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Abstract: The Internet of Things (IoT) is one of the key components of the ICT infrastructure of smart
cities due to its great potential for intelligent management of infrastructures and facilities and the
enhanced delivery of services in support of sustainable cities. Smart cities typically rely on IoT, where
a wide variety of devices communicate with each other and collaborate across heterogeneous and
distributed computing environments to provide information and services to urban entities and urban-
ites. However, leveraging the IoT within software applications raises tremendous challenges, such as
data acquisition, device heterogeneity, service management, security and privacy, interoperability,
scalability, flexibility, data processing, and visualization. Middleware for IoT has been recognized
as the system that can provide the necessary infrastructure of services and has become increasingly
important for IoT over the last few years. This study aims to review and synthesize the relevant
literature to identify and discuss the core challenges of existing IoT middleware. Furthermore, it
augments the information landscape of IoT middleware with big data applications to achieve the
required level of services supporting sustainable cities. In doing so, it proposes a novel IoT middle-
ware for smart city applications, namely Generic Middleware for Smart City Applications (GMSCA),
which brings together many studies to further capture and invigorate the application demand for
sustainable solutions which IoT and big data can offer. The proposed middleware is implemented,
and its feasibility is assessed by developing three applications addressing various scenarios. Finally,
the GMSCA is tested by conducting load balance and performance tests. The results prove the
excellent functioning and usability of the GMSCA.

Keywords: smart city; Internet of Things; middleware; service-oriented; microservices

1. Introduction

The Internet is the global system of interconnected computer networks that uses the
Internet protocol suite (TCP/IP) to communicate between networks and devices. The
Internet was mainly a network of computers. The subsequent development is the Internet
of Things (IoT), where things communicate in a network. It will change our lives the same
way the Internet did. However, it involves the communication of things with other things.
One example of such communication is when an alarm is switched on by an object sensor
or a motion detector: this communication will occur without humans’ intervention. IoT
is a diverse and vast development area. It can be defined as follows: “IoT is the internet
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of things connected with each other using smart sensors and can operate without the
intervention of humans” [1,2].

Numerous studies have been carried out in the area of IoT, and many challenges
and issues have been highlighted [1,3–7]. Some of these issues are the standardization of
protocols for IoT devices to communicate, the lack of description language for services to
make them compatible with different implementation environments, the interoperability
of IoT devices, the storage and processing of data streams generated by IoT devices, the
lack of online machine-learning techniques to process the data in real time, data curation
for faster processing, the design of service-oriented architecture, the implementation of
context-aware computing, the security and privacy of data generated by IoT devices, the
integration of IoT in current information & technologies environments, and the scalability
and extensibility [1] of IoT applications to incorporate more devices.

Due to the fact of that there are many challenges that developers face during the
development of new applications based on IoT, a middleware solution can be helpful in this
regard. Authors in [8] realize the importance of middleware for developing applications
in various domains, including applications based on IoT. They presented the advantages
such as speedy development of new software and uncovering issues at the early stage
of development.

The diversity of IoT and its large number of applications and devices poses the problem
of integration of these applications and devices. The devices and applications need to
speak the same language. As a result, standard middleware needs to be upgraded in
order to integrate multiple devices in one place under a unified language. The critical
challenge is the implementation and standardization of middleware for IoT systems [1].
Different surveys have been carried out to evaluate the state-of-the-art middleware and
compare different works [3–6,9]. A review of concepts, frameworks, and key technologies
is presented in [10]. The authors have identified the different layers in the architecture of
frameworks for smart city applications and discussed the responsibility of these layers.
Finally, they have tabulated a summary of smart city domains, services, application features,
IoT, and sensing technologies involved in these domains and real use cases with operational
applications in different parts of the world. Many solutions have been proposed to address
the challenges in IoT-based applications, but there is no standard solution available yet.
The proposed middleware focused on one or the other area of applications, and not a single
middleware solution is proposed that satisfies all application requirements of even a single
application domain. Benchmarks are defined, and generic application requirements are
identified [9,11], so a solution is required to fulfil all the requirements to entirely address
the generic needs along with the few specific application domain requirements, which are
somehow different for each application domain.

One of the potential application domains for IoT is the applications for a smart city.
Many researchers have proposed frameworks, and several surveys have been conducted
to evaluate the performance of these frameworks [3–6]. For instance, in [9], the authors
have evaluated and surveyed some middleware for different domains based on IoT. The
authors have categorized the middleware into different categories based on their underlying
architecture and tabulated the challenges they address. The authors have also listed the
benefits and challenges addressed by middleware carried by the underlying architectures
of the middleware. There are several other works conducted in the field of IoT, such as
graph-based M2M optimization in IoT environment [12], cooperative cognitive intelligence
for the Internet of vehicles [13] and defining human behaviors using big data analytics in
social Internet of things [14]. An effort toward defining a generic architecture for IoT is
made in [15].

There are a few other paradigms proposed for IoT which could be used as a component
of IoT middleware. For instance, [16] proposed CA4IoT, focusing on context awareness
for IoT systems. The work is intended to present a framework for maintaining the sensor
information with context awareness so that sensor data can be provided to the users on
demand. On the other hand, FIWARE-Lab is proposed in [17]: it is intended for resource
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and service management in the cloud federation to support the developers in building
future internet applications. By using the FIWARE-Lab project, different service providers
come into a contract where they share their services for the development of new applications
by following some terms. Likewise, Smart M2M gateway-based architecture is proposed
for managing billions of devices and endpoints [18]. Sensor markup language (SenML)
is used for the measurement of sensor readings and actuator commands. RESTful web
services are used for the gateway. APIs and this gateway are then used to manage the
devices and endpoints.

Although many existing studies have tried to propose additional components that
could be plugged into any middleware to address one or the other key challenge, they still
have many limitations. For instance, it is unclear how the repositories will be maintained
and whether the information should be maintained in a database or flat files. Furthermore,
none of them addresses all the core challenges and generic big data application requirements
for any domain. Hence, there is a need for a comprehensive solution that addresses all the
core identified challenges with a system which should be flexible enough to incorporate
the services that would emerge at later stages, along with the flexibility of changing the
services over time upon need. Therefore, in this work, a complete framework for the
end-to-end architecture of IoT-based applications and the proposal for middleware for
IoT-based applications, GMSCA, is presented. The challenges of data acquisition, scalability,
heterogeneity, flexibility, extensibility, data analytics, and security are handled through
different components, as discussed in Section 3.3.

This paper aims to review and synthesize the relevant literature to identify and discuss
the key challenges pertaining to IoT middleware. It explores the opportunity to augment
the information landscape of IoT middleware with big data applications to achieve the
required level of services in support of sustainable cities. In doing so, it proposes a novel
IoT middleware for smart city applications, GMSCA, which brings together many studies to
further capture and invigorate the application demand for sustainable solutions which IoT
and big data can offer. The proposed framework provides a platform to develop IoT-based
big data applications with data processing and analysis capabilities. As a proof of concept,
the proposed middleware is tested with the development of three applications in the context
of smart cities. In the basic implementation, the middleware ingests the dataset from the
users, and then its functions in the middleware prepare it for appropriate machine-learning
models. Data is then run through different machine-learning algorithms, and the best
model is chosen and deployed as a service for predictions. Hence, the proposed framework,
which can be replicated, tested, and evaluated, will add depth to field studies and provide
a foundation for researchers to draw on for analytical insights in future research.

The rest of the paper is organized as follows: Section 2 discusses the relevant concep-
tual and theoretical constructs that make up the study. An overview of the methodology to
elaborate the research process, followed by a relevant literature review, critical evaluation,
and the proposed middleware, GMSCA, are presented in Section 3. The implementation
detail of GMSCA is presented in Section 4. Details of applications developed using the
proposed middleware are discussed in Section 5. Load balance and performance testing
are discussed in Section 6. Finally, we conclude and provide insight into future work in
Section 7.

