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Abstract: As water scarcity becomes more prevalent, the analysis of urban water consumption
patterns at the consumer level and the estimation of the corresponding water demand for water
utility are expected to be among the top priorities of water companies in the near future. This study
proposes a comprehensive methodology for water managers to achieve an efficient operation of urban
water networks, by successfully detecting residential water consumption patterns corresponding
to different household needs and behaviors. The methodology uses Self Organizing Maps as the
main clustering algorithm in combination with K-means and Hierarchical Agglomerative Clustering.
The objective is to create clusters in a literature dataset that includes water consumption from
21 customers located in Milford, Ohio, USA, for a 7-month period. Originally, water consumption data
was recorded for every water use incident in the household, while for this analysis, the information
is converted to half-hourly water consumption. Individual customers with similar consumption
behavior are clustered and water-consumption curves are calculated for each cluster; these curves
can be used by the water utility to obtain estimates of the spatio-temporal distribution of demand,
thus giving insight into peak demands at different locations. Statistical indices of agreement are
used to confirm a good agreement between the estimated and observed water use, when clustering
is employed. The resulting curves show a clear improvement in capturing water consumption
behavior at household level, when compared to corresponding curves obtained without clustering.
This analysis offers water utilities an innovative solution that relies on real time data and uses data
science principles for optimizing water supply and network operation and provides tools for the
efficient use of water resources.

Keywords: self-organizing maps; time-series clustering; household water consumption; data science;
K-means; Hierarchical Agglomerative Clustering; smart cities; behavioral change

1. Introduction

The United Nations predict that 9.7 billion people will live in cities by 2050 [1]. Along
with the effects of climate change, cities face numerous challenges as their resources and
infrastructure are placed under ever increasing levels of strain [2]. As water scarcity
becomes more prevalent, the analysis of urban water consumption patterns for consumers
and the estimation of the corresponding water demand are expected to be among the top
priorities for water companies in the near future. There is a constant need to improve the
knowledge of urban water demand and of factors that influence demand patterns in a
household; this requires collection and analysis of water consumption data, which can
be facilitated by Information and Communication Technology (ICT) systems in a smart
city framework. ICTs can help managers in integrating the water sector with other city
services and in monitoring their status in real time. This results in several operational
benefits that optimize urban water management, including real time demand forecasting
and optimization of network devices and of operating costs [3]. On this basis, it is possible
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to develop better water demand models and new customer-oriented tools to be used for
smart metering, smart pricing and tariff planning, water distribution network planning
and operation, energy savings in water transfer, and customer service and billing, as
well as the real-time management of condition-based tariffs. These goals abide by the
European legislation, as described in the EU Water Framework Directive and the Blueprint
to safeguard Europe’s water resources [4] concerning water accounts and ecological flows,
water pricing, water trading, and other factors. Furthermore, the recent technological
progress in wireless sensors that enable monitoring of water use in individual households,
or even in different faucets or appliances inside a single household, can provide detailed
information concerning spatial and temporal water use patterns. These data have been
collected in the past mainly for research purposes [5–7] but are now becoming more
common with the diffusion of smart city initiatives, such as the installation of smart water
meters [8]. In the future, the availability of such information will allow for more accurate
billing and customer-specific services, but, more importantly, will increase water efficiency
due to a better understanding of the water consumption behavior at household levels for
both large and small customers and may help in the reduction of non-revenue water.

In order to assess urban water demand in time and space, a water consumption
profile curve is needed. This curve shows the amount of water a customer uses over the
course of time and it is useful for planning how much water the utility will need to make
available for its customers at any given time. Furthermore, water consumption profiles
reveal the pattern customers exhibit in using water at different hours of the day, days of
the week and seasons of the year, and can specify what the customer’s share of the utility’s
total water consumption is. By analogy with electricity load curves, water consumption
profiles can provide estimates of the temporal and spatial distribution of demand, thus
giving insight into peak demands at different locations [9]. The major factors affecting
the consumption profile are (1) family size and customer water use behavior, as well as
residence characteristics and (2) seasonality, i.e., time of day, week, or year. Local climate
factors such as temperature, humidity, and solar radiation may play an important role in
water consumption patterns, but their effect is captured by seasonality [10].

