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Abstract: The unequivocal global warming has an explicit impact on the natural water cycle and
resultantly leads to an increasing occurrence of extreme weather events which in turn bring challenges
and unavoidable destruction to the urban water supply system. As such, diversifying water sources
is a key solution to building the resilience of the water supply system. An atmospheric water
harvesting can capture water out of the air and provide a point-of-use water source directly. Currently,
a series of atmospheric water harvesting have been proposed and developed to provide water
sources under various moisture content ranging from 30–80% with a maximum water collection
rate of 200,000 L/day. In comparison to conventional water source alternatives, atmospheric water
harvesting avoids the construction of storage and distribution grey infrastructure. However, the
high price and low water generation rate make this technology unfavorable as a viable alternative to
general potable water sources whereas it has advantages compared with bottled water in both cost
and environmental impacts. Moreover, atmospheric water harvesting can also provide a particular
solution in the agricultural sector in countries with poor irrigation infrastructure but moderate
humidity. Overall, atmospheric water harvesting could provide communities and/or cities with an
indiscriminate solution to enhance water supply resilience. Further research and efforts are needed
to increase the water generation rate and reduce the cost, particularly via leveraging solar energy.

Keywords: water supply resilience; atmospheric water harvesting; fog collection; refrigerated
atmospheric water extraction; climate change

1. Introduction

Promising reliable access to safe water is still a big issue all over the world [1,2]. On
the one hand, at least a billion people globally are suffering from severe water shortages,
particularly those living in developing countries and regions [3]. As such, the 2021 edition
of the United Nations World Water Development Report is rooted in “Valuing Water”
and strengthening the societal awareness of water safety [4]. On the other hand, the
unequivocal climate change and the resultant extreme weather bring new challenges to
water accessibility [5] and explicitly sound alarms to the established water supply system [6].
Currently, surface water is still a principal or sole water source for the water supply systems
in most cities, of which the vulnerability has been completely unmasked and experienced,
such as the Day Zero water crisis in Cape Town [7,8]. A severe and unanticipated reservoir
drought left millions of residents thirsty. As such, increasing reliable access to safe water
plays an important role in the sustainable development of society [9].

From a technical point of view, diversifying water sources besides surface water is a
fundamental and vital approach to increasing urban water reliability [10]. In another word,
this principle is covered by the framework of water supply resilience which highlights the
ability of water supply system to promise residents the accessibility to safe drinking water
under extreme events like drought [11]. In terms of water sources, seawater desalination,
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rainwater harvesting [12,13], sewage reuse [14–16], and inter-basin water transfer [17,18]
can be supplements to surface water and enhance water supply resilience. However, these
approaches have their pros and cons in terms of their applicability. Typically, seawater
desalination and rainwater harvesting, are not suitable for inland cities suffering absolute
water shortages while inter-basin water transfer is facing vulnerability of water quality or
ecological safety [19]. Although sewage reuse is universally applicable enough for cities,
public acceptance has been the most serious hurdle for practicing [20]. Moreover, these
approaches cannot be relied on to go through water supply emergencies under which
bottled water is usually the preferential choice [21–23].

Indeed, there is a kind of water reservation always overlooked, namely atmospheric
water or water in the air [24]. As a key and interchange step of the water cycle from ocean
to land, the atmosphere is a huge renewable water reservoir [25]. Roughly, it contains
12,900 trillion liters of renewable water, which is about equivalent to 10% of surface water
reservation [26]. Even in the arid desert, the moisture content in the air is as abundant as
10 g/m3 [27]. As such, atmospheric water harvesting has been proposed and developed to
link the natural water cycle and the urban water cycle [28]. Moreover, water in the air is
distributed everywhere and could be an indiscriminately decentralized water resource [29].
As such, the present study is to introduce and summarize the development of atmospheric
water harvesting in comparison with other water sources. By analyzing the pros and cons
of atmospheric water harvesting in terms of technology, economy, and safety, the role of
atmospheric water harvesting in contributing to water supply resilience is discussed.

