
sustainability

Article

Air Pollution Prediction Using Long Short-Term
Memory (LSTM) and Deep Autoencoder
(DAE) Models

Thanongsak Xayasouk 1,† , HwaMin Lee 2,† and Giyeol Lee 3,*
1 Department of Computer Science, Soonchunhyang University, Asan 31538, Korea; trafalga.ttt@gmail.com
2 Department of Computer Software & Engineering, Soonchunhyang University, Asan 31538, Korea;

leehm@sch.ac.kr
3 Department of Landscape Architecture, Chonnam National University, Gwangju 61186, Korea
* Correspondence: gylee@jnu.ac.kr; Tel.: +82-62-530-2108
† These authors contributed equally to this work.

Received: 2 February 2020; Accepted: 19 March 2020; Published: 24 March 2020
����������
�������

Abstract: Many countries worldwide have poor air quality due to the emission of particulate matter
(i.e., PM10 and PM2.5), which has led to concerns about human health impacts in urban areas. In this
study, we developed models to predict fine PM concentrations using long short-term memory (LSTM)
and deep autoencoder (DAE) methods, and compared the model results in terms of root mean
square error (RMSE). We applied the models to hourly air quality data from 25 stations in Seoul,
South Korea, for the period from 1 January 2015, to 31 December 2018. Fine PM concentrations
were predicted for the 10 days following this period, at an optimal learning rate of 0.01 for 100
epochs with batch sizes of 32 for LSTM model, and DAEs model performed best with batch size 64.
The proposed models effectively predicted fine PM concentrations, with the LSTM model showing
slightly better performance. With our forecasting model, it is possible to give reliable fine dust
prediction information for the area where the user is located.

Keywords: air pollution; deep autoencoder (DAE); deep learning; long short-term memory (LSTM);
fine particulate matter; PM10; PM2.5

1. Introduction

As industry and population expand rapidly in South Korea, air pollution is increasingly becoming
problematic for human health in the country. In 2017, South Korea ranked 173rd among the 180
countries with the greatest air pollution impact [1]. Air pollution in urban areas consists of carbon
dioxide (CO2), carbon monoxide (CO), nitrogen oxide (NO2), nitrogen monoxide (NO), ozone (O3),
and fine particulate matter (PM), the last of which is of greatest concern in South Korea. Fine PM
is classified into PM10 and PM2.5 based on particle diameter, where PM10 and PM2.5 are particles
with diameters <10 and <2.5 µm, respectively (Figure 1). PM includes dust, pollen, soot, smoke,
and liquid droplets that harm the respiratory system [2,3], causing respiratory symptoms including
irregular heart rate, coughing, airway irritation, abnormal lung function, breathing difficulty, heart
attack, stroke-associated diseases, and asthma. Despite increasing air pollutant concentrations in South
Korea, the Korean government has reported difficulties in gaining accurate air pollution data due to
insufficient air pollution measurement stations for reasonable nationwide coverage.

Sustainability 2020, 12, 2570; doi:10.3390/su12062570 www.mdpi.com/journal/sustainability

http://www.mdpi.com/journal/sustainability
http://www.mdpi.com
https://orcid.org/0000-0003-2307-5251
http://dx.doi.org/10.3390/su12062570
http://www.mdpi.com/journal/sustainability
https://www.mdpi.com/2071-1050/12/6/2570?type=check_update&version=2

Sustainability 2020, 12, 2570 2 of 18Sustainability 2020, 12, x FOR PEER REVIEW 2 of 18

Figure 1. Particulate matter (PM) size comparison.

Thus, many studies have been conducted to determine and analyze air quality. The recent
development of machine learning techniques, especially deep learning, have provided new
opportunities to improve air quality research. Deep learning consists of an artificial intelligence (AI)
system that can obtain data unsupervised, in unstructured or unlabeled learning approaches such as
deep neural network or deep neural learning methods [4]. Deep learning requires three essential
elements: the graphics processing unit (GPU), which controls operation processing speed; vast
quantities of data for experiments; and signal information processing. Deep learning has been widely
adopted in academic and practical applications such as translation, speech recognition, language
processing, and image classification [5,6] (Figure 2). Several studies of air quality prediction have also
adopted AI and deep learning techniques [7–14]; many of these studies have used deep neural
networks to obtain short-term air quality forecasts. Using these approaches, current fine PM
concentrations have been found to be strongly correlated with pollution emissions from power
plants, factory chimneys, and various other sources.

Figure 2. Relationships among artificial intelligence (AI) approaches.

Figure 1. Particulate matter (PM) size comparison.

Thus, many studies have been conducted to determine and analyze air quality. The recent
development of machine learning techniques, especially deep learning, have provided new
opportunities to improve air quality research. Deep learning consists of an artificial intelligence
(AI) system that can obtain data unsupervised, in unstructured or unlabeled learning approaches
such as deep neural network or deep neural learning methods [4]. Deep learning requires three
essential elements: the graphics processing unit (GPU), which controls operation processing speed; vast
quantities of data for experiments; and signal information processing. Deep learning has been widely
adopted in academic and practical applications such as translation, speech recognition, language
processing, and image classification [5,6] (Figure 2). Several studies of air quality prediction have also
adopted AI and deep learning techniques [7–14]; many of these studies have used deep neural networks
to obtain short-term air quality forecasts. Using these approaches, current fine PM concentrations have
been found to be strongly correlated with pollution emissions from power plants, factory chimneys,
and various other sources.

Sustainability 2020, 12, x FOR PEER REVIEW 2 of 18

Figure 1. Particulate matter (PM) size comparison.

Thus, many studies have been conducted to determine and analyze air quality. The recent
development of machine learning techniques, especially deep learning, have provided new
opportunities to improve air quality research. Deep learning consists of an artificial intelligence (AI)
system that can obtain data unsupervised, in unstructured or unlabeled learning approaches such as
deep neural network or deep neural learning methods [4]. Deep learning requires three essential
elements: the graphics processing unit (GPU), which controls operation processing speed; vast
quantities of data for experiments; and signal information processing. Deep learning has been widely
adopted in academic and practical applications such as translation, speech recognition, language
processing, and image classification [5,6] (Figure 2). Several studies of air quality prediction have also
adopted AI and deep learning techniques [7–14]; many of these studies have used deep neural
networks to obtain short-term air quality forecasts. Using these approaches, current fine PM
concentrations have been found to be strongly correlated with pollution emissions from power
plants, factory chimneys, and various other sources.

Figure 2. Relationships among artificial intelligence (AI) approaches. Figure 2. Relationships among artificial intelligence (AI) approaches.

In the current study, we used hourly PM10 and PM2.5 measurement data collected in Seoul, South
Korea during 2015–2018, as well as data on meteorological features such as humidity, rain, wind speed

Sustainability 2020, 12, 2570 3 of 18

and direction, temperature, and atmospheric conditions. These air pollution data attributes were
learned by long short-term memory (LSTM) and deep autoencoder (DAE) models. The models were
then used to predict fine PM concentrations in Seoul, and the performance of the two models was
compared in terms of root mean square error (RMSE).