2. Background

Urbanization has been increasing at a swift pace throughout the globe [19]. This
urbanization has been creating lots of issues such as traffic congestion, environmental
changes, lack of green areas, and lack of health and educational facilities. It has also made
management a difficult task for the city management authorities. To address such growing
issues, smart solutions are required, which can help to manage all the resources efficiently
and provide higher living standards to city inhabitants. A smart city [20] seems to be
a suitable solution for this problem and can help to solve the issues using technology
and infrastructure.
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Different technologies are used to make a smart city application. Each of these tech-
nologies has a specific role in making the smart city a reality. Sensors are the core technology
used for creating smart city applications. These are deployed in the environment to monitor
and send the desired environmental data to the server/cloud using the gateways to make
the application logic aware of the environment. With the fast evolution of sensor technol-
ogy, a huge array of sensors is available on the market. Temperature sensors, humidity
sensors, camera sensors, and motion sensors are just a few basic examples of the available
sensors. Since these sensors are of different natures and send different types of data, there
are different interfaces and different access methods. This fact introduces the challenge of
heterogeneity. These sensors are then required to be accessed by different applications and
operating systems, thus introducing the interoperability issue.

Smart City is an extensive domain comprised of many subdomains. Smart health
monitoring, intelligent transportation, intelligent traffic lighting, smart water, smart grid,
and smart education are just a few examples of sub-domains. Thus, Smart City has a
very vast scope and, as a result, may not be developed in one go but rather step by step.
This fact highlights the scalability, flexibility, and extensibility challenges in the domain.
Indeed, services may require to be added or to be changed over time due to new emerging
requirements. The scalability issue arises when the available resources are consumed, and
the requirements for more resources are still intact.

There are some challenges that must be handled to make reliable and functioning
smart city applications. Table 1 lists a few of the important challenges. Besides the listed
challenges, there might be many other challenges such as context awareness, quality of
service, data processing, and data analytics. There may be different strategies to address
the challenges. It might be handled using the algorithms and developing the components
in a way which is not cohesive and tightly coupled so that we can make changes in
the components, when and where required. Another method that is mostly used and
more reliable is architecture, such as services-oriented architecture or microservices-based
architecture, which supports and helps to cope with the listed challenges.

Table 1. Challenges for the smart city applications.

Challenges Reason

Data Acquisition Data from sensors/hardware is required. Data acquisition is therefore a
must and represents the core of smart city applications.

Heterogeneity Different devices, sensors, and applications with different data formats
introduce heterogeneity.

Flexibility Previous components and services may be required to be altered over time
due to new/changing requirements.

Extensibility More components and services may be required to be added, so
applications must be extensible.

Scalability
The large scope and ever-increasing requirements to address more service
requests may exhaust the resources. As a result, applications must
be scalable.

Security Users’ data must be secure and sometimes private.

Due to these challenges and issues, middleware is required to avoid every smart city
application having to deal with these issues right from the beginning. Instead, the appli-
cations would be developed on top of the middleware, which solves the issue of creating
everything from scratch and provides application developers with a central repository of
services with a standard communication method. Fog is a technology that can be used
to increase the performance of smart city applications [21]. It resides at the edge of the
network and works like the Cloud. A subset of the services is placed in Fog to serve the
network with better performance, and, in case of the absence of the required service, the
request is forwarded to the Cloud to provide the requested service. Fog is also used for
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processing data and sending over only the required data to the Cloud. It not only offloads
the work on the Cloud server but also increases the speed of response to the user. It helps
to decrease the latency and also makes applications location-aware. An example scenario is
getting the room temperature using the temperature sensors employed in the room. In this
case, a Raspberry Pi server, which also works as the gateway for IoT devices, can process
the readings from different sensors and compile an aggregate at the gateway level. Another
advantage of Fog is that it increases the system’s scalability by providing the services from
Fog and sending less traffic to the Cloud, thus saving bandwidth. In [21], the authors have
proposed a framework to deal with the faults that may occur when fog architecture is used.

Smart city applications are developed using different architectures, which all have their
advantages and disadvantages. Some of the architectures include distributed architecture,
component-based architecture, service-oriented architecture, and microservices architecture.
Service-oriented architecture is the most famous architecture, and many researchers have
used it. It brings many advantages such as scalability, flexibility, and extensibility, thus
making smart city applications easy to handle with fewer challenges. In this architecture,
different services are created and deployed on the server, and all requests are handled by a
service broker to register, discover, or invoke the required service.

Micro-service-based architecture is one of the new architectures which have evolved
from the best industry practices. In this architecture, components are developed as small
services that can be self-contained, managed, and deployed independently. All services
can be combined using some interface to make new services, and each could be scaled
or changed individually without affecting the others. In this way, this architecture helps
with scalability and flexibility. More services could be added as required, addressing the
challenge of extensibility.

In this paper, we aim to provide a topical literature review of the existing IoT middle-
ware architectures to identify strengths, weaknesses, and challenges of such middleware for
the development of smart city applications. The main focus is to derive from the literature
analysis and further capture the information landscape of IoT architectures to develop a
generic middleware addressing most of the key challenges in developing and deploying a
specific smart city application.

3. Methodology

The purpose of this study suits a mix of the following research approaches: (1) top-
ical literature review, (2) critical analysis to achieve different yet related objectives, and
(3) proposal of a generic middleware architecture addressing key challenges. The topical
literature provides a survey of related work covering the state-of-the-art IoT middleware
architectures, related applications, issues, knowledge gaps, and research opportunities. In
the critical analysis, a gap analysis is performed concerning the lack of research on devel-
oping integrated frameworks for smart, sustainable cities as a holistic urban development
approach, which provides a basis for the proposed generic framework. Finally, a novel
IoT middleware for smart city applications, GMSCA, is proposed by bringing together
many studies to further capture and invigorate the application demand for sustainable
solutions which IoT and big data can offer. This is to be derived additionally from the
literature analysis focused on smart city applications and the underlying IoT middleware,
data processing platforms, and computing models based on the IoT and big data analytics.
Each research approach is further discussed in the following sections:

3.1. Literature Review

This section provides a detailed review and synthesis of the technical literature on
IoT middleware architectures. Different IoT-based middleware has been proposed in
the past. These are based on different architectures, addressing different challenges, and
targeting different application areas. In [7], the authors have highlighted the challenge of
interoperability/heterogeneity among the connected devices and proposed a framework
using open-access technologies and frameworks to address this challenge. In [22], the
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authors have categorized the middleware into four categories, which are publicly traded IoT
Cloud platforms, open source IoT Cloud platforms, developer-friendly IoT Cloud platforms,
and end-to-end connectivity IoT Cloud platforms. The authors have compared the basic
features, sensing features, communication features, and application development features
of the features lying in each of the aforementioned categories and finally defined criteria
for the selection of middleware for specific application needs. In [9], authors have surveyed
different middleware and listed the advantages and challenges of specific architectures.
Every architecture has a different set of challenges and architecture-specific advantages.
The reviewed middleware are categorized based on their respective architectures in the
following sections.

3.1.1. Component-Based Middleware

In component-based architecture, a solution is built by several small components
that work together to make a complete functional solution. Many such middleware and
platform proposals are based on component-based architecture, such as:

SGeoL, a platform for integrating heterogeneous data and developing smart city ap-
plications based on FIWARE middleware, is proposed in [23]. The platform is based on the
component-based architecture, and different components, including security components,
broker components, data integration, and analytic components are developed. These, in
turn, address the challenges of security, extensibility, flexibility, and heterogeneity for the
applications based on IoT devices.