2. Characterizing Supplementary Water Sources to Surface Water

Surface water has long been the main water source for potable or non-potable utiliza-
tion [30]. For a long time, surface water has been the only connection point between the
natural water cycle and the urban water cycle as depicted in Figure 1. The water feeding
the cities starts from and wastewater also ends in surface water. In general, the water
bodies receiving wastewater are located downstream. It is the natural water cycle that
refreshes the surface water to meet the demand of human beings [31]. In another word,
the renewal of surface water depends on a whole circle (the blue-lined circle in Figure 1),
that is, evaporation, condensation, and precipitation. Once the water demand outpaces
the renewal capacity of surface water, drought will occur and undermine the safety of the
water supply. As a response, various water sources have been explored to supplement
surface water-based water supply as presented in Figure 1, including seawater desalination,
rainwater harvesting, inter-basin water transfer, and sewage reuse.

As presented in Figure 1, desalination enables seawater to feed the residents by
artificially bypassing the step of water vapor transport. At present, there are about
17,000 desalination plants globally in operation with a total capacity of ~95 million m3/d [32].
Although the accounting percentage of desalination in water supply structures is still very
small, it provides a promising direction to strengthen water supply resilience. However,
desalination is still considered to be an energy and cost-intensive technology and is mainly
implemented by high-income countries and small island countries [33]. As such, geographi-
cal constraints and high capital & operating expense are two hurdles to practicing seawater
desalination [34].

As one of the simplest and oldest water sources, rainwater harvesting can be more
flexible in terms of capacity, sites, and applications [35]. With proper purification treatments,
the rainwater collected can be utilized for potable or non-potable purposes [36]. As such,
rainwater can provide a useful supplementary supply and important backup to the water
supply system. The biggest obstacle to rainwater harvesting is the temporal variation and
geographic locations of rainfall [37]. Although artificial rainfall seems to solve this problem,
this technology is still controversial [38].

Inter-basin water transfer (IBT) is an artificial reallocation of surface water resources
from a donor watershed to a recipient [39]. In other words, IBTs improve the water supply
also by accelerating the water cycle (the blue-line circle) by avoiding evaporation and
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precipitation [40]. However, the solution of IBT to improve the water supply has been
under hesitation and debate since the 1980s [41]. Specifically, hydrological and ecological
risks are associated with the donating and recipient basins [42]. Moreover, the donating
watershed, IBTs’ water source, is also subject to uncertainties from climate change.

Sustainability 2022, 14, x FOR PEER REVIEW 3 of 18 
 

Inter-basin water transfer (IBT) is an artificial reallocation of surface water resources 
from a donor watershed to a recipient [39]. In other words, IBTs improve the water supply 
also by accelerating the water cycle (the blue-line circle) by avoiding evaporation and pre-
cipitation [40]. However, the solution of IBT to improve the water supply has been under 
hesitation and debate since the 1980s [41]. Specifically, hydrological and ecological risks 
are associated with the donating and recipient basins [42]. Moreover, the donating water-
shed, IBTs’ water source, is also subject to uncertainties from climate change. 

Sewage reuse is another long-history-applied approach to conserve water and im-
prove water supply [43]. Sewage reuse is the one shortening the water cycle most signifi-
cantly by bypassing the natural water cycle directly. Compared with the above ap-
proaches, one of the advantages of sewage reuse is its on-site and stable water supply. As 
such, this feature endows sewage ruse an indiscriminately applicable solution for cities to 
enhance water supply resilience. However, sewage reuse as drinking water is currently 
unacceptable to most people, and public attitudes hinder the sewage reuse plans in many 
developing countries [20]. Fortunately, aquifer recharge with treated sewage instead of 
reuse directly could be a solution to leverage sewage. 

These approaches have been applied separately or jointly to enhance water security 
by offering more choices and supplements to surface water. According to Figure 1, a com-
mon feature of these water sources is to offer more connection points between the urban 
water cycle and the natural water cycle. In other words, these alternatives get the natural 
water to the tap of residents (urban water cycle) more quickly [44], which seems to be a 
principal justification for whether a supplement is qualified to be an alternative to surface 
water. Obviously, atmospheric water owns the potential to be another connection point 
between the natural water cycle and the urban water cycle. It means that the water in the 
air can be extracted mandatorily (the dotted line) instead of via passive precipitation. 

 
Figure 1. Diagram of the water cycle and water sources available for human beings. Figure 1. Diagram of the water cycle and water sources available for human beings.

