Ferulated Pectins from Sugar Beet Bioethanol Solids: Extraction, Macromolecular Characteristics, and Enzymatic Gelling Properties
Abstract
:1. Introduction
2. Materials and Methods
2.1. Industrial Waste
2.2. SBW Characterization
2.3. Pectin Extraction and Purification
2.4. Pectin Yield
2.5. SBP Characterization
2.5.1. Chemical Composition
2.5.2. Macromolecular Characteristics
2.5.3. Infrared Spectroscopic Analysis
2.6. SBP Gel Preparation
2.7. FA, di-FA, and tri-FA Content of SBP Gel
2.8. Rheological Measurements
2.9. Texture Profile Analysis
2.10. Scanning Electron Microscopy
2.11. Statistical Analysis
3. Results and Discussion
3.1. SBW Characterization
3.2. SBP Characterization
3.2.1. Chemical Composition
3.2.2. Macromolecular Characteristics
3.3. Infrared Spectroscopic Analysis
3.4. SBP Gels
3.4.1. Covalent Cross-Linking
3.4.2. Rheology
3.4.3. Texture Profile Analysis
3.4.4. Morphological Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Almohammed, F.; Koubaa, M.; Khelfa, A.; Nakaya, M.; Mhemdi, H.; Vorobiev, E. Pectin recovery from sugar beet pulp enhanced by high-voltage electrical discharges. Food Bioprod. Process. 2017, 103, 95–103. [Google Scholar] [CrossRef]
- FAO-Food and Agriculture Organization of the UN. Available online: http://www.fao.org/faostat/en/#data/QC (accessed on 7 January 2020).
- Adiletta, G.; Brachi, P.; Riianova, E.; Crescitelli, A.; Miccio, M.; Kostryukova, N. A Simplified Biorefinery Concept for the Valorization of Sugar Beet Pulp: Ecofriendly Isolation of Pectin as a Step Preceding Torrefaction. Waste Biomass-Valorization 2019, 11, 2721–2733. [Google Scholar] [CrossRef]
- Chen, H.-M.; Fu, X.; Abbasi, A.M.; Luo, Z.-G. Preparation of environment-friendly pectin from sugar beet pulp and assessment of its emulsifying capacity. Int. J. Food Sci. Technol. 2015, 50, 1324–1330. [Google Scholar] [CrossRef]
- Alvarado Padilla, J.I.; Ávila Casillas, E.; Pulido Camarillo, M.; Ochoa Espinoza, X.M.; Zamarripa Colmenero, A. Sugar Beet Production in Valle de Mexicali, BC, Mexico, 1st ed.; National Institute for Forestry, Agriculture and Livestock Research: Mexico city, Mexico, 2011; ISBN 9786074256758. [Google Scholar]
- Villegas, J.A.S.; León, J.J.; Elías, J.L.; Chu, A.R. Efecto de la variedad y fecha de siembra en el potencial productivo de remolacha azucarera. Biotecnia 2020, 22, 5–10. [Google Scholar] [CrossRef]
- Levigne, S.; Ralet, M.-C.; Thibault, J.-F. Characterisation of pectins extracted from fresh sugar beet under different conditions using an experimental design. Carbohydr. Polym. 2002, 49, 145–153. [Google Scholar] [CrossRef]
- Micard, V.; Thibault, J.-F. Oxidative gelation of sugar-beet pectins: Use of laccases and hydration properties of the cross-linked pectins. Carbohydr. Polym. 1999, 39, 265–273. [Google Scholar] [CrossRef]
- Ralet, M.C.; André-Leroux, G.; Quéméner, B.; Thibault, J.-F. Sugar beet (Beta vulgaris) pectins are covalently cross-linked through diferulic bridges in the cell wall. Phytochemistry 2005, 66, 2800–2814. [Google Scholar] [CrossRef]
- Ovodov, Y.S. Current views on pectin substances. Russ. J. Bioorganic Chem. 2009, 35, 269–284. [Google Scholar] [CrossRef]
- Chasquibol Silva, N.; Arroyo Benites, E.; Morales Gomero, J.C. Extraction and Characterization of Peruan Fruit Pectins. Ing. Ind. 2008, 26, 175–199. [Google Scholar]