In [24], component-based middleware ‘Device Nimbus’ is proposed, which addresses
the challenges of context awareness, scalability, flexibility, extensibility, lightweight, stan-
dard compliance, and resilience in the field of IoT and middleware requirements. A
minimum viable application is built on top of the middleware to show its effectiveness
and feasibility. Environment sensors and social networks, e.g., Twitter and Facebook, are
used to answer a few questions to identify people’s fitness and health patterns. MinT is
another example of component-based middleware [25]. The authors addressed the problem
of energy-efficient processing due to high energy constraint devices in IoT. Validation
and performance evaluation of MinT were conducted using experiments. The average
throughput is used as the evaluation criteria, and the middleware is compared with two
other middleware, namely nCoap and Californium. MinT outperforms the aforementioned
by achieving the maximum throughput of 8900 requests per second.

Due to the diverse nature of devices being used in the field of IoT, there are many
different data formats, sources, and access methods. To address this complex situation, the
DAQ middleware is proposed [26]. It deals with the heterogeneity of the different data
sources and data formats and makes data acquisition simple and efficient. There are two
algorithms in DAQ that make the acquisition better: the parallel acquisition algorithm and
the heuristic algorithm. The parallel acquisition algorithm is most effective when an acquisi-
tion is carried out from multiple interfaces in parallel. However, it is less efficient when the
data acquisition is made under the same interface. The results of the acquisition by serial,
random acquisition, and heuristic-based acquisition were compared, and the heuristic-
based acquisition appeared to be the best among competitors. GAMBAS was created to
address the challenges of data acquisition, data distribution, and data integration [27].
GAMBAS has a component-based architecture and was proposed for generic applications
in the domain of smart cities. The usability and implementation are showcased using two
applications. These are Voiceprint Launcher and Linked Weather. Voiceprint Launcher
is an application run locally on phones, although substantial parts and features of the
middleware are implemented. It launches the applications on a phone by voice command.
Linked Weather, on the other hand, shows how the middleware can help to manage the
data and how remote communication works. These two applications help understand and
validate the data acquisition, security and privacy, data processing, and communication
components. A large-scale demonstrator is being developed in the domain of transport
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in the city of Madrid. It will provide real-time transit information. This application will
further strengthen the effectiveness of GAMBAS in a smart city environment.

Another end-to-end Security Middleware was proposed for flexible and configurable
security, depending on the application’s needs [28]. Static Pre-Shared Keys (PSKs) are
realized as an efficient choice for faster processing and lightweight security implementation.
Moreover, the session resumption technique is used for faster data exchange and retrieval
of the trust base. The current middleware version does not support short-lived sessions
through the session resumption technique. In its current implementation and due to the
use of the session resumption, the trust state is required to be maintained in the network
amongst the IoT devices, and a short-lived reputation is not supported. A short-lived
reputation or trust state must be supported to avoid maintenance of a trust state for longer
periods and to deal with the transient devices. A minimum viable implementation of the
middleware has been used on a GENI Cloud testbed. The results are shown for the memory
footprint and time for the security association. The results have proved that the memory
requirement for the chosen scheme is less in comparison to the other schemes, while the
security association time is about 80 ms and the session resumption takes around 40 ms.

In [29] Mint-I, an improved version of the MinT [25] middleware is proposed to
address the problem of thread pools being created as per CPU cores and the resulting waste
of resources when the created threads are more than the throughput required. A Variable
Thread Adjustment (VTA) is proposed to save resources and efficiently utilize resources
with improved performance. VTA looks for the throughput of the requests received from
IoT devices and the queue size of the requests received to calculate the number of threads
required. The proposed middleware’s limitation lies in that when it starts aggregating
peripheral information from devices when the client requests information from it, the
increase of requests’ energy consumption increases significantly due to the aggregation
cycle by the middleware. The aggregation of information from sensing devices that do not
update information frequently causes transmission and excess energy consumption delays,
which can be avoided by efficient management methods to control these aggregation cycles.

An architecture to provide support for the resilience level of IoT-based applications for
a smart city is presented in [30]. The proposed architecture works towards the improvement
of resilience in smart city applications by using technologies such as cloudlets (Fog) and
core Cloud. It improves resilience along with scalability. Discussion is provided using
hypothetical examples and two scenarios, and explaining how the proposed system will
work towards the recovery of faults occurring during the application. One scenario is that
of a failure detected by the monitor, then the protection and recovery module works with
other modules, such as the placement and migration module, to recover the faulty service
or other actions to overcome the fault. Another example is considered when the drop in
quality is generated, and the monitor sends the notification that a drop in QoS is generated
by the QoS module. Then, the protection and recovery module takes the necessary actions,
such as finding an alternative path with lower latency to overcome the issue. The testing of
the proposed architecture is not performed in a real-life smart city, whilst it should be in
order to affirm the evaluation of the resilience of the system. A software architecture that
is loosely coupled and message-oriented in [31]. It is driven by semantic OWL messages.
For implementation purposes, a use case is provided with the theoretical explanation of
sensors and software components with data flow and the processing required to detect a
bedsore disease risk in older people. One of the limitations of the architecture is that it was
not evaluated in the clinical environment, although it should be for reliability and usability
testing purposes. Moreover, the proposed middleware architecture must be implemented
to affirm its suitability.

3.1.2. Distributed Middleware

In this architecture, the solution is built and deployed in a distributed manner. Both
hardware and software may span multiple locations and may work independently for
some functions or be coordinated to perform a specific task.



Sustainability 2023, 15, 743 8 of 30

A smart and semantic middleware (SMArc) is proposed in [32]. The architecture is
distributed, and it targets energy management in the smart city domain. Interoperability,
scalability, and heterogeneity are the challenges addressed by the authors. The middleware
is evaluated for performance in service registration and service completion. The authors
have defined two types of service requirements: simple services and composed services.
Results for service registration range between 274 ms and 651 ms, for service completion
between 257 and 1227 ms for simple services, and between 259 and 1230 ms for composed
services. In [33], Civitas is proposed, which is a distributed and object-oriented middle-
ware. The middleware does not target a specific application and is proposed as a generic
middleware to target a variety of applications in the smart city domain. One of the benefits
of Civitas is that it has a commonsense reasoning engine, and though limited, it definitely
gives a framework to incorporate more functionality in this context. The challenges such as
scalability, heterogeneity, and privacy issues are identified as the main challenges that must
be addressed whilst developing applications for smart cities. To validate the proposed
middleware and to show how to use it, the authors have conducted a case study in which
they showed how to track the license number plates of a vehicle. How the current proposed
framework could be used for service development and how it fits in the picture of IoT is
also indicated, as well as how the intelligence part in the middleware could be useful in
this scenario. One of the areas for future direction is the design of a model for the security
and privacy of the data of citizens.

An independent Distributed Data Service (DDS) [34] is created that could be plugged
into many IoT middleware. It is used for data collection, data processing, and data aggrega-
tion, thus relieving the middleware and helping to avoid the re-invention of the wheel, as
it is a must-have part for each of the smart city applications and thus becomes a necessary
requirement of the middleware for IoT. DDS is integrated with two middleware, UIoT
and Kaa, to demonstrate its feasibility and effectiveness. The results of data collection
and ingestion are listed. The results showed that DDS has the best message ingestion
when asynchronous mode is used as opposed to when a synchronous mode is used with
the UIoT. The results of data collection show that it outperforms the Kaa data collector,
proving its effectiveness as compared to the other middleware’s data collection capability.
A distributed stream reasoning system using the processing of large volumes of data with
scalability is presented in [35]. The authors have also evaluated the proposed system, and
the results for performance are shown. The stream reasoning system is implemented using
Apache Kafka and Apache Storm, and middleware SOUL. The results show the capability
of the system to be about 10,000 messages per second. Moreover, the transmission time is
the least when the stream data transmission is 10,000 per second. The system is tested and
evaluated using simulations and not tested on the real-time streaming of big data.