Even though it is typical for energy and telecommunication companies to classify
their customers into groups with similar consumption patterns taking into account their
characteristics and annual demand, such practices are not common for water utilities,
maybe because of the relatively low cost of water. The goal of this classification is to
assign to each customer a variable estimate of consumption, a sort of a “load curve”, in
the absence of available meter data. These pre-fixed curves may also be useful for market
investigation and distribution management for the utility. Yet, they have flaws as a result
of their coarseness, since on the one hand, they may fail to follow actual consumptions,
and on the other, they are unable to predict possible changes in people’s way of life and/or
in their consumption patterns [11]. It is undisputed that a more thorough description and
forecast of water consumption throughout the day, month, and year, capturing seasonality
and weekday/weekend patterns in water use can lead to an improved management and
planning of demand and distribution, resulting in a potential reduction of costs for the
water utility. Understanding customer behavior can lead to a successful categorization
based on the recognition of similarities in consumption patterns among consumers. This
segmentation would allow water utilities to better tailor pumping, treatment, and network
operation, while it can provide useful information on water pricing policies and other
incentive-creation strategies [12].

Many researchers have shown an increasing interest in Artificial Neural Networks
(ANN) to address various kinds of problems in water resources and hydrology [13–16].
Self-Organizing Maps (SOMs) is an ANN algorithm [17,18], which has proven to be an
excellent tool for clustering, classification, estimation, prediction, and data mining [19–21].
Kalteh et al. [22] reviewed a number of successful SOM applications with emphasis on
innovative and creative solutions for the analysis, estimation, and prediction of various
hydrological processes, such as precipitation [23–25], river flow and rainfall-runoff [26–28],
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surface water quality [29–32], and other related disciplines such as climate and environ-
ment [33–35]. SOMs have many applications in signal recognition, organization of large
data sets, process monitoring and analysis, and over the last decades, they have increas-
ingly been used for analysis and modeling in the energy domain [9,36–38]. However, only
a limited number of articles have been published on domestic water consumption pattern
recognition, classifying customers in different segments [39–41].

This study aims to bridge this gap by proposing a comprehensive methodology to
residents, water managers, and policy makers, in order to achieve the efficient operation of
urban water networks by successfully detecting residential water consumption patterns
corresponding to different residential needs and behaviors. This way, households with
similar consumption patterns are grouped in clusters. A large dataset taken from the work
of Buchberger et al. [42] and consisting of 7 months of water consumption data recording
every instant of water use in the household from 21 customers located in Milford, Ohio,
USA, was examined. To the best of the authors’ knowledge, residential water consumption
data with this granularity have not been analyzed for the purpose of detecting behavioral
patterns in water consumption. The aim of the article is to create more accurate customer-
specific water consumption curves using refined measurement data. In this context, we
propose a methodology that may be applied in complex and large water consumption
time-series, using SOMs as the main clustering algorithm, in combination with K-Means
(KM) and Hierarchical Agglomerative Clustering (HAC) to improve performance; this
way, we provide a new-estimated water consumption profile for each customer group.
The resulting curves that are obtained after clustering customers with similar consumption
behavior are compared to the water consumption curves that the water company might use
to create timely customer water use estimates without performing clustering. The results
indicate that there is a clear improvement when using the newly estimated, data-based
water consumption curves after clustering. This analysis offers water utilities an innovative
solution that relies on real time data and uses data science principles relevant to a smart
city setting for optimizing water supply and network operation and leading to efficient
resource use. It creates opportunities to engage citizens while raising their awareness of
household water consumption. Therefore, it lays the foundation for developing behavioral
change processes for citizens towards more sustainable water use patterns that would
reduce their environmental footprint, change their consumption and lifestyle choices, and
achieve a climate-neutral way of living.