Sewage reuse is another long-history-applied approach to conserve water and improve
water supply [43]. Sewage reuse is the one shortening the water cycle most significantly by
bypassing the natural water cycle directly. Compared with the above approaches, one of
the advantages of sewage reuse is its on-site and stable water supply. As such, this feature
endows sewage ruse an indiscriminately applicable solution for cities to enhance water
supply resilience. However, sewage reuse as drinking water is currently unacceptable
to most people, and public attitudes hinder the sewage reuse plans in many developing
countries [20]. Fortunately, aquifer recharge with treated sewage instead of reuse directly
could be a solution to leverage sewage.

These approaches have been applied separately or jointly to enhance water security by
offering more choices and supplements to surface water. According to Figure 1, a common
feature of these water sources is to offer more connection points between the urban water
cycle and the natural water cycle. In other words, these alternatives get the natural water
to the tap of residents (urban water cycle) more quickly [44], which seems to be a principal
justification for whether a supplement is qualified to be an alternative to surface water.
Obviously, atmospheric water owns the potential to be another connection point between
the natural water cycle and the urban water cycle. It means that the water in the air can be
extracted mandatorily (the dotted line) instead of via passive precipitation.
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3. Technologies for Atmospheric Water Harvesting

As depicted in Figure 1, atmospheric water is an indispensable part of the natural
water cycle and is the prerequisite and prior step for precipitation. Via evaporation and
transpiration, a vast quantity of water out of water bodies and plants enters the air and
exists in gaseous water vapor. All this vapor goes up with the rising air currents and
condenses into clouds or fogs in the cooler air [45]. Generally, we can only get access to this
part of water after they drop down on the ground via condensation albeit passively and
intermittently [46]. By contrast, various technologies can be leveraged currently to help
extract water directly and constantly from air depending on relative humidity. According
to Figure 2, the water content capacity in the air (humidity ratio) is positively correlated
with temperature and the isohume curves (100%, 80%, and 30%) separate the area into
four zones. The blue line in Figure 2 represents a constant water quantity in the air termed
g-H2O/kg air [47], however, under each zone, the water is in a specific form. In Zone a,
the relative humidity is higher than 80% and close to 100%, and the water will be in the
form of mist or fog, which could easily be adsorbed and captured via proper materials.
This phenomenon always occurs at high altitudes or on the top of high mountains with a
low temperature and 100% relative humidity [48]. In Zone b, the relative humidity of the
blue line is around 30–80%, the air contains a large amount of water vapor that does not
readily nucleate into water droplets [49]. It needs to be artificially converted into liquid
water first. Most living environments are in this zone. In Zone c, the relative humidity is
lower than 30%, which makes the water vapor difficult to transform into liquid droplets
even artificially [50]. The blocks divided by relative humidity and temperature in Figure 2
can help determine the proper method to do atmospheric water harvesting in a specific
area, which will be discussed in detail below.
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3.1. Passive Fog Collectors