In [36], the authors proposed a FogFlow middleware with a published and subscribed
paradigm for service brokers. It is based on the programming model to gain openness
and interoperability for the developers. It leverages edge and cloud technologies for data
processing with lower bandwidth and decreased latency. Three use cases are described,
along with the implementation of one of the three use cases. An application for the
anomaly detection of power consumption in retail stores was developed. Different results
demonstrate the achieved performance and throughput as well as lower latency values.
It has higher throughputs for the service discovery queries and responses. For different
propagations, latency is shown for different test cases. For the same broker, the average
latency is about 0.7 ms, while for the different brokers in the same data centre, it stays
under 50 ms, and for different brokers and different data centres, it reaches around 430 ms.

To improve resource utilization in the smart city, an agent-based middleware frame-
work based on distributed CPS is proposed in [37]. As per the claim of the authors, this
middleware helps improve the reliability of communication in a smart city environment
due to the use of agent technology, which in turn uses the linear computation model and
resolves the data source downtime issues.
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A middleware CHARIOT [38] to address the issues of resilience in Edge computing-
based IoT systems is proposed. It implements a three-layered distributed architecture.
The layers are: system description language, data storage layer, and management engine
layer. CHARIOT makes use of Satisfiability Modulo Theories (SMT) solvers to compute
optimal system (re)configurations dynamically at runtime. Evaluation is done by run-
time implementation of CHARIOT using the Smart Parking System use-case scenario.
CHARIOT’s runtime implementation architecture consists of compute nodes comprising
the layered stack. Each CHARIOT-enabled compute node hosts two platform services: a
Node Monitor and a Deployment Manager. The Node Manager assesses the liveliness of
its specific node, whereas the Deployment Manager manages the lifecycle of applications
deployed on a node. CHARIOT’s Node Manager is implemented as a Zookeeper client
that registers itself with a Monitoring Server. The Deployment Manager is implemented
as a ZeroMQ subscriber that receives management commands from a Management En-
gine. A Database Server is an instance of a MongoDB server. MASSIF platform [39] is a
distributed platform developed for intelligent data processing. It focuses on reactive and
real-time data processing that complies with the objectives such as semantic annotation of
data using the developed ontology, knowledge extraction, high-level workflows, real-time
processing of data, extensibility, scalability, and performance. The proposed middleware
has been validated using two use cases, which are organizing the home care clout platform
(OCCS) and real-time automation of media production for interactive radio and conferences
(RAMP). Both use case projects use low-level data and background knowledge to extract
new high-level knowledge. The middleware is limited in scope and does not support the
processing of large streams of data, such as those from Twitter or Facebook. The authors
plan to incorporate stream data processing techniques for less complex reasoning scenarios.
Moreover, the authors plan to investigate machine-learning techniques for unknown sensor
data. To make the platform more scalable, the authors decided to investigate load-balancing
techniques and the automated duplication of services.

3.1.3. Service-Oriented Middleware

In this architecture, software platforms are built to provide different services to the
applications. Functions are developed and deployed, and access to the functions is granted
using Application Programming Interface (API) calls. Different services can coordinate
with each other to perform a specific task. All the services built are accessed using the
Enterprise Service Bus (ESB). It is the most used architecture in the field of IoT middleware.
The middleware included in this category are discussed below:

MiSCi, an autonomic reflective middleware for smart cities, is presented in [40]. The
Middleware is based on intelligent agents that can be adapted to the existing dynamism
in a city. The architecture of the MiSCi is based on web services and multi-agent systems.
These agents create ontologies to solve problems that arise in different situations. MAS
makes use of the MAPE-K loop for monitoring, analyzing, planning, and executing the
necessary actions in a particular situation.

A cloud-based intelligent car parking middleware ABC&S is presented in [41]. It
is based on the always-connected and best-served paradigm. Its architecture is service-
oriented, and the authors have created an application for the intelligent car parking system.
The application contains three layers, which are the cloud tier, the web service tier, and the
mobile application tier. The evaluation of the application and middleware is done using
the performance of the response rate. The average response rate was less than one second,
according to the results.

Rimware [42] is also a service-based middleware like a few other middleware [41,43–46].
The two primary challenges addressed by the authors are the need for devices to have a secure
connection to the Cloud by alternative gateways in the absence of a primary smartphone or set-
top boxes and for the Cloud to model the device capabilities. The authors have implemented
the Rimware as Blue Rim to validate the cross-interoperability of the device for different
applications. CotWare is another service-oriented middleware targeting the entire domain of
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smart cities [43]. It deals with the requirement for integration of Fog and Cloud platforms to
address the flexibility, extensibility, heterogeneity, and scalability in smart city applications.
The authors have created a lab setup to test and validate the service implementation offered
by the proposed middleware. The middleware is evaluated using the performance of the
communication calls. The average time for local calls turned out as 500 ms, whereas remote
calls took around 3000 ms. The service lookup ranged between 1300 ms and 2400 ms.

The service requirement of smart grids is increasingly changing and at a fast pace. The
applications built for the current smart grids are heterogeneous in nature due to the diver-
sified service request. The development of these applications is cumbersome because of the
absence of flexible middleware supporting the development of heterogeneous applications.
To address this issue, a Service Oriented Middleware is proposed [44]. It targets the smart
grid application area of the smart city domain. The authors have evaluated the middleware
using lab experiments and have shown that the proposed solution outperformed the previ-
ously proposed paradigms named TDM (Time Dependent Middleware) and PAM (Power
Aware Middleware). The future plans of the authors are to apply the same middleware
to the practical smart grid environment. In [45], SmartCityWare is proposed, which is
a service-oriented middleware, generic in nature and targeting smart city domain areas.
The authors have tried to achieve the proper integration and efficient utilization of CoT
and Fog Computing using the service-oriented middleware (SOM) approach and tried to
resolve some of the challenges of developing and operating smart city services. Due to the
research work carried out and the development of SmartCityWare, several challenges in
the smart city domain are addressed: these include extensibility, flexibility, security (by
implementing the security service in the proposed middleware), QoS (by introducing fogs),
better communication among the systems and devices (fog–fog, fog–cloud, device–fog
calls), and heterogeneity (by using different types of devices and systems), among others.

A data processing middleware based on a service-oriented architecture for integration
and fusion of multi-source heterogeneous data is proposed in [46]. The middleware is
tested in a practical environment using environmental sensors. Thirty sensor nodes are
deployed in three rooms to monitor the ambient temperature. These nodes are further
connected to a base station and themselves connected to a cluster of four common PCs
running Ubuntu. The authors claim that experiments have shown the effectiveness of the
middleware, although no results are shown.

A microservice-based platform SAVI-IoT is provided in [47] that deals with autonomic
management, programmability, distributed heterogeneity, security, and privacy. The au-
tonomous management system is implemented using the MAPE-K loop. The authors have
used the edge along with the Cloud to create the platform. The proposed platform SAVI-IoT
is a programmable and self-managing platform based on microservices. The platform is
generic enough for different IoT use cases. Big data compatibility, in-place data processing,
high-level programmability, elasticity, fault tolerance, and auto-scalability are among the
prime features of the presented IoT platform. In [48], the authors have adapted and ported
a lightweight thread-based middleware LISA, built for RIOT, to an event-based Contiki OS.
They accomplished it by defining and handling a set of events in order to communicate with
user applications. To demonstrate the middleware and observe the experimental results for
this work, the Cooja simulator is used. Cooja is a network simulator that allows users to
test various network configurations and applications on different hardware platforms. The
authors used an MSP430F5438 microcontroller from Texas Instruments. It has 256 KB of
flash and 16 KB of RAM. It is an ultra-low power microcontroller with CC2420 or CC2430,
2.4 GHz 802.15.4 radio, which is compliant with the IEEE 802.15.4 standard. Two main
limitations of the middleware are, on the one hand, the overuse of radio and CPU time
from the routing of the user messages and the introduction of the memory overhead. On
the other hand, the second limitation is the lack of support for more protocols. Currently,
only 6LoWPan is supported in the first version of the adapted middleware.

