiatives to develop the reuse of underground sites
is the European Underground Laboratories Association (EUL), which gathers underground
research, science, and tourism facilities and promotes this approach to underground mine
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repurposing. The underground sites belonging to the EUL association are presented in
Figure 2.
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Zeche; 3—Lab Development by KGHM CUPRUM; 4—GIG Experimental Mine “Barbara”; 5—Callio
Lab; 6—Ruskeala; 7—Khlopinh.

Types of Underground Activities

One of the prospective examples of underground lab applications for post-mining
areas is physics laboratories, which are needed for studying, e.g., astroparticle physics
and dark matter, or conducting low background measurements on material radiopu-
rity [26,34,35]. Examples of such transitions are Boulby Mine in the UK [36], the Homestake
Mine in South Dakota, USA [37], and Pyhäsalmi Mine in Finland [38], the latter of which
started as the Centre for Underground Physics in Pyhäsalmi. The aforementioned sites
have since turned to be or given access to more multidisciplinary, providing facilities for
various fields of science and engineering.

For the experiments conducted at deep underground laboratories, a common require-
ment is good shielding against the cosmic-ray background, and adequate shielding is
reached with an overburden of more than 1000 m of rock [5]. The experiments are also
increasing in size (e.g., DUNE: four halls of 69.9 m × 27.4 m × 19.8 m [39] with plans of
detectors systems with up to a 100 m scale. The requirements for the overburden and the
hall sizes put enormous pressure on rock mechanical engineers to mitigate the risks coming
from the shared rock mass-induced gravitational pressure and any horizontal pressures
(see, e.g., [40]).

Another perspective for underground mine reuse is multi- and transdisciplinary
research mines. These facilities are not developed solely for one kind of activity but work as
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suitable places for any projects that may benefit from different underground environments.
Currently, in the EU, there are few facilities of that type. Some examples include the Äspö
Hard Rock Laboratory, Sweden; Experimental Mine Barbara, Poland; Callio Lab, Finland;
and Reiche Zeche, Germany.

As pointed out by Pactwa et al. [16], underground space is also suitable for sustainable
food production. Selected methods for underground space repurposing are presented in
Figure 3.
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Figure 3. Methods for underground space repurposing [27,30–32,41–48].

It is also worth mentioning that, in the light of the EU policy of greenhouse gas
emission reduction, there is also the potential to achieve this target by means of using
underground space as energy storage. Many different technologies can be considered
like underground gas storage (UGS), hydrogen storage (HS), compressed air energy stor-
age (CAES), underground pumped hydro storage (UPHS), and thermal energy storage
(TES) [49].

3. Materials and Methods

The analysis presented herein was based on a literature review, surveys, workshops,
and webinars performed within the following international projects:

• Baltic Sea Underground Innovation Network (BSUIN);
• Empowering Underground Laboratories Network Usage (EUL).

3.1. Data Collection and Identification of Challenges

Information about obstacles and challenges that must be faced during underground
space repurposing has been collected during international webinars and workshops
(i.e., [50]). In the whole data collection process, the representatives of ULs in Europe,
mining companies, and scientists were involved. Chosen entities that took part in the
preparation of this research are presented in Figure 4.
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What is worth mentioning is that the above presented underground laboratories
have been developed for different purposes. Experimental Mine Barbara, Hagerbach Test
Gallery, and Reiche Zeche are facilities that are directly related to R&D activities. Ruskeala
Underground Lab works as an underground tourism route. Khlopin Low Background Lab
focuses on environmental radiation, while Äspö HRL is used as a test site for different
technologies and practices related to underground nuclear waste storage. There are also
multipurpose facilities such as Callio Lab, which reuses built or excavated mining-related
infrastructures as research, testing, and validation environments. There is no underground
lab in its standard form in KGHM copper mines. However, numerous international and
national research projects are still performed that progress the exploitation of copper ore.