Passive fog collectors target the fog in the air by mimicking the oldest practice of
collecting drinking water from the leaves in the early morning by our ancestors. From the
relative humidity perspective, Zone a in Figure 2 is the prerequisite condition for scaling
this technology, and such places are usually located in coastal regions and/or mountainous
areas such as Chile, Mexico, Oman, South Africa, and Morocco [51,52]. Generally, a fog
collector is comprised of a flat-panel mesh that is stretched and fixed over a rigid frame.
With wind current, the fog water contacts with and deposits on the surface of the mesh, and
then aggregates into large droplets enough to drain into the container [53,54]. According
to the full-scale project, the water collection rate is in the range of 1.5–12 L/(m2·day) and
can reach 1416 L/(m2·day) with modification (Table S1). On the one hand, passive fog
collectors are energy-free while, on the other hand, their water collection performance
is highly associated with interior and exterior factors. Herein, the key interior factor is
the mesh type including mesh material and weave design. Currently, stainless steel and
plastics are two commonly-used mesh materials in large-scale projects [55]. Stainless
steel is hydrophilic and can resist strong wind loading albeit heavy. The typical plastics
available include polyethylene, polypropylene, and nylon [56]. They usually own the
advantages of hydrophobicity, lightweight, low price, and good anti-aging performance.
The properties of these materials are vitally important as they provide the direct sites
to capture fog water. Besides this, the weave configuration is another principal factor
determining the performance even with the same mesh material. As depicted in Figure 3,
there are three geometric shapes generally adopted in field projects, simply denoted by
triangular mesh, rectangular mesh, and hexagonal mesh [55,57]. Other key variations
associated with performance include the width of mesh wires, pore area, and shading
coefficient. The rectangular mesh is the most simple one made of stainless steel with a pore
area of 0.16 × 0.16 cm2 and a shading coefficient of 49%. Raschel mesh [58] is a typical
representative of triangular mesh and is interweaved by doubled layered polypropylene
ribbons with a width of 1–1.6 mm (shading coefficient of 35%). FogHa-Tin mesh is a
proprietary product and is made of 0.13 mm diameter polypropylene thread into a springy
structure with interleaved sets of embedded hexagonal patterns.
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Rivera proposed Equation (1) to calculate the water collection efficiency, which is
determined jointly by aerodynamic collection efficiency, capture efficiency, and draining
efficiency [61]. The pore area or shade coefficient is the key factor influencing aerodynamic
efficiency [62,63]. On the one hand, a large shade coefficient seems to provide more
deposition sites, but a too-large coefficient can divert the wind flow due to resistance and
reduce the water-mesh contact. On the other hand, too small a pore size could cause liquid
film clogging which then jeopardizes the aerodynamic efficiency. In terms of Raschel and
FogHa-Tin mesh (Figure 3a,c), wider ribbons instead of thread and embedded wires in the
pore areas are designed respectively to offset the large pore areas [64]. By contrast, the pore
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size of stainless-steel mesh is too small to easily be clogged. Then, a harp mesh by only
placing wires vertically instead of crossing reduces the adhesion to fog droplets and creates
an unobstructed path for fog droplets to move and fall freely [65]. As a result, the water
collection capacity of the parallel arrangement of wires can be 2–20 times higher than cross
arrangement [66]. In addition, this problem can also be solved by co-knitting or coating with
poly material [55]. Indeed, modification of mesh wires with coating materials can not only
improve the aerodynamic efficiency but also optimize the capture and draining efficiency
(Table S1). Knapczyk-Korczak et al. [64] deposited PVDF fibers on the Raschel mesh and,
as a result, the effective surface area to catch droplets increased without sacrificing wind
permeability. With the optimization of wetting properties and draining efficiency, the water
collection rate increased by 300%.

η = ηace·ηcap·ηdra, (1)

where:
η represents the overall collection efficiency,
ηace, ηcap, ηdra represent the aerodynamic collection efficiency, capture efficiency, and
drainage efficiency, respectively.

Another factor that should be taken into consideration is the wind speed [67]. Gener-
ally, the most favorable wind speed for passive water collectors is 4–10 m/s [68]. Notewor-
thy is that the effect of wind speed on the efficiency of fog collection is also related to the
diameter of the droplets and types of mesh. Fernandez et al. [55] evaluated the water col-
lection performance of Raschel mesh, modified stainless steel mesh, and FogHa-Tin mesh.
The results showed that Raschel mesh collected 160% more fog water than FogHa-Tin mesh
at wind speeds less than 1 m/s while 45% less with wind speeds higher than 5 m/s. This is
because the three-dimensional textile mesh will form some sort of a “blockage” at lower
wind speeds while capturing some of the coalesced water droplets that tend to re-entrain
in higher winds. As for modified stainless steel mesh, it collected more water than Raschel
mesh at all wind speeds.

3.2. Refrigerated Atmospheric Water Harvesting

In terms of an environment with a relative humidity of around 30–80%, there are
no readily available water droplets. To capture them, the prior step is to condense the
vapor into droplets artificially [50], which, along with the following capture unit, repre-
sents a typical principle to carry out atmospheric water harvesting in Zone b (Figure 2).
According to Figure 2, lowering the temperature is a simple and direct method to produce
water droplets, by which refrigerated atmospheric water harvesting works [49]. A typical
refrigerated atmospheric water harvesting unit is comprised of four parts, including the
evaporator, condenser, compressor, and throttle valve (Figure 4) [69]. The humid air enters
the evaporator part of the cooling unit, then it is cooled to the dew point temperature and
condensed, purified, and collected on the evaporator coil [70].