In [49], the authors proposed an event-based service-oriented middleware (based
on LinkSmart) and a heating, ventilation, and air conditioning (HVAC) control strategy
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to monitor and manage the energy consumption in buildings and public spaces. It is
found that applying the user-centric approach along with service-oriented and event-
based middleware helped in achieving energy savings and also helped in interoperability,
integration and heterogeneity. The middleware was implemented and evaluated for its
effectiveness. The system is deployed with sensors in a historical building. Two rooms are
considered test cases, whereas another two rooms with the same structure and dimensions
are considered reference rooms. The results showed that the deployed system helped in
energy savings for heating and cooling in the test rooms compared to the reference rooms
while providing the same level of comfort. The use case described by the authors for the
evaluation is not enough to affirm the stated claims. More rigorous testing is required to
prove the suitability of the middleware as the devices and optimization goals could differ
significantly when it is deployed on a larger scale.

A service-oriented autonomous middleware is proposed in [50] to address IoT-based
application requirements by incorporating MAPE-K loop (Monitor, Analyze, Plan, Act,
using stored Knowledge) and a multilayer context model. In [51], the authors developed
a service-oriented middleware TinyCO to address the challenge of interoperability. The
proposed middleware can identify the underlying heterogeneous network based on TinyOS
and Contiki operating systems and converts the generic request to the destination-specific
request. For implementation purposes, the authors have created two networks, one based
on Contiki OS and another based on TinyOS. For the nodes, they used TelosB mote, which
supports both selected operating systems. The middleware is used to identify which
specific TelosB is connected to which part of the network, and then the application request
is converted to a format understandable by the destination network. The solution is limited
as it is given only for two operating systems-based networks, which are TinyOS and Contiki.
More diverse networks must be incorporated to make the solution even more reliable and
usable for a greater number of use cases.

A middleware-based infrastructure [25], which is scalable (using separate databases
with proxies (APIs) for different data sources) and can handle heterogeneous data sources
for energy consumption management and visualization and simulation at the district level,
is provided. The infrastructure used the SEEMPubS middleware along with DIMCloud
(District Information Model Cloud). Other technologies used in infrastructure are Building
Information Models (BIMs), System Information Models (SIMs), Geographic Information
Systems (GISs), and an ontology manager. An ontology manager is used to provide the
semantic description of the models. A use case is described to explain the flow of data in
the proposed infrastructure. The test results of the deployed system in the real district are
not shown to affirm the claims and usability of the infrastructure.

3.1.4. Microservices-Based Architecture

It is one of the latest architectures and has several advantages. It could be used
as a service-oriented architecture. Moreover, different microservices are developed and
deployed independently. These can be scaled individually and can be modified or removed
without affecting the other services. It does not require one ESB to provide the services.
The reviewed proposals that were developed using this architecture are as such:

A microservices-based software infrastructure is developed for the management of
energy in a smart city by using building models, energy profiles, and grid models [52].
It addresses the challenges of the integration of heterogeneous data sources. The infras-
tructure is implemented in the real district for experimentation, and a control policy for
energy management is applied. Three rooms in a school building are used for test cases,
and around four thousand sensors were installed in the entire district to monitor and
manage energy usage. Based on the microservices architecture, this software infrastructure
is scalable and can integrate heterogeneous devices. The results have shown that the
infrastructure was helpful in energy management for the city. The authors aim to extend
the infrastructure by adding the big data analytics module for analyzing and making use of
the historical data being collected by the infrastructure. InterSCity is one of the open-source
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and microservice-based middleware available to the community to improve and contribute
to research [53]. InterSCity is the middleware for IoT for applications in the domain of
smart cities with flexible, extensible, scalable, and loosely coupled architecture. It spans the
entire smart city domain and does not target a specific application area. An application is
built using the proposed middleware to validate the scalability, performance, and usage
of the middleware. Two main drawbacks of the proposed paradigm are the increased
operational complexity and the inefficient handling of large volumes of data.

3.1.5. Other Middleware

There are some proposals which did not mention any underlying architecture. These
are discussed in this section.

An architecture is proposed to deal with the energy efficiency of IoT resources [54].
The authors have used the mechanism of setting the devices to sleep mode, depending
on the requirements and quality of service required by the applications and the current
battery level of the devices. They also devised a mechanism to re-provision the allocated
cloud resources when the corresponding IoT devices are in sleep mode. The proposed
architecture makes use of the sleep scheduling method, which saves the energy of the
IoT resources and makes the utilization of cloud resources efficient. It is useful in many
scenarios because it is an architecture and not a method. Five volunteer individuals were
equipped with three sensors for the experimentation setup. These were blood pressure
monitor (BP), heart rate monitor (HR), and respiratory rate monitor (RR) sensors. The
mobile phones of the individuals were used as energy-efficient gateways, and these were
used to control the sleep interval of the sensors. BP and HR are the periodic sensors, whilst
RR is a trigger-based sensor. A mobile phone working as eGN is used to send the data
received from the sensors to the Cloud for further processing.

A solution using ontology and JSON-LD to annotate connectivity [55], security, and
privacy properties of IoT devices. The authors also developed an application-level protocol
wrapper for communication consistency, integrity, and secrecy for low-cost devices with
cheap microcontroller units (MCUs).

The newly created ontology is richer than the ontologies in the past. It has the concepts
of annotating the privacy, security, and supported protocols as non-functional properties of
things and their services. JSON-LD’s use helps to annotate things using the newly created
ontology. The current protocol wrapper is used and tested on devices with two MCUs only
and may not work smoothly on the other devices with different MCUs, which is one of the
solution’s limitations.

3.2. Critical Evaluation of Different Middleware Architectures

In the literature review, we studied the middleware solutions for IoT-based environ-
ments. We learnt that, although there are a number of these proposals, these lack one
or the other aspect of the application requirements for the smart cities domain and thus
do not provide a comprehensive solution. These either have limitations and weaknesses
or were not tested thoroughly enough to prove the stated claims. For instance, in [56],
the authors evaluated four middleware proposals. These are OpenIoT, CHOReOS, LinkS-
mart, and UBIWARE. The authors evaluated these for autonomous services, scalability
of the service registration, discovery and composition of services, interoperability, and
heterogeneity of IoT devices. The evaluation results show that all the middleware follow a
semi-automated registration process and semi-autonomous discovery component. None of
the evaluated middleware provides the automated service composition. Therefore, all of
these are deficient for certain functionalities, and further research is required.

The previously proposed frameworks reviewed in this work, along with their domain
areas, architectures, limitations and evaluation parameters with results, are listed in Table 2
and show only studies that provided the evaluation parameters and testing.
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Table 2. Critical evaluation of middleware for smart city applications.

Middleware Architecture Domain Limitations/Weaknesses Evaluation Parameters

SmartCityWare
[45] Service-Oriented Smart

Cities/Generic
Did not implement all the listed
services.

Communication,
Performance
Time Required:
Local calls = 500 ms
Remote calls = 3000 ms
Service lookup = 1300
ms–2400 m

MinT [25] Component-Based Smart
Cities/Generic

CPU resources wastage if number
of requests are smaller than the
throughput of the thread pool. The
creation of threads also increases
memory use.
Fewer platforms/operating
systems support.

Average throughput per
second:
Throughput = 8900
requests/s

InterSCity [53] Microservice-Based Smart
Cities/Generic

Inefficient data handling by
multiple databases.
Increased operational complexity
due to decentralized databases.

Performance, Scalability
[With 6 Resource
Adaptors 1546
requests/s]:
For Performance: [<1 s
for 350 parallel clients]

ABC&S [41] Service-Oriented Smart Cities/Car
Parking

No criteria defined for the best
parking lot.

Response Performance:
Average Response
Rate < 1 s, i.e., in ms

CoTWare [43] Service-Oriented Smart
Cities/Generic

Challenges addressed are unclear.
Must have implemented all the
stated services.