2. Related Research

Kalapanidas et al. [15] reported detailed air pollution effects using ordinal air pollution data (low,
medium, high, and alarm levels) with a case-based reasoning (CBR) system and the lazy learning
method. Similarly, Athanasiadis et al. [16] predicted air pollution based on O3 concentrations classified
as low, medium, and high levels of pollutants including SO2, NO, and NO2 using a σ-fuzzy lattice
neurocomputing (FLN) model. Land-use regression was also applied to estimate NOx and NO2

concentrations [17], and O3 concentrations [18]. Hoek et al. [19] concluded that land-use regression
methods are able to model annual mean PM2.5 concentrations. The LUR model is considered to be
suitable for PM2.5 prediction due to the linear relationship between PM2.5 and explanatory variables,
while the ANN based model designed to handle non-linearity may perform better in general as
well [20]. Kunwar et al. [21] applied an ensemble learning method and a principal components analysis
(PCA) algorithm to integrate air quality data to forecast air quality index (AQI) values. However, these
approaches involving regression of categorical variables can produce ambiguous results because some
data are ignored.

Various studies have predicted air pollutant concentrations under different circumstances.
Corani [22] forecasted hourly O3 and PM10 concentrations from previous-day air pollution data
using a neural network algorithm to train pruned neural network (PNN) and feed-forward neural
network (FFNN) models. Fu et al. [23] also applied an FFNN model with a undulating scheme and the
gray method. Jiang et al. [24] predicted air pollution using traditional chemical and physical models in
combination with regression and multiple-layer perceptron models. Ni et al. [25] found that a linear
regression model performed better than several other models for predicting fine PM concentrations in
Beijing, China.

Detailed air pollution predictions have been obtained by combining various model designs
based on LSTM and convolutional neural network (CNN) approaches. One such study proposed an
experimental model to forecast fine PM concentrations [25]; another used LSTM and RNN models as a
framework to obtain long-term PM2.5 trends from time-series data for use in government policy making
and resource allocation [26]. Fully connected LSTM (LSTM-FC) has been applied with a neural network
to forecast and visualize PM concentrations at urban meteorological stations [27]. LSTM and RNN
have also been used as a framework for large-scale, long-term time series data for PM forecasting [28].
Another study proposed an LSTM-based model to predict hourly fine PM concentrations at 25 target
locations in Seoul [29].

Deep spatiotemporal learning based on an air quality forecast method has been applied to discuss
spatial and temporal correlations in PM concentration based on a stacked autoencoder (SAE) model for
training air pollution data with the greedy layer-wise technique [30]. These techniques have also been
used to predict local traffic flow [31]. Another study applied multitask learning (MTL) approaches
involving homogeneous and deep belief network (DBN) methods using unsupervised learning for
predictive models [32].

A back-propagation (BP) neural network was combined with an integrated development
environment (IDE) model to predict fine PM concentrations using meteorological and fine PM
data for Chengdu, China [33]; model results were improved in the IDE-BPNN combination model.
Another study applied a support vector machine (SVM) method using fine PM data, meteorological
elements, and geographical information to predict air quality at pollution measurement stations by
incorporating nonlinear PM characteristics [34].

Sustainability 2020, 12, 2570 4 of 18

3. Materials

3.1. Study Areas

Seoul, South Korea, contains 25 air pollution measurement stations (one station per district)
separated by from one another by 5 km along the transverse Mercator (TM) link system (Figure 3).
The stations are mainly situated far from major roadways and at the tops of public buildings.

Sustainability 2020, 12, x FOR PEER REVIEW 4 of 18

3. Materials

3.1. Study Areas

Seoul, South Korea, contains 25 air pollution measurement stations (one station per district)
separated by from one another by 5 km along the transverse Mercator (TM) link system (Figure 3).
The stations are mainly situated far from major roadways and at the tops of public buildings.

Figure 3. Major air pollution monitoring stations (red dots) in Seoul, South Korea.

These stations automatically collect hourly air quality data 24 h per day; the data are then
uploaded to a website that is open to the general public. Seoul also contains several special
monitoring stations including the Namsan Mountain high-altitude station, the Gwanak Mountain
station, which measures levels of air pollution that has traveled long distances, and the Bukhan
Mountain station, which is located in a clean zone; there are also 14 roadside measurement stations
and 12 measurement stations located on highway bus line medians.

3.2. Dataset

3.2.1. PM Data

PM concentration (μg/m3) data used in this study were derived from hourly measurements at
the 25 monitoring stations in Seoul, South Korea, from 1 January 2015, to 31 December 2018 [35].
Trends in the PM10 and PM2.5 data are shown in Figures 4 and 5, respectively.

Figure 3. Major air pollution monitoring stations (red dots) in Seoul, South Korea.

These stations automatically collect hourly air quality data 24 h per day; the data are then uploaded
to a website that is open to the general public. Seoul also contains several special monitoring stations
including the Namsan Mountain high-altitude station, the Gwanak Mountain station, which measures
levels of air pollution that has traveled long distances, and the Bukhan Mountain station, which is
located in a clean zone; there are also 14 roadside measurement stations and 12 measurement stations
located on highway bus line medians.

3.2. Dataset

3.2.1. PM Data

PM concentration (µg/m3) data used in this study were derived from hourly measurements at the
25 monitoring stations in Seoul, South Korea, from 1 January 2015, to 31 December 2018 [35]. Trends in
the PM10 and PM2.5 data are shown in Figures 4 and 5, respectively.

Sustainability 2020, 12, 2570 5 of 18
Sustainability 2020, 12, x FOR PEER REVIEW 5 of 18

Figure 4. Hourly PM10 concentration data.

Figure 5. Hourly PM2.5 concentration data.

3.2.2. Meteorological Data

Meteorological data for the study period were obtained from the Korea Meteorological Agency
website [36]. The dataset contained preprocessed hourly values of wind speed, wind direction,
temperature, sky condition, and rainfall (Figure 6).

Korean government agencies use an air quality index (AQI) to quantify air quality concentration
effects for communication with the general public. This AQI has five categories (Table 1), which
indicate relative health risks due to air pollution.

Table 1. Air quality index (AQI) classification.

AQI Description
PM10 PM2.5
0–30 0–15 Good

31–50 16–25 Moderate
51–100 26–50 Unhealthy

100+ 50+ Hazardous

Figure 4. Hourly PM10 concentration data.

Sustainability 2020, 12, x FOR PEER REVIEW 5 of 18

Figure 4. Hourly PM10 concentration data.

Figure 5. Hourly PM2.5 concentration data.

3.2.2. Meteorological Data

Meteorological data for the study period were obtained from the Korea Meteorological Agency
website [36]. The dataset contained preprocessed hourly values of wind speed, wind direction,
temperature, sky condition, and rainfall (Figure 6).

Korean government agencies use an air quality index (AQI) to quantify air quality concentration
effects for communication with the general public. This AQI has five categories (Table 1), which
indicate relative health risks due to air pollution.

Table 1. Air quality index (AQI) classification.

AQI Description
PM10 PM2.5
0–30 0–15 Good

31–50 16–25 Moderate
51–100 26–50 Unhealthy

100+ 50+ Hazardous

Figure 5. Hourly PM2.5 concentration data.

3.2.2. Meteorological Data

Meteorological data for the study period were obtained from the Korea Meteorological Agency
website [36]. The dataset contained preprocessed hourly values of wind speed, wind direction,
temperature, sky condition, and rainfall (Figure 6).

Korean government agencies use an air quality index (AQI) to quantify air quality concentration
effects for communication with the general public. This AQI has five categories (Table 1), which
indicate relative health risks due to air pollution.

Table 1. Air quality index (AQI) classification.

AQI Description

PM10 PM2.5

0–30 0–15 Good
31–50 16–25 Moderate

51–100 26–50 Unhealthy
100+ 50+ Hazardous

Sustainability 2020, 12, 2570 6 of 18

Sustainability 2020, 12, x FOR PEER REVIEW 6 of 18

Figure 6. Hourly meteorological data.