The cooling unit (condenser) is the key factor that determines the water extraction
efficiency of refrigerated atmospheric water harvesting. Currently, there are two cool-
ing categories commonly adopted, passive condenser and active condenser. A passive
condenser refers to one operating without any energy input [71]. One such unit is the
radiant condenser, which is commonly used [71,72]. The key function unit in the radiant
condenser is the cooling foil which owns the hydrophilic property and a high emissivity in
the near-infrared. It emits thermal radiation in the wavelength range (8 to 13 µm) where
the atmosphere is transparent and can emit heat radiatively to space [73]. This effect cools
the foil below the dew point temperature of the air, causing water to condense upon it. A
most commonly used cooling foil consists of TiO2 and BaSO4 microspheres embedded in a
polyethylene film [74]. At present, this radiant condenser has a low water production rate.
When the relative humidity is greater than 60%, the water production is commonly less
than 0.8 L/(m2·day) [75]. To improve the water yield performance, some new materials
have been explored and evaluated [76]. Raveesh et al. prepared a polystyrene film with
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hydrophilic bumps that secured a water yield of 1.8 L/(m2·day) [76]. Chen et al. used a
wettability and spectral selectivity engineered coating, and the water collection rate even
reached 251.25 L/(m2·day) [77]. Another challenge of the passive radiant condenser is the
low solar absorption and high mid-infrared emissions required to operate during the day.
Additionally, the process is not completely passive and the condensate needs to be manu-
ally removed. Haechler et al. combined a geometrically optimized radiation shield and a
hydrophobic coating to the surface of the selective emitter to promote the condensation
and removal of droplets which enabled dew mass fluxes up to 1.2 L/(m2·day) [74].
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In comparison, active condensers exert functions by leveraging external energy to
accelerate the condensation process [78]. Thus, they are working more efficiently than
passive condensers. The two most commonly used cooling methods in refrigerated at-
mospheric water harvesting are vapor compression refrigeration and the thermoelectric
cooling process [79]. The vapor compression refrigeration process is similar to air con-
ditioners and achieves cooling by changing the state of refrigerants such as Freon [80].
By contrast, thermoelectric cooling converts electrical energy into heat energy for cooling
through the Peltier effect and reducing the temperature below the dew point. As such,
thermoelectric cooling could avoid the drawbacks of vapor compression refrigeration
causing ozone layer depletion and global warming problems [81]. However, in terms
of the water yield performance, vapor compression refrigeration owns a higher capacity
and is easy to scale up. With a relative humidity of 90%, vapor compression refrigeration
can produce 22–26 L/day freshwater with energy input around 0.22–0.30 kWh/L [82].
This technology has been applied in the Middle East such as in Iran and Abu Dhabi [83].
Although the cooling capacity of thermoelectric cooling is low [84], it has the advantages
of energy-saving, environmental protection, low maintenance, and high portability [85].
It is applicable and useful for cyclists, hikers, expeditions, and scientific research teams.
In general, with a relative humidity of 60–90% and an input power of 0.8–3.5 kWh/L, the
water production rate of thermoelectric cooling reaches 0.48–0.8 L/day [76].

Indeed, along with the trial to increase the water yield capacity, research effort is
also placed on reducing the energy input associated with refrigerated atmospheric water
harvesting, particularly under a hot environment but with low relative humidity. Precooling
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the inlet air with the cold exit air from the evaporator or providing a preconditioning unit to
improve the psychometric properties of incoming air on the vapor compression system has
become a common way to increase energy efficiency [76]. Ibrahim et al. used condensate
to pre-cool the air entering the condenser, the compressor power input was decreased by
6.1% and the coefficient of performance was improved by 21.4% [86]. In addition, the use
of polymer electrolyte membranes or water vapor selective membranes before the cooling
process to separate water vapor from other molecules in the air can also achieve energy
savings [75]. Roughly, this could reduce energy input by more than 50%. Meanwhile,
this dense polymer membrane can also retain pollutants or pathogens, thereby purifying
water [87]. Moreover, leveraging renewable energy such as solar and wind power could
also be a potential solution to reduce the energy further [88].