2. Materials and Methods

In order to develop reliable water consumption curves for customers belonging to
different classes, large numbers of recorded water consumption values are required—for
electricity, it is recommended to have at least 100 customers over a period of 3 years [43].
For household water consumption, such long datasets are unavailable due to the very recent
implementation of smart technologies in the water sector, which is often confined to limited
duration of research projects e.g., Yang et al. [7]. In this article, we use the data collected
by Buchberger et al. [42], who carried out an experimental campaign aimed at monitoring
residential water demand in the period from April to October 1997 in 21 households in
Milford, OH, USA. An electromagnetic flowmeter was installed in the mainline of each
household and water discharge data was collected for the 7-month period with a resolution
of 1 s. It should be noted here that only indoor water consumption was included in
our data, so even if a household had large gardens, or a swimming pool, it would not
make a difference to our dataset. To create a uniform time series for all households, we
grouped all water consumption data (210 days) to half-hour slots, resulting in a dataset of
10,080 entries for each household. In Figure 1, we show graphs of the consumption dataset
for all households—each bar corresponds to the half-hour consumption and there are a
total of 10,080 bars in each graph. To show the variation of consumption over weekdays
and weekends, in Figure 2a, we show, indicatively for household C, average consumptions
of all weekday, Saturday, and Sunday consumptions per half-hour time slot throughout the
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day, for a total of 48 time slots per day. This provides more information on the consumption
pattern of each household. In Figure 2b, we show for each household, the average total
daily consumption for all days and for weekdays, Saturdays, and Sundays. We notice that
all households show high average daily water consumptions ranging from 229 liters/day
(household F) to 875 liters/day (household T). It should be noted that the low average of
household F is a result of many days with zero consumption. 19 households were used
for the application of the clustering algorithm, simulating the procedure that the water
utility would follow for clustering existing customers; on the other hand, two households,
namely households M and N, were set aside and were assigned to clusters later, in order
to simulate how well new customers would fit in pre-existing clusters. The number of
households that was set aside was kept to a minimum (9.5% of the total data), since a
very limited number of households is available in our dataset. Other researchers that have
conducted similar analysis with electricity data, e.g., Rasanen et al. [9], used 5.6% of their
data to simulate “new customers”, so for our case, the small number of data reserved for
validation is deemed acceptable.

Figure 1. Water consumption (in liters) for all households in the case study at the step of half an hour.
Households are symbolized by consecutive letters of the alphabet (A through U)—each subfigure
shows the water consumption of a different household.

2.1. Clustering Methods

SOMs are well-known unsupervised neural learning algorithms [44] and an effective
software tool for the modeling and visualization of high-dimensional data. They use
unsupervised learning to group input data and produce a low-dimension discretized rep-
resentation of the input space, i.e., a map. An SOM uses specific features of a population,
such as household surface area, income level, age, number of bathrooms, etc. It calcu-
lates the Euclidean distance of each population unit, taking into account the features as
dimensions or components of the input vectors. It then converts the multidimensional
positions of the units into a 2-dimensional space and maps them. These maps (SOMs)
depict all units as points in space in a sense that neighboring points have similar features;
this way, clustering of similar units is made possible. In this work, an SOMs algorithm
was applied as an intermediate step before the clustering process since it reduces the size
of the data and makes the computational procedure more efficient. A feature-extraction
approach was used to explore the data set and to identify which consumer properties
are relevant to be included by the water utility in an automatic classification system [45].
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In Table 1, we list the features that were chosen: they include a statistical property of the
dataset (standard deviation) and are based on consumption values of individual days, as
well as aggregated over the entire week, over workdays and weekends separately and
over seasons. Since our benchmark dataset runs from April to October, we considered
separately water use during the summer (June, July, and August) and autumn months
(September and October). We used SOMs to calculate the Euclidean distance of the data
and to find which households are in the same “neighborhood” or belong to the same cluster.
This way, a map emerged consisting of nodes or neurons–in our case, various map sizes
were tried, and the 3 × 3 size map was chosen with 9 nodes, since this number of nodes
achieved the highest SOM’s clustering efficiency (95%). The lattice of the SOM can be
either hexagonal or rectangular but hexagonal is preferred for this methodology due to
more effective visualization [21,46]. All data were automatically normalized by the SOMs
algorithm on a scale 0 to 1. All calculations were performed with RStudio [47], using the
“Kohonen” package.