4. Proposed Methods

4.1. LSTM Models

RNNs have been used to create sequential information data for many deep learning applications
including translation [37], image classification [38], voice recognition [39], and object tracking [40].
Two types of RNNs are LSTM [41] and gated recurrent units (GRUs) [42].

The RNN architecture is unrolled or unfolded to show the entire network as a complete
sequence, with one layer per word (Figure 7).

Figure 7. Recurrent neural network (RNN) architecture.

The recursive RNN formulas are as follows: ݄௧ =)	݄݊ܽݐ ௛ܹ݄௧ିଵ + ௫ܹݔ௧) (1) ݕ௧ = 	 ௬ܹ݄௧ (2)

where ݔ௧ is the input vector, ݄௧ is the hidden layer, ݕ௧ is the experiment output vector, and ௛ܹ is a
weighted matrix. The RNN is applied to LSTM to create an environment for the computation process,
obtain input, and create output [43]. During this process, long-term memory is created from short-
term memory. The LSTM system consists of an input gate, a forget gate, and an output gate.

LSTM calculates the hidden state as follows: ݅௧ = ൫ߪ	 ௙ܹሾ݄௧ିଵ, ௧ሿݔ + ܾ௜൯ (3) 	 ௧݂ = ൫ߪ	 ௙ܹሾ݄௧ିଵ, ௧ሿݔ + ௙ܾ൯ (4)

Figure 6. Hourly meteorological data.

4. Proposed Methods

4.1. LSTM Models

RNNs have been used to create sequential information data for many deep learning applications
including translation [37], image classification [38], voice recognition [39], and object tracking [40].
Two types of RNNs are LSTM [41] and gated recurrent units (GRUs) [42].

The RNN architecture is unrolled or unfolded to show the entire network as a complete sequence,
with one layer per word (Figure 7).

Sustainability 2020, 12, x FOR PEER REVIEW 6 of 18

Figure 6. Hourly meteorological data.

4. Proposed Methods

4.1. LSTM Models

RNNs have been used to create sequential information data for many deep learning applications
including translation [37], image classification [38], voice recognition [39], and object tracking [40].
Two types of RNNs are LSTM [41] and gated recurrent units (GRUs) [42].

The RNN architecture is unrolled or unfolded to show the entire network as a complete
sequence, with one layer per word (Figure 7).

Figure 7. Recurrent neural network (RNN) architecture.

The recursive RNN formulas are as follows: ݄௧ =)	݄݊ܽݐ ௛ܹ݄௧ିଵ + ௫ܹݔ௧) (1) ݕ௧ = 	 ௬ܹ݄௧ (2)

where ݔ௧ is the input vector, ݄௧ is the hidden layer, ݕ௧ is the experiment output vector, and ௛ܹ is a
weighted matrix. The RNN is applied to LSTM to create an environment for the computation process,
obtain input, and create output [43]. During this process, long-term memory is created from short-
term memory. The LSTM system consists of an input gate, a forget gate, and an output gate.

LSTM calculates the hidden state as follows: ݅௧ = ൫ߪ	 ௙ܹሾ݄௧ିଵ, ௧ሿݔ + ܾ௜൯ (3) 	 ௧݂ = ൫ߪ	 ௙ܹሾ݄௧ିଵ, ௧ሿݔ + ௙ܾ൯ (4)

Figure 7. Recurrent neural network (RNN) architecture.

The recursive RNN formulas are as follows:

ht = tanh(Whht−1 + Wxxt) (1)

yt = Wyht (2)

where xt is the input vector, ht is the hidden layer, yt is the experiment output vector, and Wh is a
weighted matrix. The RNN is applied to LSTM to create an environment for the computation process,
obtain input, and create output [43]. During this process, long-term memory is created from short-term
memory. The LSTM system consists of an input gate, a forget gate, and an output gate.

LSTM calculates the hidden state as follows:

it = σ
(
W f [ht−1, xt] + bi

)
(3)

ft = σ
(
W f [ht−1, xt] + b f

)
(4)

Sustainability 2020, 12, 2570 7 of 18

Sigmoid =
1

1 + e−1
(5)

ot = σ(Wo[ht−1, xt] + bo) (6)

c̃t = tanh(Wc[ht−1, xt] + bc) (7)

ct = ft ∗ ct−1 + it ∗ c̃t (8)

ht = ot ∗ tanh(ct) (9)

where σ is the logistic sigmoid function; i, f, and o are the input, forget, and output gates, respectively;
h is a hidden vector that is the same size in each layer; W is a weight matrix for the transformation of
information from cell to gate vectors; and m is a vector-only feature in every gate that obtains input
from feature m of the cell vector. In Equation (7), c̃t is a hidden element that is tasked with the current
input layer; ct is the internal memory computed in this unit; and ht is the output of a hidden state,
derived through memory multiplication (Figure 8).

Sustainability 2020, 12, x FOR PEER REVIEW 7 of 18

݀݅݋݉݃݅ܵ = 11 + ݁ିଵ (5) ݋௧ =)ߪ	 ௢ܹሾ݄௧ିଵ, ௧ሿݔ + ܾ௢) (6) ܿ̃௧ =)݄݊ܽݐ ௖ܹሾ݄௧ିଵ, ௧ሿݔ + ܾ௖) (7) ܿ௧ = ௧݂ ∗ ܿ௧ିଵ + ݅௧ ∗ 	 ܿ̃௧ (8) ݄௧ = ௧݋ ∗ ݊ܽݐ ݄(ܿ௧) (9)

where ߪ is the logistic sigmoid function; i, f, and o are the input, forget, and output gates,
respectively; h is a hidden vector that is the same size in each layer; W is a weight matrix for the
transformation of information from cell to gate vectors; and m is a vector-only feature in every gate
that obtains input from feature m of the cell vector. In Equation (7), ܿ̃௧ is a hidden element that is
tasked with the current input layer; ܿ௧ is the internal memory computed in this unit; and ݄௧	is the
output of a hidden state, derived through memory multiplication (Figure 8).

Figure 8. Long short-term memory (LSTM) architecture.

The forget gate (Figure 9a) is responsible for removing information from the cell state; it receives
two inputs: the hidden state output from the previous time step (݄௧ିଵ) and the input for the current
time step (ݔ௧). These inputs are multiplied by weight matrices, and a bias is added. A sigmoid
function is then applied to obtain an output vector with values ranging from 0 to 1, which is used to
decide which values to keep and which to discard.

Next, the input gate transfers information to the cell state in a two-step method (Figure 9b).
Similar to the input gate, a sigmoid function is applied as a filter for ݄௧ିଵ	and ݔ௧	 to build a vector of
suitable values for the cell state ranging from −1 to 1. This vector then provides values that can be
added to the cell state.

The output gate (Figure 9c) decides which information to output from the cell state. In LSTM,
the output gate function is performed in three steps. First, the vector is built and the hyperbolic
tangent function tanh is applied to the cell state to scale the values from −1 to 1. The sigmoid function
is then applied to the previous hidden state to create a filter for values of ݄௧ିଵ	and ݔ௧. Finally, the
filtered values are multiplied by the vector created in step 1 to produce LSTM output information.

The LSTM algorithm used in our prediction system is described in detail in Table 2.

Figure 8. Long short-term memory (LSTM) architecture.

The forget gate (Figure 9a) is responsible for removing information from the cell state; it receives
two inputs: the hidden state output from the previous time step (ht−1) and the input for the current
time step (xt). These inputs are multiplied by weight matrices, and a bias is added. A sigmoid function
is then applied to obtain an output vector with values ranging from 0 to 1, which is used to decide
which values to keep and which to discard.