- Mohnen, D. Biosynthesis of pectins and galactomannans. Compr. Nat. Prod. Chem. 1999, 3, 497–527. [Google Scholar]
- Liu, J.; Willför, S.; Xu, C. A review of bioactive plant polysaccharides: Biological activities, functionalization, and biomedical applications. Bioact. Carbohydrates Diet. Fibre 2015, 5, 31–61. [Google Scholar] [CrossRef]
- Löfgren, C.; Hermansson, A.-M. Synergistic rheological behaviour of mixed HM/LM pectin gels. Food Hydrocoll. 2007, 21, 480–486. [Google Scholar] [CrossRef]
- Yapo, B.M. Pectic substances: From simple pectic polysaccharides to complex pectins—A new hypothetical model. Carbohydr. Polym. 2011, 86, 373–385. [Google Scholar] [CrossRef]
- Palin, R.; Geitmann, A. The role of pectin in plant morphogenesis. Biosystems 2012, 109, 397–402. [Google Scholar] [CrossRef] [PubMed]
- Levigne, S.V.; Ralet, M.-C.J.; Quéméner, B.C.; Pollet, B.N.-L.; Lapierre, C.; Thibault, J.-F.J. Isolation from Sugar Beet Cell Walls of Arabinan Oligosaccharides Esterified by Two Ferulic Acid Monomers. Plant Physiol. 2004, 134, 1173–1180. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Colquhoun, I.J.; Ralet, M.-C.; Thibault, J.-F.; Faulds, C.B.; Williamson, G. Structure identification of feruloylated oligosac-charides from sugar-Beet pulp by NMR spectroscopy. Carbohydr. Res. 1994, 263, 243–256. [Google Scholar] [CrossRef]
- Guillon, F.; Thibault, J.-F. Methylation analysis and mild acid hydrolysis of the “hairy” fragments of sugar-beet pectins. Carbohydr. Res. 1989, 190, 85–96. [Google Scholar] [CrossRef]
- Ishii, T. Structure and functions of feruloylated polysaccharides. Plant Sci. 1997, 127, 111–127. [Google Scholar] [CrossRef]
- Micard, V.; Grabber, J.; Ralph, J.; Renard, C.; Thibault, J.-F. Dehydrodiferulic acids from sugar-beet pulp. Phytochemistry 1997, 44, 1365–1368. [Google Scholar] [CrossRef]
- Oosterveld, A.; Grabber, J.H.; Beldman, G.; Ralph, J.; Voragen, A.G. Formation of ferulic acid dehydrodimers through oxidative cross-linking of sugar beet pectin. Carbohydr. Res. 1997, 300, 179–181. [Google Scholar] [CrossRef]
- Rascón-Chu, A.; Díaz-Baca, J.A.; Carvajal-Millán, E.; López-Franco, Y.L.; Lizardi-Mendoza, J. New Use for an “Old” Polysaccharide: Pectin-Based Composite Materials. In Handbook of Sustainable Polymers: Structure and Chemistry; Thakur, V., Thakur, M.K., Eds.; Taylor Francis Group: Abingdon, UK, 2016; pp. 72–107. [Google Scholar]
- Sundar, A.; Rubila, S.; Jayabalan, R.; Ranganathan, T.V. A Review on Pectin: Chemistry due to General Properties of Pectin and its Pharmaceutical Uses. Sci. Rep. 2012, 1, 1–4. [Google Scholar]
- Voragen, A.G.J.; Coenen, G.-J.; Verhoef, R.P.; Schols, H.A. Pectin, a versatile polysaccharide present in plant cell walls. Struct. Chem. 2009, 20, 263–275. [Google Scholar] [CrossRef] [Green Version]
- Ohlmaier-Delgadillo, F.; Carvajal-Millan, E.; López-Franco, Y.; Islas-Osuna, M.; Micard, V.; Antoine-Assor, C.; Rascón-Chu, A. Ferulated Pectins and Ferulated Arabinoxylans Mixed Gel for Saccharomyces boulardii Entrapment in Electrosprayed Microbeads. Molecules 2021, 26, 2478. [Google Scholar] [CrossRef] [PubMed]
- AOAC. Official Methods of Analysis 934. Association of Official Analytical Chemists, 14th ed.; AOAC: Arlington, TX, USA, 1934. [Google Scholar]