3.3. Desiccant-Based Atmospheric Water Harvesting

As discussed above, fog collectors and refrigerated atmospheric water harvesting have
their favorite application environments with a relative humidity higher than 80% and 30%,
respectively. In terms of relative humidity less than 30%, the above processes do not work or
work but with a large quantity of energy input. As such, desiccant-based atmospheric water
harvesting was proposed to extract water from air under low relative humidity (below
15–20%) or low dew point temperature (below 5–10 ◦C) [89]. In general, desiccant-based
water harvesting works in a batch mode [90]. At the beginning of a cycle, the desiccant
is exposed to the atmosphere and adsorbs water vapor in the air. Once the desiccant is
saturated, the system is closed and the water will be released as vapor out of the desiccant
at a rising temperature of 160 ◦C (Figure 5). Then, the vapor condenses on the enclosure
walls and can be collected, meanwhile, the reactivated and unsaturated desiccant will be
cooled down for the next water-capture cycle [74].
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One of the key units is the desiccant, which performs the cycle of water vapor adsorp-
tion and water desorption [91,92]. The desiccant not only determines the water collection
rate but also is associated with energy consumption. Currently, a series of single solid
desiccants and composite materials have been developed and studied [93]. Some typical
single solid desiccants include silica gel, activated carbon, and inorganic salts. However,
they need a high temperature to release water after saturation which is energy-intensive
and cannot be completed by conventional solar thermal equipment [94]. By contrast, some
novel composite materials have drawn attention (Table S2). For example, a kind of salt gel
beads made of an alginate-derived matrix with calcium chloride owns a water holding
capacity of 660 kg water/m3 and can release water at a temperature of 100 ◦C [95]. In
addition, some MOF-based desiccants were also explored and presented promising water
adsorption ability [91,96].

Another key issue associated with a desiccant-based water extraction system is to
reduce the energy input as low as possible [69,97]. One of the basic and most greenway
is to leverage solar energy [98]. The glass-covered greenhouse (also called solar still) is
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the simplest device, it uses solar energy to distill out the water molecules adsorbed in the
desiccant [99]. However, the water generation rate (1.0–2.5 L/(m2·day)) is limited due to the
diurnal variation [75]. Therefore, employing an additional condenser as a supplement to a
solar heat collector to ensure a continuous operation is one of the possible solutions [50].
In addition, transforming and/or storing solar energy in the form of either electricity
or heat via thermal collector or photovoltaics can also be coupled to a desiccant-based
water extraction system to utilize the solar energy as more as possible [100]. Especially in
extremely dry climate regions such as deserts, solar photovoltaic modules can be used to
power atmospheric water harvesting. The solar modules developed by Panchenko have an
extended service life and polysiloxane compounds, which do not degrade in such difficult
climatic conditions and are tolerant to cyclical temperature fluctuations [101,102].

4. Link between Atmospheric Water Harvesting and Water Supply Resilience

A reliable water supply is vital to life, and having either too much or too little has
very serious consequences, leading to drought and fires at one extreme, and floods at the
other [103]. Recently, the Intergovernmental Panel on Climate Change (IPCC) released a
new assessment report in August highlighting the changes in the water cycle due to the
temperature rising. As 1 ◦C increases in the air could increase its water holding capacity by
7%, and continued global warming will make air retain more moisture [104]. Specifically,
the rainfall amount will be larger as there is more water to condense and fall out of the
air [105]. Meanwhile, a warmer climate will intensify the evaporation and result in droughts
developing more quickly and lasting longer [106,107]. Indeed, all these extreme weather
patterns have been tangible and jeopardized our water supply system [108,109]. The more
recent flooding disaster in Germany and ongoing extreme droughts in the western USA
consequently make drinking water unavailable or shortage [110,111]. Thus, it is urgent for
each city to proactively enhance its water supply resilience and get ready for the projected
worsening global warming [112,113].

The National Infrastructure Commission of the UK advised a twin approach to ad-
dress the resilience of water supply, which includes demand management and supply
infrastructure [114]. Demand management focuses on increasing water efficiency while
supply infrastructure highlights diversity which refers to developing a range of different
water sources. The different source types have different strengths and vulnerabilities;
therefore, resilience is increased by being used together. Hereinto, how to define the role
of atmospheric water harvesting in building water supply resilience remains to answer.
The current centralized water supply is a symbiotic system composed of four elements,
that is, sources for water intake, treatment at drinking water treatment plants, storage, and
distribution via a pipe network [44]. As discussed by Deng [115], once a natural hazard
impairs one of them due to water source pollution, pipeline destruction, power outage,
personnel shortage, or other causes, the entire water supply system may fail. As such,
Deng proposed a concept of household water treatment highlighting a decentralized water
supply system to respond to possible disruption of the centralized water supply [115]. From
a technical point of view, atmospheric water harvesting is just in line with this concept
in terms of its indiscriminate presence of water source (air) and the decentralized water
supply mode. As such, atmospheric water harvesting seems to be a potential solution to
enhance water supply resilience, particularly under extreme weather conditions.