Sustainability 2020, 12, x FOR PEER REVIEW 7 of 18

݀݅݋݉݃݅ܵ = 11 + ݁ିଵ (5) ݋௧ =)ߪ	 ௢ܹሾ݄௧ିଵ, ௧ሿݔ + ܾ௢) (6) ܿ̃௧ =)݄݊ܽݐ ௖ܹሾ݄௧ିଵ, ௧ሿݔ + ܾ௖) (7) ܿ௧ = ௧݂ ∗ ܿ௧ିଵ + ݅௧ ∗ 	 ܿ̃௧ (8) ݄௧ = ௧݋ ∗ ݊ܽݐ ݄(ܿ௧) (9)

where ߪ is the logistic sigmoid function; i, f, and o are the input, forget, and output gates,
respectively; h is a hidden vector that is the same size in each layer; W is a weight matrix for the
transformation of information from cell to gate vectors; and m is a vector-only feature in every gate
that obtains input from feature m of the cell vector. In Equation (7), ܿ̃௧ is a hidden element that is
tasked with the current input layer; ܿ௧ is the internal memory computed in this unit; and ݄௧	is the
output of a hidden state, derived through memory multiplication (Figure 8).

Figure 8. Long short-term memory (LSTM) architecture.

The forget gate (Figure 9a) is responsible for removing information from the cell state; it receives
two inputs: the hidden state output from the previous time step (݄௧ିଵ) and the input for the current
time step (ݔ௧). These inputs are multiplied by weight matrices, and a bias is added. A sigmoid
function is then applied to obtain an output vector with values ranging from 0 to 1, which is used to
decide which values to keep and which to discard.

Next, the input gate transfers information to the cell state in a two-step method (Figure 9b).
Similar to the input gate, a sigmoid function is applied as a filter for ݄௧ିଵ	and ݔ௧	 to build a vector of
suitable values for the cell state ranging from −1 to 1. This vector then provides values that can be
added to the cell state.

The output gate (Figure 9c) decides which information to output from the cell state. In LSTM,
the output gate function is performed in three steps. First, the vector is built and the hyperbolic
tangent function tanh is applied to the cell state to scale the values from −1 to 1. The sigmoid function
is then applied to the previous hidden state to create a filter for values of ݄௧ିଵ	and ݔ௧. Finally, the
filtered values are multiplied by the vector created in step 1 to produce LSTM output information.

The LSTM algorithm used in our prediction system is described in detail in Table 2.

 Figure 9. Long short-term memory (LSTM) gates.

Next, the input gate transfers information to the cell state in a two-step method (Figure 9b). Similar
to the input gate, a sigmoid function is applied as a filter for ht−1 and xt to build a vector of suitable
values for the cell state ranging from −1 to 1. This vector then provides values that can be added to the
cell state.

The output gate (Figure 9c) decides which information to output from the cell state. In LSTM, the
output gate function is performed in three steps. First, the vector is built and the hyperbolic tangent

Sustainability 2020, 12, 2570 8 of 18

function tanh is applied to the cell state to scale the values from −1 to 1. The sigmoid function is then
applied to the previous hidden state to create a filter for values of ht−1 and xt. Finally, the filtered
values are multiplied by the vector created in step 1 to produce LSTM output information.

The LSTM algorithm used in our prediction system is described in detail in Table 2.

Table 2. Training the LSTM algorithm.

Step Description

1 Preprocessing of all fine particulate matter and meteorological data

2

LSTM pre-training

• Denote x(t) as an element-wise input, ignoring bias
• Create weight matrix W to transform information from cell to gate vectors
• Define m for each element of the gate vector and obtain input from the

cell state
• Set c as an internal memory of the cell state

3
Fine tuning
• Build a vector by applying the tanh function to the cell state
• Apply the sigmoid function to create a filter for values of ht−1 and xt

4 Obtain prediction results

4.2. Deep Autoencoders (DAEs)

4.2.1. Autoencoder

An autoencoder is a type of neural network that encodes input data for reconstruction as output
data [44]. To begin this process, the autoencoder must learn to capture the significant features of
the input. An example of an autoencoder with a single input layer, single hidden layer, and single
output layer is shown in Figure 10. To train set {x(1), x(2),...x(n)} such that x(i)∈Rd, the first step of the
autoencoder model is to encode the single input x(i) to hidden layer y(x(i)) according to Equation (10);
this layer is then decoded as output layer z(x(i)) according to Equation (11), as follows:

y(x) = f (W1x + b) (10)

z(x) = g(W2x + c) (11)

where W1 is a weight matrix for the optimization process, b is an encode bias vector, W2 is a decoding
matrix of the output layer, and c is a decoding bias vector. In this study, we also applied the logistic
sigmoid function 1/(1 + exp(−x)) to f (x) and g(x).

Sustainability 2020, 12, x FOR PEER REVIEW 8 of 18

Figure 9. Long short-term memory (LSTM) gates.

Table 2. Training the LSTM algorithm.

Step Description
1 Preprocessing of all fine particulate matter and meteorological data

2

LSTM pre-training
• Denote x(t) as an element-wise input, ignoring bias
• Create weight matrix W to transform information from cell to gate vectors
• Define m for each element of the gate vector and obtain input from the cell state
• Set c as an internal memory of the cell state

3
Fine tuning
• Build a vector by applying the tanh function to the cell state
• Apply the sigmoid function to create a filter for values of ht−1 and xt

4 Obtain prediction results

4.2. Deep Autoencoders (DAEs)

4.2.1. Autoencoder

An autoencoder is a type of neural network that encodes input data for reconstruction as output
data [44]. To begin this process, the autoencoder must learn to capture the significant features of the
input. An example of an autoencoder with a single input layer, single hidden layer, and single output
layer is shown in Figure 10. To train set {x(1), x(2),...x(n)} such that x(i)∊Rd, the first step of the
autoencoder model is to encode the single input x(i) to hidden layer y(x(i)) according to Equation (10);
this layer is then decoded as output layer z(x(i)) according to Equation (11), as follows:

y(x) = f(W1x + b) (10)

z(x) = g(W2x + c) (11)

where W1 is a weight matrix for the optimization process, b is an encode bias vector, W2 is a decoding
matrix of the output layer, and c is a decoding bias vector. In this study, we also applied the logistic
sigmoid function 1/(1 + exp(−x)) to f(x) and g(x).

Figure 10. Processes of the autoencoder model.

The autoencoder model uses a vector input layer (x) and encoding function (f) to approximate
another vector (y); during reconstruction, a decoder function (g) is applied to vector y to recreate
vector x; the resulting output layer from the application of (g) is vector z. Reconstruction error is
determined by scaling with the loss function LH(x,z); this function is minimized as L(X, Z) to obtain
optimal parameter values as follows: ߠ = ,ܺ)ܮminߠ݃ݎܽ ܼ) = ݊݅݉ߠ݃ݎܽ 12	∑ ฮݔ(݅) − ฮ2ܰ݅=1((݅)ݔ)ݖ . (12)

One urgent problem in the application of autoencoder models is the size of the hidden layer,
which is set as equal to or larger than the output layer. This problem is generally addressed by the
design of the model functions. In the present study, we used a nonlinear autoencoder with a hidden

Figure 10. Processes of the autoencoder model.