- AOAC. Official Methods of Analysis 2. Association of Official Analytical Chemists, 14th ed.; AOAC: Arlington, TX, USA, 1984. [Google Scholar]
- AOAC. Official Methods of Analysis 996. Association of Official Analytical Chemists, 14th ed.; AOAC: Arlington, TX, USA, 1995. [Google Scholar]
- Li, D.-Q.; Du, G.-M.; Jing, W.-W.; Li, J.-F.; Yan, J.-Y.; Liu, Z.-Y. Combined effects of independent variables on yield and protein content of pectin extracted from sugar beet pulp by citric acid. Carbohydr. Polym. 2015, 129, 108–114. [Google Scholar] [CrossRef] [PubMed]
- Yapo, B.; Robert, C.; Etienne, I.; Wathelet, B.; Paquot, M. Effect of extraction conditions on the yield, purity and surface properties of sugar beet pulp pectin extracts. Food Chem. 2007, 100, 1356–1364. [Google Scholar] [CrossRef]
- Urias-Orona, V.; Rascón-Chu, A.; Lizardi-Mendoza, J.; Carvajal-Millan, E.; Gardea, A.A.; Ramírez-Wong, B. A Novel Pectin Material: Extraction, Characterization and Gelling Properties. Int. J. Mol. Sci. 2010, 11, 3686–3695. [Google Scholar] [CrossRef] [Green Version]
- Blakeney, A.B.; Harris, P.J.; Henry, R.; Stone, B.A. A simple and rapid preparation of alditol acetates for monosaccharide analysis. Carbohydr. Res. 1983, 113, 291–299. [Google Scholar] [CrossRef]
- Vansteenkiste, E.; Babot, C.; Rouau, X.; Micard, V. Oxidative gelation of feruloylated arabinoxylan as affected by protein. Influence on protein enzymatic hydrolysis. Food Hydrocoll. 2004, 18, 557–564. [Google Scholar] [CrossRef]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Yang, J.-S.; Mu, T.-H.; Ma, M.-M. Extraction and structure of pectin from potato pulp. Food Chem. 2018, 244, 197–205. [Google Scholar] [CrossRef]
- Hotchkiss, A.T.; Chau, H.K.; Strahan, G.D.; Nuñez, A.; Simon, S.; White, A.K.; Dieng, S.; Heuberger, E.R.; Yadav, M.P.; Hirsch, J. Structure and composition of blueberry fiber pectin and xyloglucan that bind anthocyanins during fruit puree processing. Food Hydrocoll. 2020, 116, 106572. [Google Scholar] [CrossRef]
- Dervilly-Pinel, G.; Thibault, J.-F.; Saulnier, L. Experimental evidence for a semi-flexible conformation for arabinoxylans. Carbohydr. Res. 2001, 330, 365–372. [Google Scholar] [CrossRef]
- Cybulska, J.; Brzyska, A.; Zdunek, A.; Woliński, K. Simulation of Force Spectroscopy Experiments on Galacturonic Acid Oligomers. PLoS ONE 2014, 9, e107896. [Google Scholar] [CrossRef]
- Hourdet, D.; Muller, G. Solution properties of pectin polysaccharides II. Conformation and molecular size of high galacturonic acid content isolated pectin chains. Carbohydr. Polym. 1991, 16, 113–135. [Google Scholar] [CrossRef]
- Levigne, S.; Thomas, M.; Ralet, M.-C.; Quemener, B.; Thibault, J.-F. Determination of the degrees of methylation and acetylation of pectins using a C18 column and internal standards. Food Hydrocoll. 2002, 16, 547–550. [Google Scholar] [CrossRef]
- Lara-Espinoza, C.; Sanchez-Villegas, J.A.; Lopez-Franco, Y.; Carvajal-Millan, E.; Troncoso-Rojas, R.; Carvallo-Ruiz, T.; Rascon-Chu, A. Composition, Physicochemical Features, and Covalent Gelling Properties of Ferulated Pectin Extracted from Three Sugar Beet (Beta vulgaris L.) Cultivars Grown under Desertic Conditions. Agronomy 2020, 11, 40. [Google Scholar] [CrossRef]