Table 1. Features used to build the input vectors of the Self-Organizing Maps (SOMs).

Features Units

Standard deviation of water consumption −
Mean daily consumption L

Mean daily consumption of weekdays L
Mean daily consumption of weekends L

Mean morning consumption (6 a.m.–10 a.m.) L
Mean noon consumption (10 a.m.–2 p.m.) L

Ratio of mean summer over autumn
consumption −

Figure 2. Cont.
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Figure 2. (a) Average consumptions (L) for all weekday, Saturday, and Sunday half-hour time
slots throughout the day, for a total of 48 time slots/day for household C; (b) Average daily water
consumption (in liters) for all households: averages are calculated using all days, only weekdays, only
Saturdays and only Sundays to capture variability throughout the week. Households are symbolized
by consecutive letters of the alphabet (A through U)—each subfigure shows the water consumption
of a different household.

Once the SOMs algorithm is run and the map is obtained, it can be followed by a
second step in which it is combined with other clustering algorithms. The main advantage
of using this two-step approach is improved clustering. More specifically, while the SOMs
algorithm provides a map of 9 nodes, its combination with other procedures results in fewer
clusters (collecting various nodes in larger clusters) with higher accuracy. For this purpose,
SOMs were combined with two other clustering algorithms: (1) K-Means clustering (KM)
and (2) Hierarchical Agglomerative Clustering (HAC). KM [48] is a well-known non-
hierarchical clustering algorithm with many applications in different domains. The exact
number of clusters was decided by calculating the Within-Clusters-Sum-of-Squares (WCSS)
measurement that denotes the total distance of data points from their respective cluster
centroids [49]. Considering that we have nine SOM nodes, the ideal number of clusters
proposed by KM is three, since this number is the closest match to the corresponding
number of SOM nodes, when WCSS is calculated, as shown in Figure 3.

Figure 3. Within-Clusters-Sum-of-Squares (WCSS) for number of SOM nodes in our model, used as
a basis to decide the number of K-Means (KM) clusters.
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HAC is another popular clustering algorithm [50]. It creates a cluster dendrogram
(tree) by grouping several data together over a variety of scales and based on this clas-
sification, a clustering scheme emerges. Three clusters were formed from the HAC tree
map with this analysis, as shown in Figure 4 in grey boxes, which group different SOM
nodes, or codebook vectors (shown as V1 to V9). Even though the number of clusters is
the same with the two algorithms, the specific SOM nodes grouped under each clustering
methodology are different, essentially each one providing a different clustering solution
that is separately evaluated for its accuracy.

Figure 4. Number of clusters decided through cluster dendrogram.

In order to assess the clustering accuracy, we want to know if the features we extracted
on water consumption (Table 1), actually force households to group together under the
same cluster. Ideally, we would use a series of known properties about our households to
identify the ones that are particularly relevant, as far as the domestic water consumption
pattern is concerned. Examples include size of house and year built, garden and/or
swimming pool, number and age of residents, number of appliances/washers, etc. We
would then see which of these properties vary significantly among clusters or can likely be
discovered from the data. If a property seems to vary across clusters, it will mean that it
is a good property to group households by, and that using the set of features we defined
in Table 1, it is possible to differentiate households by that specific property. In our case,
the only household property available for the 21 customers is the number of people per
residence; this information is shown in Table 2. Naturally, this is a serious limitation in our
data set; however, all households came from the same neighborhood in suburban Ohio,
so we expect that the houses have some similarities in terms of year built, surface area,
amenities, etc. Nevertheless, our only choice is to use number of residents per household
to check whether it is appropriate to group households according to it and to calculate
clustering accuracy based on this property. We do this only after we confirm that indeed
this property varies across clusters, as explained above. Based on the calculation of this
accuracy, we decide on the best combined clustering algorithm (SOM+KM or SOM+HAC)
and on the final clustering of the households.