3.2. Preliminary Risk Evaluation

Safety is the crucial parameter for any field of activity or industry, whether evaluated
on the surface, in the air, or underground. However, many of the threats in underground
environments are not typical for other industries or research fields and, therefore, are not
fully recognised [19]. Thus, a detailed process of risk identification has been performed.
Surveys and workshops were conducted with experts from the underground mining
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industry and users of underground laboratories in Europe. In total, 106 unwanted threats
were identified in a risk identification worksheet, and a list of analysed hazards may be
found in [51]. These threats were classified into four groups and 18 hazard categories
(Figure 5).
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Then, each risk was analysed qualitatively using the risk matrix method. As pointed
out in [19], the risk matrix method is one of the most commonly utilised approaches in
establishing risk severity. There are many types of risk matrixes, but the so-called two-
dimensional risk matrix is most commonly used due to the ease of its preparation and in
interpreting its results. Such an approach allows not only to determine the impact of each
event but also to identify the risk’s probability or consequence. This information is of high
importance during the process of mitigation procedure development. The risk assessment
method based on a risk matrix for ULs can be applied as early as the design stage of a
given facility. Still, it is crucial that evaluation is carried out exclusively by specialists in a
particular field to achieve reliable results. The greatest advantage of the proposed approach
is the possible implementation of appropriate risk prevention and minimisation measures
at the design stage and just after preliminary evaluation. At the same time, there are no
technical limitations to using it as the basic method of classifying selected events as part of
the periodic risk assessment of the operation of underground facilities throughout their
entire life cycle.

For the purpose of this analysis, the risk evaluation worksheet was developed and
sent to researchers, scientists, and UL users. In the risk matrix method, the risk may be
defined according to the following formula:

RISK = Rp × Ri (1)

where:

Rp—the probability of unwanted event occurrence;
Ri—expected/predicted consequences of the event.
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Such an approach is suitable for preliminary analysis and allows for a general point
of view for hazards in a particular facility. The exemplary worksheet for evaluating risks
related to ground control in underground facilities is presented in Figure 6.
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A risk evaluation worksheet with a list of all 106 risks and a detailed report [52] may
be found on the following webpage: https://bsuin.eu/2021/01/08/bsuin-final-reports/
(accessed on 20 September 2022) [52]. It must be highlighted here that the risk matrix
method is a very general approach and should be used to determine risk categories that
have to be evaluated in a more detailed (quantitative) way. For example, in the case of
roof falls, risk may be analysed with the use of numerical methods or with a systematic
approach, as presented, respectively, by Ghasemi et al. in [53] or by Sakhno et al. in [54].
In the case of more general analyses that are not focused on only one group of hazards, a
hierarchical analysis may be performed, as presented by Siahuei et al. [55].

4. Results and Discussion

Within this research, 29 surveys were completed by representatives of ULs and un-
derground mines, scientists, and UL users. The ULs within these surveys are unique in
their usage (R&D, tourism, education, and excavation), environmental conditions (physical
depth and rock overburden, geomechanics, hydrogeology, seismic, and social acceptance),
and local threats. The most significant challenges related to the readaptation of under-
ground workings into non-mining facilities are presented in Figure 7.

After analysing all surveys and issues pointed out by the respondents, it was con-
cluded that safety issues (13.43%) and legal obstacles (12.50%) were most often mentioned.
While the safety aspects may be limited at the user level, the problems of national legal
regulations in most cases are beyond the influence of the users of underground laboratories.
Still, as Paat and Joutsenvaara [54] pointed out in the report “Underground laboratories
working environment, a common standard”, underground laboratories work under the
same laws and regulations as mining companies in most EU countries. In such a case, the
revitalisation of underground workings or transition from the mining company to the UL
site may be smooth. Responsibilities and liabilities between the different parties need to be
agreed upon for the transition’s planning.

By involving the local experts from the mining industry, the activities and management
of the revitalised mining environment can be performed in safe and sustainable ways and
according to local laws and regulations. Contacting the mining authority may be helpful
as well.