- Khalighi, S.; Berger, R.G.; Ersoy, F. Cross-Linking of Fibrex Gel by Fungal Laccase: Gel Rheological and Structural Characteristics. Processes 2019, 8, 16. [Google Scholar] [CrossRef] [Green Version]
- Carvajalmillan, E.; Guigliarelli, B.; Belle, V.; Rouau, X.; Micard, V. Storage stability of laccase induced arabinoxylan gels. Carbohydr. Polym. 2005, 59, 181–188. [Google Scholar] [CrossRef]
- Morales-Burgos, A.M.; Carvajal-Millan, E.; López-Franco, Y.L.; Rascón-Chu, A.; Lizardi-Mendoza, J.; Sotelo-Cruz, N.; Brown-Bojórquez, F.; Burgara-Estrella, A.; Pedroza-Montero, M. Syneresis in Gels of Highly Ferulated Arabinoxylans: Characterization of Covalent Cross-Linking, Rheology, and Microstructure. Polymers 2017, 9, 164. [Google Scholar] [CrossRef]
- Müller-Maatsch, J.; Bencivenni, M.; Caligiani, A.; Tedeschi, T.; Bruggeman, G.; Bosch, M.; Petrusan, J.; Van Droogenbroeck, B.; Elst, K.; Sforza, S. Pectin content and composition from different food waste streams. Food Chem. 2016, 201, 37–45. [Google Scholar] [CrossRef] [Green Version]
- Phatak, L.; Chang, K.; Brown, G. Isolation and Characterization of Pectin in Sugar-Beet Pulp. J. Food Sci. 1988, 53, 830–833. [Google Scholar] [CrossRef]
- Yapo, B.M. Pectin quantity, composition and physicochemical behaviour as influenced by the purification process. Food Res. Int. 2009, 42, 1197–1202. [Google Scholar] [CrossRef]
- Ziemiński, K.; Romanowska, I.; Kowalska, M. Enzymatic pretreatment of lignocellulosic wastes to improve biogas production. Waste Manag. 2012, 32, 1131–1137. [Google Scholar] [CrossRef] [PubMed]
- Turquois, T.; Rinaudo, M.; Taravel, F.; Heyraud, A. Extraction of highly gelling pectic substances from sugar beet pulp and potato pulp: Influence of extrinsic parameters on their gelling properties. Food Hydrocoll. 1999, 13, 255–262. [Google Scholar] [CrossRef]
- Micard, V.; Renard, C.M.; Thibault, J.-F. Enzymatic saccharification of sugar-beet pulp. Enzym. Microb. Technol. 1996, 19, 162–170. [Google Scholar] [CrossRef]
- Pi, F.; Liu, Z.; Guo, X.; Meng, H. Chicory root pulp pectin as an emulsifier as compared to sugar beet pectin. Part 1: Influence of structure, concentration, counterion concentration. Food Hydrocoll. 2018, 89, 792–801. [Google Scholar] [CrossRef]
- Pacheco, M.T.; Villamiel, M.; Moreno, R.; Moreno, F.J. Structural and Rheological Properties of Pectins Extracted from Industrial Sugar Beet By-Products. Molecules 2019, 24, 392. [Google Scholar] [CrossRef] [Green Version]
- Baydoun, E.A.-H. Control of dehydrodiferulate cross-linking in pectins from sugar-beet tissues. Phytochemistry 2004, 65, 1107–1115. [Google Scholar] [CrossRef]
- Cai, Z.; Wei, Y.; Zhang, H.; Rao, P.; Wang, Q. Holistic review of corn fiber gum: Structure, properties, and potential applications. Trends Food Sci. Technol. 2021, 111, 756–770. [Google Scholar] [CrossRef]
- Fishman, M.L.; Chau, H.K.; Cooke, P.H.; Hotchkiss, A.T., Jr. Global Structure of Microwave-Assisted Flash-Extracted Sugar Beet Pectin. J. Agric. Food Chem. 2008, 56, 1471–1478. [Google Scholar] [CrossRef]
- Kang, J.; Guo, Q.; Shi, Y.-C. Molecular and conformational properties of hemicellulose fiber gum from dried distillers grains with solubles. Food Hydrocoll. 2018, 80, 53–59. [Google Scholar] [CrossRef]