Table 2. Number of residents per household in the case study.

Households Number of Residents

A, B, D, F, I, K, L, N, O, P, Q, S 2
C, E, H, J, M 3

G, R, T, U 4
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2.2. Validation: Estimated Water Consumption Curves and Associated Accuracy

After clustering, the new estimated water consumption curves are calculated for each
cluster. These are the curves that would be used by the water utility for all customers
belonging in the same cluster, in order to successfully estimate the next customer bill,
or plan for the estimated water demand in the network. For comparison purposes, we
calculate two types of estimated curves: one for each cluster and one for all households if
no prior clustering is performed. The goal is to show that clustering improves estimated
water consumption, namely that the index of agreement of customer consumption with
the estimated water consumption curves increases when the clustering curve is used. This
is done for the two households (M and N) that were set aside for validation, simulating
“new customers” not included in the initial clustering; therefore, clustering was done using
19 households and clustering performance is assessed for the two new households.

For the construction of these curves, consumptions are transformed into an index
series format, by grouping data in two-week intervals, and transforming the whole time-
series into 15 two-week profiles summarizing half hourly data separately for weekdays,
Saturdays, and Sundays. Index series format is what the water utility would use to model
water consumption for customers, i.e., changing the assumed consumption profile every
two weeks, following similar practices already employed for electricity consumption [9].
In our case, the two-week index series is scaled by taking into account not only the
consumption of the two-week period, but also the cluster customers 7-month water use, to
calculate the estimated water time-series (Equation (1)) [51]:

Pi =

(
W

10, 080

)
Qi qi (1)

where Pi is the estimated half-hourly water consumption, W is the total 7-month pe-
riod water consumption for all households in the cluster, Qi is the average 2-week water
consumption of the cluster, expressed in percent of the average 7-month period consump-
tion, and qi is the half-hourly water consumption expressed in percent of the average
2-week consumption.

The correspondence between customer-specific water demand and the estimated
water consumption curves is assessed by the modified Index of Agreement or Willmott
Index (WImod):

WImod =
∑n

i=1|Pi −Oi|
∑n

i=1
(∣∣Pi −O

∣∣+ ∣∣Oi −O
∣∣) (2)

where Oi are the observed values of each customer’s water demand, Pi are the correspond-
ing values of each estimated water consumption curve and O is the average of observed
data. The WImod is a dimensionless measure, limited to the range [0, 1], giving a relative
size of the difference between an actual value (Oi) and its estimated/predicted value (Pi).
A modified version of the WI was preferred over the original one due to the fact that the
original version of the index may lead the user to erroneously select a predicting model
that generates poor estimates [52]. Values of the WImod close to one indicate perfect fit,
while values close to zero indicate complete disagreement between the observed and
estimated values.

To summarize the methodology that the water utility will need to follow in order to
implement this algorithm and benefit from clustering, we are presenting a compact list
with all the steps:

1. Identify features in dataset that could potentially identify patterns in the population,
in order to lead to data clustering;

2. Create input vectors and feed the SOM algorithm;
3. Decide on the optimum number of nodes, based on maximum clustering efficiency;
4. Run clustering algorithm (KM and/or HAC) to create clusters, grouping SOM nodes

together (use WCSS and dendrogram to identify numbers of clusters for SOM-KM
and SOM-HAC, respectively);



Sustainability 2021, 13, 2603 9 of 15

5. Choose the best performing combined algorithm by assessing clustering accuracy (as
described in Section 3);

6. Construct a water consumption curve in index series format for each cluster. This is
the curve that will be used to estimate the consumption of all customers in the
same cluster;

7. For new customers, a questionnaire will be filled out by the customer, providing
information on the features used initially to classify customers (step 1). Based on
the responses, the new customer is assigned to a cluster and the water consumption
curve (step 6) is now updated to include this customer’s consumption, as soon as it
becomes available.