Communication,
Performance
Time Required (10 Calls
mean values):
Local calls = 500 ms
Remote calls = 1700 ms
Service lookup = 50
ms–1200 ms

SMArc [32] Distributed
Smart
Cities/Energy
Management

Lack of GUI.
The results are highly dependent
on nature of device and
implementational scenarios.

Service Registration vs.
time in ms, Service
requests completion vs.
time:
Average of service
registration = 453.4 ms
Average of Simple
services = 561.2 ms
Average of Composed
service = 661.1 ms

FogFlow [36] Distributed Smart
Cities/Generic

Low throughput of brokers with
increasing subscribers.
Low throughput of queries and
response times.

Throughput and
response time/message:
For geoscopic-based
queries:
Average Response
Rate = 1000 ms (Approx.)
For ID and topic-based
queries:
Average Response
Rate = 100 ms
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Table 2. Cont.

Middleware Architecture Domain Limitations/Weaknesses Evaluation Parameters

DAQ-
Middleware
[26]

Component-Based Smart
Cities/Generic

In the case of uniform interfaced
data sources, the parallel data
acquisition algorithm may not be
very useful.
The efficiency of DAQ, along with
the configuration tool, is quite low
at the start.

Time required to
complete a data
acquisition:
By DAQ = 387 ms
By Serial = 1979 ms

Rimware [42] Service-Oriented Smart
Cities/Generic

No testing for scalability is
provided.

Security and
Authentication
initialization time:
Security initialization
time: 135 ms
Authentication
initialization time: 135 ms

Service-Oriented
Middleware [44] Service-Oriented Smart

Cities/Smart Grid

The middleware should have been
applied to an actual smart grid
environment to prove its validity.

The best service quality
and the metric used is
Mean Opinion Score:
MOS = 4.3 (N = 10)
MOS = 4.1 (N = 20)
MOS = 4 (N = 30)
MOS = 3.95 (N = 40)

Soul [35] Distributed Smart
Cities/Generic

Lack of testing results for real-time
streaming big data.

Scalability:
Messages = 10,000/s

End-to-End IoT
Security
Middleware [28]

Component-Based Smart
Cities/Generic

Due to the use of the session
resumption, trust state is required
to be maintained in the network
amongst the IoT devices.
The short-lived reputation or trust
state must be supported to avoid
maintenance of trust state for
longer periods and dealing with
the transient devices.

Time for Security
Association and Session
Resumption time:
Security
Resumption: 40 ms
Security
Association: 80 ms

DDS [34] Distributed Smart
Cities/Generic

DDS is not implemented with an
adequate number of IoT
middleware.
Should have been tested for more
detailed performance evaluation.

Performance, Scalability
For Synchronous
Collection:
Messages = 11,000/s
(1 node)
Messages = 25,000/s
(3 node)

Internet of Things:
a N Interoperable
IoT Platform [7]

Not Specified Smart Building No prototype is developed to
validate the proposed framework.

No evaluation
parameters are provided.

MiSCi [40] Service-Oriented Smart
Cities/Generic

Not validated for real use cases,
but only tested using the
simulations.

Timeliness of monitoring,
analysis, and execution
of required action in
different scenarios.

SGeol [23] Component-Based Smart
Cities/Generic

Validation is done using
simulations and virtual machines.

Number of concurrent
handled requests in one
minute.
Min = 51,887,
Max = 54,414,
Avg = 53,661.25 (for a
single SGeol
Core instance)
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Table 2. Cont.

Middleware Architecture Domain Limitations/Weaknesses Evaluation Parameters

An agent-based
middleware
framework based
on distributed
CPS [37]

Distributed Smart
Cities/Generic

Validation is done using the
simulations, and middleware is
not tested by developing any
applications.

Average resource
utilization vs. queries
and time. Storage
utilization vs. queries
and time. Downtime vs.
queries and time.
Response time vs.
queries.

All of the previous work has addressed a few of the challenges in the domain of
middleware. Most middleware has addressed heterogeneity, flexibility, scalability, exten-
sibility, and data acquisition. Therefore, these challenges have more importance than the
rest, which are the domain’s core. For a comprehensive solution in the area, it is a must to
address all of these challenges along with the others. Still, it is obvious that missing any of
these attributes will have a significant impact on the effectiveness of the solution. Table 3
lists the challenges addressed by each of the proposed frameworks. The crux of the study
with different aspects and benchmarks is listed in Table 4.

Table 3. Challenges that each middleware addresses.

Middleware
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ABC&S [41] X

Device Nimbus [24] X X X

InterSCity [53] X X X

GAMBAS [27] X

Civitas [33] X X X

MinT [25] X X

Rimware [42] X

FogFlow [36] X X

CoTWare [43] X X X X X

SMArc [32] X X

Service Oriented Middleware [44] X

SmartCityWare [45] X X X X X

Distributed Data Service [34] X

DAQ-Middleware [26] X

Data Processing Middleware [46] X

AUSOM [50]

AndroAec, D., et al. [55] X

Brundu, F. G., et al. [52] X

Soul [35] X

SAVI-IoT [47] X X
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Table 3. Cont.
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TinyCO [51]

Kaur, N. and S. K. Sood., et al. [54]

Zgheib, R., et al. [31]

LISA [48]

Mukherjee, B., et al. [28] X

Abreu, D. P., et al. [30] X

Mint-I [29] X X

SEEMPubS [57] X X

Patti, E., et al. [49] X

MASSIF [39] X X

A new Interoperable IoT Platform [7] X

MiSCi [40] X X X X

SGeol [23] X X X

GMSCA [Proposed Middleware] X X X X X X

Count 4 13 12 5 5 7

Table 4. Extracted aspects and benchmarks.

Aspect/Benchmark Category Value

Famous Architecture Aspect Service-Oriented Architecture

Mostly Addressed Challenges Aspect Heterogeneity, Scalability, Flexibility, Data
Acquisition, Extensibility, and Security

Evaluation Parameters Aspect Performance: Throughput, Service Requests
Throughput Messages/s Benchmark 8900/s

Requests Completion [Server/Cloud-Based] Benchmark 1700 ms
Requests Completion [LAN-Based] Benchmark 500 ms

Data Acquisition Benchmark 387 ms

3.3. Proposed Architecture for GMSCA Middleware

As per the discussion in the above section, it is evident that there is a need for a
comprehensive solution that addresses all the core identified challenges with a system
which is flexible enough to incorporate the services that would emerge at later stages,
along with the flexibility of changing the services overtime upon need. This section
presents a complete framework for the end-to-end architecture of IoT-based applications
and the proposal for middleware for IoT-based applications. It contains all the necessary
components and advanced components, such as data analytics and Artificial Intelligence
(AI) components, to support different smart cities applications.

Both data analytics and AI components are necessary, given the massive amounts of
data being collected nowadays. Smart cities produce data quickly due to a large number
of data-producing points at different intervals. Big data analysis is, therefore, a must to
process such huge amounts of data. AI components could then be augmented with big
data analytics, and this data could be used for useful purposes such as future predictions
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(classification), identification of different data patterns (association rule mining), and
grouping of the data using clustering.

GMSCA contains these components to leverage the benefits of advanced technologies.
Data flow is then shown in the overall system and how different system components
interact to serve the purpose and fulfil the application requests. A hypothetical example
further explains a real-life scenario of initiating and completing an application request.

Based on the previous literature, the basic architecture of IoT-based applications is
shown in Figure 1. These are five necessary layers to develop applications based on the
IoT. All the layers in the architecture are involved in two-way communication with their
immediate upper or lower layers.
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The sensing and actuation layer sits at the bottom of GMSCA architecture and helps
the data acquisition process by sensing the environment using different sensors, such
as camera sensors, humidity, or temperature sensors. Data from the sensing layer is
then transferred using the communication layer, which resides on top of the sensing and
actuation layer. The communication layer communicates with middleware and the cloud
services for data, either serving the application layer via middleware or storing the data
in Cloud. The middleware layer is the core of the IoT system, as it may contain different
components to perform various operations required for the development of applications
for IoT-based systems. The Cloud layer is usually responsible for storage. Different types
of databases could be used for storage purposes, such as relational databases and NoSQL
databases, among others. The application layer contains all the user applications, such as
mobile applications and web applications. These applications use the components in the
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middleware to perform different operations such as acquiring data using API calls, and
processing and storing data.