The next group of challenges is related to the economic aspects of underground
laboratory management. Many respondents pointed out that the investment costs (9.72%)
may exceed the incomes (6.48%). Moreover, there are significant doubts in terms of the
business (11.11%) model, which could attract stakeholders and investors (7.87%) in the long

https://bsuin.eu/2021/01/08/bsuin-final-reports/
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term, providing efficient and stable profits during the whole life cycle of the underground
facility (8.80%).
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According to surveys and workshops, environmental issues are also significant when
considering underground space repurposing. Over 10.19% of all answers were related to
environmental restrictions of underground workings such as the lack of natural ventilation,
lack of natural light, high humidity, etc. Also, space limitations were mentioned by respon-
dents. In this case, 5.09% of votes pointed out that space limitations may be challenging,
especially in the case of ventures that could be potentially developed in the future.

Surprisingly, the issues related to a lack of social acceptance (4.17%) and lack of
qualified staff (3.24%) were mentioned the least. This could be justified by the social
awareness of advantages and disadvantages related to underground activities in the mining
and post-mining regions.

As pointed out in numerous studies, safety issues are the factors that most significantly
jeopardise projects that are planned to be conducted in underground conditions. Therefore,
a detailed analysis of risks and a categorisation of their significance have been performed.
During the data collection, 29 representatives, including those from the mining industry
and supervisors of underground laboratories, filled in the risk evaluation worksheet. They
determined the probability and expected impact of each of the 106 identified risks classified
into 18 groups. The results of the analysis are presented in Figure 8.

Based on the detailed analysis of the severity of risks and their listed categories, one
may conclude that more hazardous events are related to ground control issues (24% of
risks classified as severe) and the presence of ground vibrations induced by natural (40%
of events classified as severe) and anthropogenic seismicity (31.25% of events classified as
severe). This is mainly because any type of rockburst, roof fall, or spalling of the rock layers
may generate significant negative consequences including fatal or serious injuries and
economic losses. Particular attention should also be paid to ventilation issues. According
to the risk evaluation surveys, the most dangerous events in this group are related to
the possibility of fire occurrence. Thus, safety chambers or at least self-rescue breathing
apparatuses should be available on site.

Extensive preventive measures should also be undertaken in case of technological as-
pects and accidents related to machinery movement in underground conditions. Periodical
testing of ground support performance and proper traffic organisation could significantly
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minimise these hazard levels. Noise (9.1%) and lightning (8.0%) issues were also classified
as severe. In the case of these events, expected consequences are not very high, but the
probability and intensity of these events are relatively high and affect all people working in
underground conditions.
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The last group of risks classified as severe is related to political aspects such as local laws
and regulations, which may considerably constrain the activities of the underground facility.

It is worth mentioning that there were no events in which risk was classified as
unacceptable. In turn, most of the evaluated risks were categorised as acceptable or low,
which stands for their low impact on the project’s feasibility.

5. Conclusions

This paper analyses the challenges and threats related to setting up an underground
laboratory in post-mining areas. An analysis has been performed with experts from the
mining industry, scientists, and representatives of underground laboratories that operate
successfully in Europe and the Baltic Sea region. Safety issues are of the highest importance
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and should be analysed and possibly mitigated first. Also, imprecise local law regulations,
the lack of awareness of stakeholders, and financing problems of the whole venture may be
problematic and affect the project’s feasibility.

Still, as recent experiences have shown, the scope of activities that may be successfully
performed in underground conditions is very extensive and covers many aspects of tourism,
education, science, R&D or mining technology, and extraction method development.

Repurposing may be greatly facilitated by experiences gathered by other underground
laboratories that already operate. Analyses of business models, a SWOT analysis of different
UL operations, or detailed risk evaluations may familiarize users with not only possible
threats but also opportunities. Extended advice on this topic may be found on the open
web platform of the European Underground Laboratories Association, where numerous
reports from international projects BSUIN and EUL are freely accessible. These reports may
be found at the following webpage: https://undergroundlabs.network/ (accessed on 15
July 2022).
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