3. Results

With the aim of creating more accurate up-to-date customer-specific water consump-
tion curves, refined measurement data were used from 21 households in Milford, Ohio,
USA. In this context, the SOMs algorithm was applied as the main clustering algorithm
and in combination with KM and HAC, optimal clustering was achieved. Specifically, for
SOMs clustering, an initial mapping plot was produced, as shown in Figure 5a, which in-
cludes a number of observations (households) in each node. The observations are spatially
distributed and their distance from the node codebook vector—the vector formed with
values from the features extracted by the dataset for each node—signifies its relevance.
We see that there are no empty nodes, which indicates that the map structure is appropriate
for the data. The mapping quality is assessed by the quality plot in Figure 5b which shows
the mean distance of objects mapped in a node to the codebook vector of that node; thus,
values close to 0 indicate good quality of the SOM. Even for the two nodes shown in blue
and magenta colors, the mapping quality is still good (0.2 or less), even though not ideal.

Figure 5. (a) SOMs algorithm map plot showing households per node; (b) mapping quality based
on distance of observations from codebook vector for each node. In (b), node number is shown in
each node. The colour legend corresponds to mapping quality, with values close to 0 indicating good
quality of the SOM.

In order to link clustering household characteristics in the dataset and assess clustering
accuracy, we test whether the number of people per household varies across SOM nodes.
In Figure 6, we show the variation of number of people per SOM node and we see that
indeed it varies across nodes. We also see that clustering could be improved, by combining
various nodes in a single cluster, which is already an indication that the KM and HAC
algorithms can be used to further cluster data to produce fewer and better clusters.
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Figure 6. Variation of number of people per household across the 9 nodes produced by SOM.
The y-axis shows the fraction of households that have the indicated number of people.

To assess the clustering accuracy of the combined algorithms (SOM-KM, SOM-HAC),
we provided the number of people per household and checked how this number corre-
sponds with clustering results. Nineteen households were grouped in 3 clusters—different
for each combined algorithm. The accuracy results are 73% and 79% for SOM-KM and
SOM-HAC respectively, indicating the SOM-HAC as a slightly better and the preferred
clustering solution; calculation of the clustering accuracy is explained below. This does not
mean that we reject the SOM-KM clustering technique; we simply choose to present one of
the two, in the interest of saving space, namely the SOM-HAC technique. The outcome of
the SOM-HAC clustering is presented in Figure 7a, in which dashed lines group SOM nodes
together in larger clusters. This clustering results in the grouping of the codebook vectors
or SOM nodes, as shown in the dendrogram in Figure 4. Cluster 1 contains a single node
(#1 per Figure 5b) and a single household (D)—marked in yellow font. Cluster 2 contains 3
SOM nodes (#2, #6, and #8 per Figure 5b) and 9 households—marked in green font. Finally,
cluster 3 groups 5 nodes (#3, #4, #5, #7, and #9 per Figure 5b) and 9 households—marked
in blue font. This information is also summarized in Table 3. In Figure 7b, the algorithm
maps the households again, but each entry is represented by its cluster number: therefore,
in node #6 for example, instead of showing households F, Q and S (as is done in Figure 7a),
we show the cluster number that these houses belong to. In other words, we show a series
of 2s, since all these households belong to cluster #2. All entries in black font signify the
households that should not be classified in that cluster, while red entries are the house-
holds that are correctly placed in the specific cluster. Clustering accuracy is the fraction
of matches (reds) in each cluster for the combined algorithms. Cluster 2 contains mostly
2 residents per household, while cluster 3 contains mostly 3- or 4-people households. When
a household with 3 or 4 people is classified in cluster 2, then it is marked black by the
algorithm; the same is true for 2-people households classified in cluster 3. So, household
L is classified in Cluster 3, even though it should be classified in Cluster 2 (2 residents in
household L, as shown in Table 2); thus, the number 3 that corresponds to household L is
shown in black in node #7. Cluster 1 contains only 1 household (D), even after employing
the HAC algorithm that improves clustering; since clustering analysis has no meaning
for a cluster with a single entry, we decide to not consider this cluster further, dropping
household D from further analysis, as an outlier.