Sustainability 2020, 12, 2570 9 of 18

The autoencoder model uses a vector input layer (x) and encoding function (f) to approximate
another vector (y); during reconstruction, a decoder function (g) is applied to vector y to recreate vector
x; the resulting output layer from the application of (g) is vector z. Reconstruction error is determined
by scaling with the loss function LH(x,z); this function is minimized as L(X, Z) to obtain optimal
parameter values as follows:

θ = argθminL(X, Z) = argθmin
1
2

N∑
i=1

||x(i) − z
(
x(i)

)
||

2
. (12)

One urgent problem in the application of autoencoder models is the size of the hidden layer,
which is set as equal to or larger than the output layer. This problem is generally addressed by the
design of the model functions. In the present study, we used a nonlinear autoencoder with a hidden
layer that is one unit larger than the input layer by applying the sparsity constraint method, such that
the autoencoder model was transformed into a sparse autoencoder. To obtain sparse representation,
we imposed a sparsity constraint to minimize reconstruction error as follows:

SAO = L(X, Z) + γ
HD∑
i=1

KL
(
ρ ‖ ρ̂ j

)
(13)

ρ̂ j = (1/N)
N∑

i=1

y j
(
x(i)

)
(14)

where γ is the weight, HD is the number of hidden units, ρ is the sparsity parameter, and HD is the
number of hidden units. In Equation (14), the average value of the activation function for hidden unit j
in the training set is the Kullback–Leibler (KL) divergence for machine learning, KL

(
ρ ‖ ρ̂ j

)
, which is

calculated as follows:

KL
(
ρ ‖ ρ̂ j

)
= ρ log

ρ

ρ̂i
+ (1− ρ) log

1− ρ
1− ρ̂i

. (15)

KL divergence defines the parameter KL
(
ρ ‖ ρ̂ j

)
= 0 if = ρ̂ j. The sparsity constraint on the input

process and back propagation (BP) method are applied to modify this problem.

4.2.2. The DAE Model

Deep or stacked autoencoder models are among the most powerful types of neural network
architecture [45]. The DAE model begins by pre-training a single input layer, followed by hidden
layers, such that the output of the kth hidden layer is used as input for the (k + 1) th hidden layer. Thus,
hidden layers are stacked hierarchically within the DAE, so the final hidden layer is a higher-level
representation of all layers of input, and may be used in forecasting.

In this study, we applied a DAE model for fine PM forecasting by adding a standard forecaster at
the top of the model layer. Layer-wise training of the resulting DAE is shown in Figure 11. Figure 12
shows the structure of a DAE, including stacked autoencoder nodes.

We applied a DAE model to represent fine PM features; the prediction was then applied to a
logistic regression model. In the proposed method, the DAE model was combined with a dropout
process to handle multiple faults. The workflow of the DAE model is shown in Figure 13, and the
algorithm is described in detail in Table 3.

Sustainability 2020, 12, 2570 10 of 18

Sustainability 2020, 12, x FOR PEER REVIEW 9 of 18

layer that is one unit larger than the input layer by applying the sparsity constraint method, such that
the autoencoder model was transformed into a sparse autoencoder. To obtain sparse representation,
we imposed a sparsity constraint to minimize reconstruction error as follows:

ܱܣܵ = ,ܺ)ܮ ܼ) + ߩ)ܮܭ෍ߛ	 ∥ ො௝)ுವߩ	
௜ୀଵ (13)

ො௝ߩ = (1/ܰ)෍ݕ௝ே
௜ୀଵ (14) ((௜)ݔ)

where ߛ is the weight, HD is the number of hidden units, ߩ is the sparsity parameter, and ܪ஽ is the
number of hidden units. In Equation (14), the average value of the activation function for hidden unit
j in the training set is the Kullback–Leibler (KL) divergence for machine learning, ܮܭ൫ߩ ∥ ො௝൯, whichߩ
is calculated as follows: ܮܭ൫ߩ ∥ 	 ො௝൯ߩ = logߩ	 ఘఘෝ೔ + (1 − log(ߩ ଵିఘଵି	ఘෝ೔. (15)

KL divergence defines the parameter ܮܭ൫ߩ ∥ ො௝൯ߩ = 0 if =	ߩො௝ . The sparsity constraint on the
input process and back propagation (BP) method are applied to modify this problem.

4.2.2. The DAE Model

Deep or stacked autoencoder models are among the most powerful types of neural network
architecture [45]. The DAE model begins by pre-training a single input layer, followed by hidden
layers, such that the output of the kth hidden layer is used as input for the (k + 1) th hidden layer.
Thus, hidden layers are stacked hierarchically within the DAE, so the final hidden layer is a higher-
level representation of all layers of input, and may be used in forecasting.

In this study, we applied a DAE model for fine PM forecasting by adding a standard forecaster
at the top of the model layer. Layer-wise training of the resulting DAE is shown in Figure 11. Figure
12 shows the structure of a DAE, including stacked autoencoder nodes.

Figure 11. Layer-wise training of a deep autoencoder (DAE) model. Figure 11. Layer-wise training of a deep autoencoder (DAE) model.Sustainability 2020, 12, x FOR PEER REVIEW 10 of 18

Figure 12. Stacked autoencoders within a DAE.

We applied a DAE model to represent fine PM features; the prediction was then applied to a
logistic regression model. In the proposed method, the DAE model was combined with a dropout
process to handle multiple faults. The workflow of the DAE model is shown in Figure 13, and the
algorithm is described in detail in Table 3.

Table 3. Training the deep autoencoder (DAE) algorithm.

Step Description
1 Preprocessing of all fine particulate matter and meteorological data

2

Preparation of the DAE framework
• Define a weight ߛ and parameter ߩ to randomize the matrices
• Apply the greedy layer-wise method to the hidden layers
• Assign the output of the kth hidden layer, ൛ ଵܹ௞ାଵ, ܾଵ௞ାଵൟ ݈ − 1݇ = 0, as the input of the (k + 1) th hidden layer

• Determine reasonable encoding for the (k + 1) th hidden layer

3

Fine tuning
• Apply supervised training to define weight and bias terms ൛ ଵܹ௞ାଵ, ܾଵ௞ାଵൟ to obtain random values
• Apply the gradient descent optimization method and back propagation to adjust hyperparameters

throughout the network
4 Obtain prediction results

Figure 12. Stacked autoencoders within a DAE.Sustainability 2020, 12, x FOR PEER REVIEW 11 of 18

Figure 13. DAE workflow.

4.3. Model Performance Evaluation

We evaluated the performance of the proposed model in terms of the root mean square error
(RMSE) between measured air pollution values and predicted values. RMSE was calculated as
follows:

ܧܵܯܴ = 	ඩ෍(௠ܲ − ௥ܲ)ଶ/ܰ,ே
௜ୀଵ (16)

where ௠ܲ and ௥ܲ are the measured and predicted PM concentrations, respectively, and N is the

number of measured values.

5. Results

5.1. Fine PM Prediction

In this study, we obtained PM10 and PM2.5 concentration data and meteorological data consisting
of rainfall, wind speed and direction, temperature, humidity, and sky condition for use as input
nodes. The output variable was predicted PM10 or PM2.5 concentration. All data were partitioned into
two sets, with 85% used for training and 15% for testing.

We combined all raw data obtained from the open data website and performed preprocessing
to check for missing values and categorical values within the dataset. We then split the data into
training and test datasets and applied the LSTM and DAE models to predict PM10 and PM2.5
concentrations for the 10 days following the study period. Figure 14 shows the workflow for
predicting PM concentrations using the LSTM and DAE model.

Figure 13. DAE workflow.

Sustainability 2020, 12, 2570 11 of 18

Table 3. Training the deep autoencoder (DAE) algorithm.