- Jin, Q.; Li, X.; Cai, Z.; Zhang, F.; Yadav, M.P.; Zhang, H. A comparison of corn fiber gum, hydrophobically modified starch, gum arabic and soybean soluble polysaccharide: Interfacial dynamics, viscoelastic response at oil/water interfaces and emulsion stabilization mechanisms. Food Hydrocoll. 2017, 70, 329–344. [Google Scholar] [CrossRef]
- Cros, S.; Garnier, C.; Axelos, M.A.V.; Imberty, A.; Pérez, S. Solution conformations of pectin polysaccharides: Determination of chain characteristics by small angle neutron scattering, viscometry, and molecular modeling. Biopolymers 1998, 39, 339–351. [Google Scholar] [CrossRef]
- Masuelli, M.A. Mark-Houwink Parameters for Aqueous-Soluble Polymers and Biopolymers at Various Temperatures. J. Polym. Biopolym. Phys. Chem. 2016, 2, 37–43. [Google Scholar] [CrossRef]
- Cuevas-Bernardino, J.C.; Lobato-Calleros, C.; Román-Guerrero, A.; Alvarez-Ramirez, J.; Vernon-Carter, E. Physicochemical characterisation of hawthorn pectins and their performing in stabilising oil-in-water emulsions. React. Funct. Polym. 2016, 103, 63–71. [Google Scholar] [CrossRef]
- Sayah, M.Y.; Chabir, R.; Benyahia, H.; Kandri, Y.R.; Chahdi, F.O.; Touzani, H.; Errachidi, F. Yield, Esterification Degree and Molecular Weight Evaluation of Pectins Isolated from Orange and Grapefruit Peels under Different Conditions. PLoS ONE 2016, 11, e0161751. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, S.; Rahman, A.; Li, J.; Wei, C.; Chen, J.; Linhardt, R.J.; Ye, X.; Chen, S. Extraction Methods Affect the Structure of Goji (Lycium barbarum) Polysaccharides. Molecules 2020, 25, 936. [Google Scholar] [CrossRef] [Green Version]
- Gómez, B.; Gullón, B.; Yáñez, R.; Schols, H.; Alonso, J.L. Prebiotic potential of pectins and pectic oligosaccharides derived from lemon peel wastes and sugar beet pulp: A comparative evaluation. J. Funct. Foods 2016, 20, 108–121. [Google Scholar] [CrossRef]
- Olmos, J.C.; Hansen, M.E.Z. Enzymatic depolymerization of sugar beet pulp: Production and characterization of pectin and pectic-oligosaccharides as a potential source for functional carbohydrates. Chem. Eng. J. 2012, 192, 29–36. [Google Scholar] [CrossRef]
- Kacuráková, M. FT-IR study of plant cell wall model compounds: Pectic polysaccharides and hemicelluloses. Carbohydr. Polym. 2000, 43, 195–203. [Google Scholar] [CrossRef]
- Martínez-López, A.L.; Carvajal-Millan, E.; Marquez-Escalante, J.; Campa-Mada, A.C.; Rascón-Chu, A.; López-Franco, Y.L.; Lizardi-Mendoza, J. Enzymatic cross-linking of ferulated arabinoxylan: Effect of laccase or peroxidase catalysis on the gel characteristics. Food Sci. Biotechnol. 2018, 28, 311–318. [Google Scholar] [CrossRef] [PubMed]
- Martínez-López, A.L.; Carvajal-Millan, E.; Micard, V.; Rascón-Chu, A.; Brown-Bojorquez, F.; Sotelo-Cruz, N.; López-Franco, Y.L.; Lizardi-Mendoza, J. In vitro degradation of covalently cross-linked arabinoxylan hydrogels by bifidobacteria. Carbohydr. Polym. 2016, 144, 76–82. [Google Scholar] [CrossRef] [PubMed]
- Mendez-Encinas, M.A.; Carvajal-Millan, E.; Yadav, M.P.; López-Franco, Y.L.; Rascon-Chu, A.; Lizardi-Mendoza, J.; Brown-Bojorquez, F.; Silva-Campa, E.; Pedroza-Montero, M. Partial removal of protein associated with arabinoxylans: Impact on the viscoelasticity, crosslinking content, and microstructure of the gels formed. J. Appl. Polym. Sci. 2018, 136, 47300. [Google Scholar] [CrossRef]