Water yield capacity and affordability are two factors determining the acceptance and
applicability of a specific water source. As discussed above, atmospheric water harvesting
currently has a much lower water yield than other water sources. In terms of the cost, as
depicted in Figure 6, the water price of conventional surface water source is around $1.2/m3,
and other typical alternatives, desalination, rainwater harvesting, and reclaimed water, fall
within the same level. By contrast, the price of the water from the air is substantially higher
than the above sources and is around 20–90 $/m3 [39,46,116]. Along with the low water
yield, and the temperature and relative humidity will be correspondingly reduced after
the active extraction of water from the air, atmospheric water harvesting is unlikely to be
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used on a large scale as an accessible infrastructure or alternative water source. However,
the water from the air has a price advantage over bottled water which is the only choice
currently under the destruction of the water supply system. Besides this, the environmental
impacts of bottled water are pretty high in species loss and resource consumption [117].
In addition, considering that atmospheric water harvesting has the characteristics of a
decentralized water supply, it is generally used for emergencies or some specific areas at
present. As such, atmospheric water harvesting can be considered in the water management
portfolio at a community- or city-level to increase the capacity to handle water supply
problems [118,119]. Thus, areas that deserve further research are focused on system design,
novel materials (e.g., desiccant) development, and green energy-driven design [120,121].
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In terms of the water quality out of the atmosphere water harvesting process, the
water generated is generally clean and pollutant-free. Although the air pollution such
as PM2.5 and microplastics in the atmosphere brings concerns about the water quality
via atmospheric water harvesting [122,123], it can be solved by simply installing a post-
purification module to ensure water quality [46]. Indeed, atmospheric water harvesting
technologies manage to filter out any dirt, such as heavy metals, particles, biological
organisms, organic compounds remaining in the harvested water, and by artificially adding
minerals such as calcium and magnesium, the water quality can be upgraded to the level
of natural spring water [124].

Recently, atmospheric water harvesting has been commercialized in many countries
and regions (Figure S1) and some off-the-shelf products have been on the market (Table S3).
These machines can be divided into three models: large, medium, and small. The water
generation capacity is in the range of 2–200,000 L/day to meet the needs of households,
emergencies, hospitals, villages, etc. In the parks and beaches of cities such as Abu Dhabi, Al
Ain, and Abu Dhabi, water-from-air machines are installed to supply high-quality drinking
water for visitors [125]. Indeed, despite the atmospheric water harvesting discussed
above, many innovative solutions to leverage the water in the air have been proposed
and practiced [126,127]. For example, by laying a mesh overhead the farmland or placing
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water-adsorbent hydrogel on the surface of the soil, the crops can be irrigated on-site and
automatically. In a recent study, Lord et al. thoroughly assessed the global potential of
atmospheric water harvesting as a water source by mapping regional horizontal irradiance
from sunlight, relative humidity, and air temperature [128]. The results showed that
atmospheric water harvesting leveraging solar power could serve the drinking water needs
of about 1 billion people. As such, further development and optimization will probably
make atmospheric water harvesting more viable and promising to support the water
supply system.

5. Conclusions

Diversifying the water sources is necessary to get the cities ready and more resilient to
supplement the water supply system. Adoption of atmospheric water harvesting could be
such a solution as they provide another connection point between the natural water cycle
and the urban water cycle. A series of systems and off-the-shelf products are available on
the market to be installed under various relative humidity environments. Although the
higher water generation cost makes atmospheric water harvesting uncompetitive, it can be
a reliable and decentralized household water treatment system to meet the water demand
particularly by leveraging solar power. In addition, it also provides an alternative water
source for regions that have a large bottled water consumer base but have no other favorable
water sources. Overall, atmospheric water harvesting shall be taken into consideration to
enhance the water supply resilience.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/su14137783/s1, Table S1: Summary of studies or practices of
atmospheric water harvesting; Table S2: Summary of desiccants explored and developed in various
studies; Table S3: Summary of atmospheric water harvesting machines on the market; Figure S1:
Summary of atmospheric water harvesting technologies in practical application. References [129–152]
are cited in the supplementary materials.
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