Step Description

1 Preprocessing of all fine particulate matter and meteorological data

2

Preparation of the DAE framework

• Define a weight γ and parameter ρ to randomize the matrices
• Apply the greedy layer-wise method to the hidden layers

• Assign the output of the kth hidden layer
{
W1

k+1, b1
k+1

} l− 1
k = 0 , as the input of the (k + 1) th

hidden layer
• Determine reasonable encoding for the (k + 1) th hidden layer

3

Fine tuning
• Apply supervised training to define weight and bias terms

{
W1

k+1, b1
k+1

}
to obtain

random values
• Apply the gradient descent optimization method and back propagation to adjust

hyperparameters throughout the network

4 Obtain prediction results

4.3. Model Performance Evaluation

We evaluated the performance of the proposed model in terms of the root mean square error
(RMSE) between measured air pollution values and predicted values. RMSE was calculated as follows:

RMSE =

√√√ N∑
i=1

(Pm − Pr)
2/N, (16)

where Pm and Pr are the measured and predicted PM concentrations, respectively, and N is the number
of measured values.

5. Results

5.1. Fine PM Prediction

In this study, we obtained PM10 and PM2.5 concentration data and meteorological data consisting
of rainfall, wind speed and direction, temperature, humidity, and sky condition for use as input nodes.
The output variable was predicted PM10 or PM2.5 concentration. All data were partitioned into two
sets, with 85% used for training and 15% for testing.

We combined all raw data obtained from the open data website and performed preprocessing to
check for missing values and categorical values within the dataset. We then split the data into training
and test datasets and applied the LSTM and DAE models to predict PM10 and PM2.5 concentrations for
the 10 days following the study period. Figure 14 shows the workflow for predicting PM concentrations
using the LSTM and DAE model.

Finally, we evaluated the accuracy of the proposed method using the RMSE between observed
and predicted values. We adjusting the learning rate, epoch, and batch size of the model to obtain
optimal results.

Sustainability 2020, 12, 2570 12 of 18
Sustainability 2020, 12, x FOR PEER REVIEW 12 of 18

Figure 14. Workflow for predicting fine PM concentrations using the LSTM and DAE models.

Finally, we evaluated the accuracy of the proposed method using the RMSE between observed
and predicted values. We adjusting the learning rate, epoch, and batch size of the model to obtain
optimal results.

5.2. LSTM Model Performance

The optimal settings for the LSTM model for both PM10 and PM2.5 prediction were a learning rate
of 0.01, epoch of 100, and batch size of 32. For a batch size of 32, the RMSE values were 11.113 for
PM10 and 12.174 for PM2.5, with a processing time of 11:18 min (Figure 15, Table 4).

Table 4. LSTM model performance for predicting PM10 and PM2.5 concentrations. Optimal root mean
square error (RMSE) values are indicated in bold.

Batch Size Learning Rate Epoch
RMSE Processing

Time (Min) PM10 PM2.5
32 0.01 100 11.113 12.174 11:18
64 0.01 100 11.163 12.237 17:05
128 0.01 100 11.139 12.243 23:57
256 0.01 100 11.228 11.642 38:18

Figure 14. Workflow for predicting fine PM concentrations using the LSTM and DAE models.

5.2. LSTM Model Performance

The optimal settings for the LSTM model for both PM10 and PM2.5 prediction were a learning rate
of 0.01, epoch of 100, and batch size of 32. For a batch size of 32, the RMSE values were 11.113 for PM10

and 12.174 for PM2.5, with a processing time of 11:18 min (Figure 15, Table 4).

Table 4. LSTM model performance for predicting PM10 and PM2.5 concentrations. Optimal root mean
square error (RMSE) values are indicated in bold.

Batch Size Learning Rate Epoch RMSE Processing Time (Min)
PM10 PM2.5

32 0.01 100 11.113 12.174 11:18
64 0.01 100 11.163 12.237 17:05

128 0.01 100 11.139 12.243 23:57
256 0.01 100 11.228 11.642 38:18

Sustainability 2020, 12, 2570 13 of 18Sustainability 2020, 12, x FOR PEER REVIEW 13 of 18

Figure 15. (a) Comparison of observed and 10-day predicted concentrations of (a) PM10 and (b) PM2.5
obtained using the LSTM model.

5.3. DAE Model Performance

The optimal settings for the DAE model for both PM10 and PM2.5 prediction were a learning rate
of 0.01, epoch of 100, and batch size of 64. For a batch size of 64, the RMSE values were 15.038 for
PM10 and 15.437 for PM2.5, with a processing time of 15:40 min (Figure 16, Table 5).

Figure 15. (a) Comparison of observed and 10-day predicted concentrations of (a) PM10 and (b) PM2.5

obtained using the LSTM model.

5.3. DAE Model Performance

The optimal settings for the DAE model for both PM10 and PM2.5 prediction were a learning rate
of 0.01, epoch of 100, and batch size of 64. For a batch size of 64, the RMSE values were 15.038 for PM10

and 15.437 for PM2.5, with a processing time of 15:40 min (Figure 16, Table 5).

Table 5. DAE model performance for predicting PM10 and PM2.5 concentrations. Optimal RMSE values
are indicated in bold.

Batch Size Learning Rate Epoch RMSE Processing Time (Min)
PM10 PM2.5

32 0.01 100 15.644 17.493 11:50
64 0.01 100 15.038 15.437 15:40

128 0.01 100 16.024 15.711 24:05
256 0.01 100 16.825 17.473 35:58

Sustainability 2020, 12, 2570 14 of 18
Sustainability 2020, 12, x FOR PEER REVIEW 14 of 18

Figure 16. (a) Comparison of observed and 10-day predicted concentrations of (a) PM10 and (b) PM2.5
obtained using the DAE model.

Table 5. DAE model performance for predicting PM10 and PM2.5 concentrations. Optimal RMSE
values are indicated in bold.

Batch Size Learning Rate Epoch
RMSE Processing

Time (Min) PM10 PM2.5
32 0.01 100 15.644 17.493 11:50
64 0.01 100 15.038 15.437 15:40
128 0.01 100 16.024 15.711 24:05
256 0.01 100 16.825 17.473 35:58

We used total average RMSE values to compare the results obtained using the LSTM and DAE
models. Although both proposed algorithms effectively predicted PM10 (Figure 17) and PM2.5 (Figure
18) concentrations, the LSTM model showed slightly better performance.

Figure 16. (a) Comparison of observed and 10-day predicted concentrations of (a) PM10 and (b) PM2.5

obtained using the DAE model.

We used total average RMSE values to compare the results obtained using the LSTM and
DAE models. Although both proposed algorithms effectively predicted PM10 (Figure 17) and PM2.5

(Figure 18) concentrations, the LSTM model showed slightly better performance.Sustainability 2020, 12, x FOR PEER REVIEW 15 of 18

Figure 17. Comparison of LSTM and DAE model predictions of PM10 concentration.

Figure 18. Comparison of LSTM and DAE model predictions of PM2.5 concentration.