- Ross-Murphy, S.B. Rheological Methods. In Physical Techniques for the Study of Food Biopolymers; Springer: New York, NY, USA, 1994; pp. 343–392. [Google Scholar]
- Norsker, M. Enzymatic gelation of sugar beet pectin in food products. Food Hydrocoll. 2000, 14, 237–243. [Google Scholar] [CrossRef]
- Chen, H.; Gan, J.; Ji, A.; Song, S.; Yin, L. Development of double network gels based on soy protein isolate and sugar beet pectin induced by thermal treatment and laccase catalysis. Food Chem. 2019, 292, 188–196. [Google Scholar] [CrossRef]
- Bourne, M. Principles of Objective Texture Measurement. In Food Texture and Viscosity. Concept and Measurement; Taylor, S.L., Ed.; Academic Press: New York, NY, USA, 2002; pp. 182–187. ISBN 0121190625. [Google Scholar]
Content | % (w/w) |
---|---|
Pectin yield | 4.4 ± 0.1 |
Fiber | 44 ± 3 |
Protein | 9.5 ± 0.3 |
Fat | 0.67 ± 0.02 |
Ash | 12.2 ± 0.2 |
Component | Value |
---|---|
Galacturonic acid § | 52.2 ± 1.6 |
Rhamnose § | 1.50 ± 0.02 |
Arabinose § | 3.60 ± 0.04 |
Xylose § | 1.20 ± 0.02 |
Mannose § | 5.0 ± 0.04 |
Galactose § | 20.7 ± 0.4 |
Glucose § | 12.3 ± 0.2 |
Ferulic acid ¶ | 2.1 ± 0.1 |
Ferulic acid dimers ¶ | 0.22 ± 0.02 |
8-5′ ¶ | 0.060 ± 0.003 |
8-5′benzo ¶ | 0.030 ± 0.003 |
8-O-4′ ¶ | 0.09 ± 0.01 |
5-5′ ¶ | 0.040 ± 0.004 |
Protein § | 2.4 ± 0.1 |
Ash § | 1.0 ± 0.1 |
Component | Value |
---|---|
Mw (kDa) | 459 ± 3 |
Mn (kDa) | 94 ± 6 |
PDI (Mw·Mn−1) | 4.9 ± 0.3 |
RG (nm) | 45 ± 5 |
Rh (nm) | 14.3 ± 1.5 |
[η] (mL·g−1) | 77.6 ± 0.1 |
C∞ | 25.4 |
q (nm) | 5.9 |
Mark-Houwink-Sakurada α | 0.45 ± 0.01 |
Mark-Houwink-Sakurada K | 0.32 ± 0.04 |
Time | FA | di-FA | tri-FA |
---|---|---|---|
(min) | (mg·g−1 SBP Dry Matter) | ||
0 | 2.1 ± 0.1 | 0.22 ± 0.02 | nd |
80 | 0.97 ± 0.02 | 0.36 ± 0.03 | 0.13 ± 0.01 |
Index | Value |
---|---|
Hardness (N) | 3.0 ± 0.1 |
Fracturability (N) | 1.6 ± 0.2 |
Adhesiveness (N) | 1.3 ± 0.2 |
Springiness (mm) | 0.98 ± 0.02 |
Cohesiveness (%) | 0.32 ± 0.04 |
Gumminess (N) | 1.0 ± 0.2 |
Chewiness (mJ) | 1.0 ± 0.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ohlmaier-Delgadillo, F.; Carvajal-Millan, E.; López-Franco, Y.L.; Islas-Osuna, M.A.; Lara-Espinoza, C.; Marquez-Escalante, J.A.; Sanchez-Villegas, J.A.; Rascon-Chu, A. Ferulated Pectins from Sugar Beet Bioethanol Solids: Extraction, Macromolecular Characteristics, and Enzymatic Gelling Properties. Sustainability 2021, 13, 10723. https://doi.org/10.3390/su131910723
Ohlmaier-Delgadillo F, Carvajal-Millan E, López-Franco YL, Islas-Osuna MA, Lara-Espinoza C, Marquez-Escalante JA, Sanchez-Villegas JA, Rascon-Chu A. Ferulated Pectins from Sugar Beet Bioethanol Solids: Extraction, Macromolecular Characteristics, and Enzymatic Gelling Properties. Sustainability. 2021; 13(19):10723. https://doi.org/10.3390/su131910723
Chicago/Turabian StyleOhlmaier-Delgadillo, Federico, Elizabeth Carvajal-Millan, Yolanda L. López-Franco, Maria A. Islas-Osuna, Claudia Lara-Espinoza, Jorge A. Marquez-Escalante, Jose Alfonso Sanchez-Villegas, and Agustín Rascon-Chu. 2021. "Ferulated Pectins from Sugar Beet Bioethanol Solids: Extraction, Macromolecular Characteristics, and Enzymatic Gelling Properties" Sustainability 13, no. 19: 10723. https://doi.org/10.3390/su131910723