The following sections provide an overview of the GMSCA middleware components
and how these components work together to address the challenges of the smart city
application domain. The middleware layer is the central area of interest as it contains all the
components of the GMSCA, and Figure 1 shows the component-level view of this layer. The
components include data acquisition, data management, data processing, data analytics,
service registration, services catalog, service discovery/broker, security & privacy, and
artificial intelligence components. A short description of these components is given below.

The data acquisition component, also known as the data collector component, is
responsible for data acquisition or actuation for the data originating from the sensing and
actuation layer. The data is then processed using the data processing component and then
managed/stored using the data management component. The data analytic component is
responsible for data visualization, data aggregation, and summarization.

The devices and services are registered using the services registry component and
recorded in the services catalog. The available services are then discovered using the service
broker/discovery component based on the application queries and services requirements.
Data security and privacy are provided using the security and privacy component by using
different strategies.

The challenges of data acquisition, scalability, heterogeneity, flexibility, extensibility,
data analytics, and security are handled through different components. For instance, the
data collector component is used to address data acquisition challenges. This component
accepts the data from the gateways and sends it to the server/cloud using the middleware’s
API calls. NoSQL database is used for storage purposes to deal with the heterogeneity of
the devices’ data and data from other sources. NoSQL is a schema-free database (i.e., it
does not need any configured schema) that can incorporate any schemas. As a result, with
the introduction of any new device with a different format, schemas are created for the
device without affecting the previous schema and services. The security component is
implemented in the middleware to enforce the security mechanism for data and service
usage. In the security component, a role-based authorization is used to allocate separate
rights to application users, developers, and data administrators. Privacy is implemented
using data encapsulation and data hiding. Instead of revealing the actual data (wherever
required), the processed data is provided to application developers.

The middleware is based on service-oriented architecture to deal with scalability,
flexibility, and extensibility challenges. As a result, all services can be implemented and
plugged into the middleware without affecting the other services. It makes the individual
services more manageable, scalable, flexible, and extensible by introducing more and
more services upon the new emerging requirements. Scalability can also be achieved
using replication, and it can also be used to improve the system’s performance. On top
of these advantages, the GMSCA integrates the services provided by different vendors in
the city and this, in turn, carries the advantages of microservices-based architecture and
offloads the processing work for those services to the third-party vendors’ servers. GMSCA
application developers use the data which is queried through the web services provided by
the aforementioned third-party vendors; still, the middleware encapsulates the web service
calls from vendors, and it maps the API calls for developers to native GMSCA’s API calls.
As a result, the developers’ query data appears from the GMSCA’s internal data repository.

The middleware implements two components for predictive data analytics and data
visualization: the data analytics component and the AI component. The data analytics
component supports the functions that help with data visualization and aggregation, whilst
the AI component implements predictive analytics through machine-learning and other
data-mining techniques.

Figure 2 shows the overview of data flow from the sensing and actuation layer towards
the application layer on initiating a request by the application users. It shows how different
layers and components communicate with each other to make the overall system work.
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The following example demonstrates how the interaction of the different components
and services will fulfil a user request in the proposed layered architecture. For instance,
if a user wants to know the temperature of a specific location, the user sends a request to
the smart city application using a mobile phone. The application request is then processed
by the service broker component in the middleware to find the appropriate service. The
system checks the user’s authorization, and if the user appears to be authorized to use this
service, environmental data is sensed using the data acquisition component. Temperatures
from different corresponding data points are gathered and passed to the data analytics com-
ponent to be processed and aggregated. The final average temperature is then forwarded
to the user who requested the service.

4. Implementation Details of GMSCA

The proposed middleware is implemented using a set of technologies that include
Python, Flask, Spark ML, Pymongo, Spark, and MongoDB. The front-end application for the
access and description of API and services is implemented using PHP. The core middleware
API is written using Python and a Flask framework [58]. Flask is a microframework for
Python based on Werkzeug and Jinja 2. Flask helps in RESTful request dispatching.

Spark is a high-speed, in-memory data processing engine [59] which is used as the
processing engine by GMSCA to develop the predictive analytics machine-learning models
using the Machine Learning (ML) library [60]. Spark can run on the cluster and bring
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scalability through horizontal scaling. Spark was chosen in the present study because
iterative processing of the data is required, and this is facilitated by Spark’s capability of
in-memory data processing and caching.

MongoDB is used for data storage due to its useful features, such as a dynamic schema
and rapidly changing structured, semi-structured, and unstructured data [61]. NoSQL
should be the choice in a smart city application because of heterogeneous data sources
and variant data structure. Moreover, NoSQL allows flexibility in changing the schema
over time without breaking or affecting the dependent components. A Pymongo wrapper
is used in Python for communication, data persistence, and retrieval from the MongoDB.
Further details on the usage of the different components are discussed below.

The core API of GMSCA contains all the API calls that use different services and
components. It sends the results to the application developers in JavaScript Object Notation
(JSON) format [62]. JSON is a standard format for data interchange on the Internet. As a
result, application developers can avoid dealing with heterogeneous formats and can use
and interpret one single format, making integration and working with data and services
easier. The core API also receives the API calls from developers and transforms them into
third-party application service calls when required.

The core API also contains the calls that use the data collector component for data
collection from the IoT devices and is responsible for data actuation using IoT gateways.
Application developers communicate with the components of the system, including data
analytics and AI components, using core API calls.

The description of services and their corresponding calls are listed on the front-end
web application, which is built using PHP. Third-party vendors who can provide the
data for the benefit of the community can create their services using the aforementioned
web application. Their direct web service calls that are responsible for data retrieval are
protected and transformed into a GMSCA native application call, which is then made
available to application developers to develop various applications.

Spark ML is used for the development of various machine-learning models for the
purpose of prediction and data visualization, summarization, and aggregation. The ML
library [60] includes the functions that contribute to the development and implementation
of various machine-learning algorithms for the creation of various predictive models and
other statistical functions.

MongoDB is a NoSQL database [61] used for data storage purposes in the system. It
brings many advantages to the system, such as a dynamic schema and the capability of
semi-structured data storage. It stores the records as documents and returns the results as
JSON-formatted objects, which are easier to interpret and use by most applications and
tools. Pymongo is used in the Core API to communicate with the database.

5. Applications Using GMSCA

Three minimum viable applications are developed using GMSCA to demonstrate
its feasibility and the functioning of different components in the system. Details of these
applications are presented below.

5.1. Web-Based GUI for GMSCA

This web-based application is developed using the GMSCA API. A snapshot of the
interface is shown in Figure 3. The interface was developed to provide a communication
platform for the following stakeholders: third-party vendors, developers, administrators,
and city residents.

• To use the underlying services by the third-party vendors, they need to sign up, as
shown in Figure 4. Following successful registration, they register their services as
service calls designating their data to be fetched by the system. These service calls to
vendor services are then mapped to a GMSCA native service call and stored in the
database. Vendor-specified service calls are protected, and developers only see the
GMSCA’s native API calls in their applications. These calls are then received by the
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GMSCA system, which maps the calls to the required actual service call and pushes
the fetched data from the called service to the caller.

• The application developers can use the service platform to review the available services
and the data descriptions. A sample of available services is shown in Figure 5. After
selecting the right service, the developers can use the service calls in their applications
and use the fetched data to provide the relevant functionality in a specific application.
Various services might need authorization permissions, which the GMSCA administra-
tion provides in coordination with the vendors. An example of the available services
could be ticket registration with travel companies. In this case, availability and ticket
information may be fetched and used without authorization, but the tickets could only
be booked using the authorization.