6. Conclusions

Recent advances in the development of deep learning models have led to a rapid increase in
their application in academic and industrial settings. In South Korea, the greatest environmental
concern is air pollution in the form of fine PM, which consists of liquid and solid particle compounds
that are dangerous to human health. Despite increasing levels of air pollutants in South Korea, the
number of measurement stations remains insufficient to obtain accurate PM levels throughout the
country. In this study, we proposed predictive models of fine PM concentration using LSTM and
DAE approaches, and compared their RMSE values for 10-day PM10 and PM2.5 concentration
prediction results for Seoul. The principal contributions of this study are as follows: (1) According
the experimental results, we have optimized the LSTM and DAE model with a learning rate of 0.01,
epoch of 100, and batch sizes of 32, 64, 128, and 256. For the prediction result, the LSTM model had
minimum RMSE values of 11.113 for PM10 and 12.174 for PM2.5 at a batch size of 32. At the same time,
the DAEs model had minimum RMSE values of 15.038 for PM10 and 15.431 for PM2.5 at a batch size
of 64. (2) We also compared the total average RMSE of prediction of PM10 and PM2.5, the LSTM
prediction model were more accurate than the DAE model. The comparison showed that our
proposed algorithm can predict and receive the appropriate accuracy between LSTM and DAE
model. In the future, we will design alternative deep learning models to obtain more accurate results
with larger data sets. We will also improve our model’s performance by considering GIS-based
spatial data.

Author Contributions: T.X. and H.L. conceived and designed the experiments, analyzed the data and wrote the
paper. G.L. supervised the work and helped with designing the conceptual framework, and edited the
manuscript. All authors have read and agreed to the published version of the manuscript.

Figure 17. Comparison of LSTM and DAE model predictions of PM10 concentration.

Sustainability 2020, 12, 2570 15 of 18

Sustainability 2020, 12, x FOR PEER REVIEW 15 of 18

Figure 17. Comparison of LSTM and DAE model predictions of PM10 concentration.

Figure 18. Comparison of LSTM and DAE model predictions of PM2.5 concentration.

6. Conclusions

Recent advances in the development of deep learning models have led to a rapid increase in
their application in academic and industrial settings. In South Korea, the greatest environmental
concern is air pollution in the form of fine PM, which consists of liquid and solid particle compounds
that are dangerous to human health. Despite increasing levels of air pollutants in South Korea, the
number of measurement stations remains insufficient to obtain accurate PM levels throughout the
country. In this study, we proposed predictive models of fine PM concentration using LSTM and
DAE approaches, and compared their RMSE values for 10-day PM10 and PM2.5 concentration
prediction results for Seoul. The principal contributions of this study are as follows: (1) According
the experimental results, we have optimized the LSTM and DAE model with a learning rate of 0.01,
epoch of 100, and batch sizes of 32, 64, 128, and 256. For the prediction result, the LSTM model had
minimum RMSE values of 11.113 for PM10 and 12.174 for PM2.5 at a batch size of 32. At the same time,
the DAEs model had minimum RMSE values of 15.038 for PM10 and 15.431 for PM2.5 at a batch size
of 64. (2) We also compared the total average RMSE of prediction of PM10 and PM2.5, the LSTM
prediction model were more accurate than the DAE model. The comparison showed that our
proposed algorithm can predict and receive the appropriate accuracy between LSTM and DAE
model. In the future, we will design alternative deep learning models to obtain more accurate results
with larger data sets. We will also improve our model’s performance by considering GIS-based
spatial data.

Author Contributions: T.X. and H.L. conceived and designed the experiments, analyzed the data and wrote the
paper. G.L. supervised the work and helped with designing the conceptual framework, and edited the
manuscript. All authors have read and agreed to the published version of the manuscript.

Figure 18. Comparison of LSTM and DAE model predictions of PM2.5 concentration.

6. Conclusions

Recent advances in the development of deep learning models have led to a rapid increase in their
application in academic and industrial settings. In South Korea, the greatest environmental concern is
air pollution in the form of fine PM, which consists of liquid and solid particle compounds that are
dangerous to human health. Despite increasing levels of air pollutants in South Korea, the number of
measurement stations remains insufficient to obtain accurate PM levels throughout the country. In this
study, we proposed predictive models of fine PM concentration using LSTM and DAE approaches, and
compared their RMSE values for 10-day PM10 and PM2.5 concentration prediction results for Seoul.
The principal contributions of this study are as follows: (1) According the experimental results, we
have optimized the LSTM and DAE model with a learning rate of 0.01, epoch of 100, and batch sizes of
32, 64, 128, and 256. For the prediction result, the LSTM model had minimum RMSE values of 11.113
for PM10 and 12.174 for PM2.5 at a batch size of 32. At the same time, the DAEs model had minimum
RMSE values of 15.038 for PM10 and 15.431 for PM2.5 at a batch size of 64. (2) We also compared the
total average RMSE of prediction of PM10 and PM2.5, the LSTM prediction model were more accurate
than the DAE model. The comparison showed that our proposed algorithm can predict and receive
the appropriate accuracy between LSTM and DAE model. In the future, we will design alternative
deep learning models to obtain more accurate results with larger data sets. We will also improve our
model’s performance by considering GIS-based spatial data.

Author Contributions: T.X. and H.L. conceived and designed the experiments, analyzed the data and wrote the
paper. G.L. supervised the work and helped with designing the conceptual framework, and edited the manuscript.
All authors have read and agreed to the published version of the manuscript.

Funding: This research was supported by the MSIT(Ministry of Science and ICT), Korea, under the
ITRC(Information Technology Research Center) support program(IITP-2020-2015-0-00403)supervised by the
IITP(Institute for Information &communications Technology Planning &Evaluation) and by Soonchunhyang
Research Fund.

Acknowledgments: We appreciate the air quality indices data provide by the Korean Ministry of Environment
(http://www.airkorea.or.kr/).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Jung, W. South Korea’s Air Pollution: Gasping for Solutions. Available online: http://isdp.eu/publication/

south-koreas-air-pollution-gasping-solutions/ (accessed on 6 April 2019).
2. Jin, L.; Luo, X.; Fu, P.; Li, X.-D. Airborne particulate matter pollution in urban China: a chemical mixture

perspective from sources to impacts. Natl. Sci. Rev. 2016, 4, 593–610. [CrossRef]
3. Xing, Y.-F.; Xu, Y.-H.; Shi, M.-H.; Lian, Y.-X. The impact of PM2.5 on the human respiratory system. J. Thorac.

Dis. 2016, 8, E69–E74. [PubMed]

http://www.airkorea.or.kr/
http://isdp.eu/publication/south-koreas-air-pollution-gasping-solutions/
http://isdp.eu/publication/south-koreas-air-pollution-gasping-solutions/
http://dx.doi.org/10.1093/nsr/nww079
http://www.ncbi.nlm.nih.gov/pubmed/26904255

Sustainability 2020, 12, 2570 16 of 18

4. Torrisi, M.; Pollastri, G.; Le, Q. Deep learning methods in protein structure prediction. Comput. Struct.
Biotechnol. J. 2020, 521, 436–444. [CrossRef]

5. Heaton, J. Deep Learning and Neural Networks; Heaton Research Inc: Washington, DC, USA, 2015.
6. Deng, L.; Yu, D. Deep Learning: Methods and Applications. Found. Trends Signal Process. 2014, 7, 197–387.

[CrossRef]
7. Ordieres-Meré, J.; Vergara, E.; Capuz-Rizo, S.F.; Salazar, R. Neural network prediction model for fine

particulate matter (PM2.5) on the US–Mexico border in El Paso (Texas) and Ciudad Juárez (Chihuahua).
Environ. Model. Softw. 2005, 20, 547–559. [CrossRef]

8. Barai, S.V.; Dikshit, A.K.; Sharma, S. Neural Network Models for Air Quality Prediction: A Comparative
Study. In Computational Intelligence in Security for Information Systems; Springer Science and Business Media
LLC: Berlin/Heidelberg, Germany, 2007; Volume 39, pp. 290–305.