Table 3. Household partitioning in 3 clusters with the combined algorithm SOM-HAC.

Cluster Number Households

Cluster 1 D
Cluster 2 A, B, C, F, I, K, P, Q, S
Cluster 3 E, G, H, J, L, O, R, T, U
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Figure 7. The SOM-HAC clustering plots—dashed lines signify the clusters. (textbfa) Households are symbolized by
consec-utive letters of the alphabet (A through U)—households in yellow font belong to Cluster 1, households in green
font belong to Cluster 2 and households in blue font belong to Cluster 3. (b) Households appear again, but now instead of
letters, cluster numbers are used. Entries in black font: households that should not be classified in that cluster; entries in red
font: households correctly classified in the cluster.

4. Discussion

The WImod is used to assess improvement in estimated customer water consumption
achieved through clustering. For each of the 18 households, two WImod values are obtained:
one that examines how the actual water consumption time series matches the cluster-
estimated curve and one for the no-cluster-estimated curves. The former curve is calculated
by including only households in the cluster, while the latter includes all households (no
clustering). In Figure 8, we see a plot of WImod for the two cases and we can see that there
is an improvement with clustering, which is significant for some households, proving that
clustering can lead in obtaining estimated customer water consumption curves that are a
closer match to the observed consumptions. Improvement is not observed across the board
for all households and this is something that is expected, due to the very limited number
of households and the limited duration of the data set (less than a year). The fact that a
significant improvement is observed for some households is important and indicates that
the methodology presented in this article is promising.

Figure 8. The WImod plot for the two cases; the cluster-estimated curve and the no-cluster-
estimated curves.
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This analysis would be valid for the water utility on existing customers that are
grouped based on their historical consumption data. But what about new customers that
come without historical time series? In this case, the utility would classify new customers
based on the number of people in the household. We do this for the two households that
were set aside for validation, namely households M and N. Since household M has 2 people
and N has 3, the former would be classified in cluster 2 and the latter in cluster 3. When we
perform the same analysis with the curves, we see that household N has an improvement
of almost 40% in the WImod and household M has about 4% improvement in the same index.
In Figure 9a,b, we see how the curves of households M and N are comparatively closer
to the curves of clusters 2 and 3, respectively, than the curve obtained for all households,
thus validating the clustering methodology. Observing the plots in Figure 9a,b, one can
see that better agreement is obtained on weekday data than on Saturdays or Sundays; this
might be a result of more structured activities during weekdays, compared to weekends,
when behavior is more stochastic and not characterized by a “typical” schedule that is
expected to be followed during work- and schooldays for families. In addition, there are
more weekdays than weekends in the dataset, so more data leads to better fitting.

Figure 9. Observed and estimated water consumption curves for two scenarios: clustering and no
clustering for (a) household N and (b) household M in half hour slots.
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5. Conclusions

Urban water consumption is one of the main concerns of city managers nowadays.
Consumer awareness of household water consumption defines consumption behavior and
may promote water conservation activities. In this article, we present a novel methodology
suitable for handling large datasets of household water consumption. This analysis aims
to divide customers into user groups (clusters) based on the similarities of their water
use behavior; this way, advanced data-based methods may be employed for creating
personalized information about consumer water use.

The presented methodology resulted in better estimates of customer water use when
clustering was employed, compared to the predictions when clustering was not employed.
This powerful information can provide a lot of insight to water companies, as it allows
them to have knowledge of water demand in a detailed spatio-temporal granulation, thus
promoting good planning and efficient operation. Water companies have better knowledge
on what to expect from new customers, by classifying them in pre-existing clusters; they
can obtain information on pumping energy needed and they have rich datasets that could
be used for modeling the water distribution network, for reducing leakage, for optimizing
treatment and pumping, for accurate billing, and for prioritizing investments.
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