• The GMSCA administration uses the platform to approve the vendor’s posted services.
These services are properly reviewed under certain service contracts before making
available to application developers.

• Smart city residents can use the platform to explore services and discover different
applications developed using middleware. This helps them find everything built for
them using GMSCA and contributes to a better quality of life in the city.
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5.2. Bus-Ticket-Booking Mobile Application

A bus-ticket-booking mobile application is developed using Android Studio [63].
This application is developed to show the usability of GMSCA, where vendors can post
the services; smart city developers use the resulting data to build useful applications for
city residents.

To develop this application, mock data, provided services, and vendors were used.
These mock objects resemble the actual data (although fields and data may change) to show
the suitability of GMSCA for such real-life scenarios.

To this end, a bus ticket booking mobile application uses the data provided by different
bus service companies. The service calls fetch information related to trip details, company
information and ticket availability.

Applications users can search through these by entering criteria such as trip start
location, destination, and date. Depending on these criteria, a service call is created on run
time, and the resulting data is retrieved and displayed to the user. The user can then choose
a ticket to book depending on its suitability and is then shown a screen where the number
of tickets to purchase can be chosen. Tickets can then be booked by using another API
call to the respective travel company or vendor. The user is then notified of the booking’s
success or failure. Snapshots of the user-search-screen-retrieved ticket info, booking page,
and booking-success screens are shown in Figure 5.

5.3. Data Acquisition & Actuation Application

GMSCA can help acquire and store the IoT devices’ data using its API calls and
gateways. API calls are made by IoT gateways to push or pull data from the system. Data
is pushed in case of data acquisition or collection and pulled in case of actuation.

GMSCA have been tested for the performance parameter. The data acquisition ap-
plication is used for communication with the result of data acquisition from IoT devices
by the GMSCA hosting server. The test results for twenty data acquisition operations are
shown in Figure 6. The average time for data acquisition operations, along with the upload
to the server using middleware API calls and data saving to MongoDB, is 802 milliseconds.
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For implementation purposes, a desktop application is developed using the Mi-
crosoft.net framework and used as the gateway for IoT devices. Arduino UNO is used for
communication and data retrieval from the DHT sensor. The DHT sensor provides the data
for temperature and humidity. This data is transferred using the Arduino serial interface to
a desktop-based application (acting as a gateway in our present case), which uploads the
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data to the GMSCA data persistence repository based on MongoDB. For this experiment,
we used the VM running Centos Linux 7 with 12 GB of memory and four processor cores.
API calls are sent using Ngrok [64], a platform that provides secure tunnels to localhost.
All our requests were then routed through Internet using API calls.

For the implementation of the actuation application, API is hosted on Intel’s core I7
computer with 16 GB of memory running on Windows 10. Ngrok is used to send all calls
to API to introduce the delay caused by internet routing. A push button is used to send the
events to the system, which sends back responses to switch on/off the LED, showing the
feasibility of actuation applications using GMSCA’s API calls. The experiment results are
shown in Figure 7.
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The average time taken from request generation on the client side to the response
receipt by the same client was observed to be 831 ms. Snapshots of the hardware devices
used in the experiment, i.e., Arduino UNO, DHT sensor, push button, and LED, are shown
in Figure 8.
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Under the same setup, the experiment was repeated to record the time necessary to
send the API calls to the proposed middleware (just as in phase 1 of this application). In
this scenario, the time taken did not include data saving to MongoDB. API calls, however,
are sent using ngrok. The results of this experiment are shown in Figure 9. The average
time from request generation to receipt of the request at the server is around 650 ms.
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6. Load Testing

The performance of the proposed middleware was evaluated and compared with
similar architectures through load testing using Locust [65]. This tool has a simple interface
for inputting the number of concurrent users and hatching time. Hatching time was set
to 500 ms for all experiments with different numbers of concurrent users. Locust has the
browser-based visualization and capability of displaying tabular results and drawing charts
for different parameters. Tabular results are shown in Figure 10. Load testing was repeated
for different numbers of users, and the median, average, and minimum response times
were recorded for each test. The results are shown in Table 5.
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Table 5. Load-testing results of concurrent users.

Concurrent
Clients

Total
Requests

Times (in Milliseconds) Failed
Requests %Median Min Average

250 52,131 1.1 0.018 1.114 0.01

300 50,018 1.2 0.035 1.246 0.02

400 55,880 1.2 0.038 1.302 0.02

500 53,526 1.3 0.010 1.421 0.02

600 55,298 1.7 0.018 1.771 0.02

700 52,467 2.0 0.019 1.936 0.02

Figure 11 shows request/response times as a function of the number of concurrent
users. It indicates that the average and median times are almost overlapping, which shows
the linearity in the pattern of request/response times
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The results show that the response time starts to display a latency of 2 s from around
700 users. Below 700 concurrent users, the average and median response times are below
2 s, which is reasonably satisfactory for applications that do not have stringent real-time
response requirements. These response times could substantially be lowered through load
balancing and replication strategies. It is also evident from the results that the x percentage
of failed requests is quite low for a number of concurrent users, up to 700:0.02% for
700 concurrent users and more than 50,000 requests.

The results of the request completion of GMSCA were compared with SmartCityWare
and CotWare, shown in Figure 12. Moreover, load-testing results of GMSCA were compared
with those of the InterSCity middleware shown in Figure 13. In both cases, the request and
response time of GMSCA is far lower than other middleware used for comparison.
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7. Conclusions and Future Work

The proliferation of the Internet of Things (IoT) in several application domains neces-
sitates the establishment of a well-defined infrastructure of systems that can support the
development of applications, as well as provide services for the abstraction and manage-
ment of data pertaining to connected devices. Over the past few years, middleware for the
IoT has emerged as an increasingly important component because it has been identified
as the system that is able to deliver the essential infrastructure of services. The aim of
this paper was to review and synthesize the relevant literature to identify and discuss the
challenges of existing architectures of IoT middleware systems. A critical analysis was per-
formed to highlight their strengths and weaknesses. The comprehensive analysis identified
that none of the existing middleware systems has addressed all the key challenges; hence,
choosing one as a reference architecture was difficult.

We proposed and implemented a generic reference architecture, GMSCA, by combin-
ing the information landscape of existing IoT middleware systems with big data applica-
tions to achieve the required level of services supporting sustainable cities. GMSCA is a
generic middleware architecture proposed for the development of smart city applications.
It addresses the core challenges, including data acquisition, scalability, flexibility, hetero-
geneity, extensibility, and security. A basic implementation of advanced data analytics and
artificial intelligence components is provided and plugged into GMSAC by implementing
three applications. One is web-based, the second for mobile devices, and the last deals
with data acquisition for the actuation of connected IoT devices. The results show a satis-
factory performance of the GMSCA and the middleware could be used in IoT application
development for future cities.

The performance of the GMSCA was compared to that of other middleware for request
completion times and load testing for concurrent users. The results showed the advantage
of GMSCA in terms of performance over other middleware. Data analytics components
and AI components are developed and plugged into the middleware, but their testing by
developing applications based on these components is yet to be completed. A complete
description of these components and test results is planned. The other challenges, such as
resilience, interoperability, and QoS, will also be addressed in future implementations to
build a comprehensive middleware system for various IoT-based applications, especially
applications targeting the smart city domain.

Furthermore, the study only reviews the most commonly used IoT middleware de-
signed to develop IoT-based big data applications. To further validate the performance of
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the proposed middleware, it might be helpful to compare it with state-of-the-art middle-
ware architectures. In future work, we plan to conduct an empirical analysis and compare
the performance of the proposed architecture with state-of-the-art middleware architectures
to further evaluate its suitability for designing smart city applications.
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