9. Zhou, Q.; Jiang, H.; Wang, J.; Zhou, J. A hybrid model for PM 2.5 forecasting based on ensemble empirical
mode decomposition and a general regression neural network. Sci. Total. Environ. 2014, 496, 264–274.
[CrossRef]

10. Elangasinghe, M.; Singhal, N.; Dirks, K.; Salmond, J.; Samarasinghe, S. Complex time series analysis of PM10
and PM2.5 for a coastal site using artificial neural network modelling and k-means clustering. Atmospheric
Environ. 2014, 94, 106–116. [CrossRef]

11. Russo, A.; Raischel, F.; Lind, P.G. Air quality prediction using optimal neural networks with stochastic
variables. Atmos. Environ. 2013, 79, 822–830. [CrossRef]

12. Hu, X.; Waller, L.A.; Lyapustin, A.; Wang, Y.; Al-Hamdan, M.Z.; Crosson, W.L.; Estes, M.G., Jr.; Estes, S.M.;
Quattrochi, D.; Puttaswamy, S.J.; et al. Estimating ground-level PM2.5 concentrations in the Southeastern
United States using MAIAC AOD retrievals and a two-stage model. Remote. Sens. Environ. 2014, 140,
220–232. [CrossRef]

13. Chang, Y.-S.; Lin, K.-M.; Tsai, Y.-T.; Zeng, Y.-R.; Hung, C.-X. Big data platform for air quality analysis and
prediction. In Proceedings of the 2018 27th Wireless and Optical Communication Conference (WOCC),
Hualien, Taiwan, 30 April–1 May 2018; pp. 1–3.

14. Schmidhuber, J. Deep learning in neural networks: An overview. Neural Networks 2015, 61, 85–117. [CrossRef]
15. Kalapanidas, E.; Avouris, N. Short-term air quality prediction using a case-based classifier. Environ. Model.

Softw. 2001, 16, 263–272. [CrossRef]
16. Athanasiadis, I.N.; Kaburlasos, V.G.; Mitkas, P.A.; Petridis, V. Applying machine learning techniques on air

quality data for real-time decision support. In Proceedings of the First international NAISO symposium on
information technologies in environmental engineering (ITEE’2003), Gdansk, Poland, 24–27 June 2003.

17. Famoso, F.; Wilson, J.; Monforte, P.; Lanzafame, R.; Brusca, S.; Lulla, V. Measurement and modeling of
ground-level ozone concentration in Catania, Italy using biophysical remote sensing and GIS. Int. J. Appl.
Eng. Res. 2017, 12, 10551–10562.

18. Hoek, G.; Beelen, R.; de Hoogh, K.; Vienneau, D.; Gulliver, J.; Fischer, P.; Briggs, D. A review of land-use
regression models to assess spatial variation of outdoor air pollution. Atmos. Environ. 2008, 42, 7561–7578.
[CrossRef]

19. Lee, J.-H.; Wu, C.-F.; Hoek, G.; De Hoogh, K.; Beelen, R.; Brunekreef, B.; Chan, C.-C. Land use regression
models for estimating individual NOx and NO2 exposures in a metropolis with a high density of traffic
roads and population. Sci. Total. Environ. 2014, 472, 1163–1171. [CrossRef] [PubMed]

20. Qi, Y.; Li, Q.; Karimian, H.; Liu, D. A hybrid model for spatiotemporal forecasting of PM2.5 based on graph
convolutional neural network and long short-term memory. Sci. Total. Environ. 2019, 664, 1–10. [CrossRef]
[PubMed]

21. Singh, K.P.; Gupta, S.; Rai, P. Identifying pollution sources and predicting urban air quality using ensemble
learning methods. Atmos. Environ. 2013, 80, 426–437. [CrossRef]

22. Corani, G. Air quality prediction in Milan: feed-forward neural networks, pruned neural networks and lazy
learning. Ecol. Model. 2005, 185, 513–529. [CrossRef]

23. Fu, M.; Wang, W.; Le, Z.; Khorram, M.S. Prediction of particular matter concentrations by developed
feed-forward neural network with rolling mechanism and gray model. Neural Comput. Appl. 2015, 26,
1789–1797. [CrossRef]

24. Jiang, D.; Zhang, Y.; Hu, X.; Zeng, Y.; Tan, J.; Shao, D. Progress in developing an ANN model for air pollution
index forecast. Atmos. Environ. 2004, 38, 7055–7064. [CrossRef]

http://dx.doi.org/10.1016/j.csbj.2019.12.011
http://dx.doi.org/10.1561/2000000039
http://dx.doi.org/10.1016/j.envsoft.2004.03.010
http://dx.doi.org/10.1016/j.scitotenv.2014.07.051
http://dx.doi.org/10.1016/j.atmosenv.2014.04.051
http://dx.doi.org/10.1016/j.atmosenv.2013.07.072
http://dx.doi.org/10.1016/j.rse.2013.08.032
http://dx.doi.org/10.1016/j.neunet.2014.09.003
http://dx.doi.org/10.1016/S1364-8152(00)00072-4
http://dx.doi.org/10.1016/j.atmosenv.2008.05.057
http://dx.doi.org/10.1016/j.scitotenv.2013.11.064
http://www.ncbi.nlm.nih.gov/pubmed/24377679
http://dx.doi.org/10.1016/j.scitotenv.2019.01.333
http://www.ncbi.nlm.nih.gov/pubmed/30743109
http://dx.doi.org/10.1016/j.atmosenv.2013.08.023
http://dx.doi.org/10.1016/j.ecolmodel.2005.01.008
http://dx.doi.org/10.1007/s00521-015-1853-8
http://dx.doi.org/10.1016/j.atmosenv.2003.10.066

Sustainability 2020, 12, 2570 17 of 18

25. Qin, D.; Yu, J.; Zou, G.; Yong, R.; Zhao, Q.; Zhang, B. A Novel Combined Prediction Scheme Based on CNN
and LSTM for Urban PM2.5 Concentration. IEEE Access 2019, 7, 20050–20059. [CrossRef]

26. Bui, T.-C.; Le, V.-D.; Cha, S.-K. A Deep Learning Approach for Forecasting Air Pollution in South Korea
Using LSTM 2018. arXiv 2018, arXiv:1804.07891.

27. Zhao, J.; Deng, F.; Cai, Y.; Chen, J. Long short-term memory—Fully connected (LSTM-FC) neural network for
PM2.5 concentration prediction. Chemosphere 2019, 220, 486–492. [CrossRef] [PubMed]

28. Reddy, V.; Yedavalli, P.; Mohanty, S.; Nakhat, U. Deep Air: Forecasting Air Pollution in Beijing, China. arXiv 2018.
29. Kim, S.; Lee, J.M.; Lee, J.; Seo, J. Deep-dust: Predicting concentrations of fine dust in Seoul using LSTM 2019.

arXiv 2019.
30. Li, X.; Peng, L.; Hu, Y.; Shao, J.; Chi, T. Deep learning architecture for air quality predictions. Environ. Sci.

Pollut. Res. 2016, 23, 22408–22417. [CrossRef]
31. Lv, Y.; Duan, Y.; Kang, W.; Li, Z.; Wang, F.-Y. Traffic Flow Prediction With Big Data: A Deep Learning

Approach. IEEE Trans. Intell. Transp. Syst. 2014, 16, 1–9. [CrossRef]
32. Huang, W.; Song, G.; Hong, H.; Xie, K. Deep Architecture for Traffic Flow Prediction: Deep Belief Networks

With Multitask Learning. IEEE Trans. Intell. Transp. Syst. 2014, 15, 2191–2201. [CrossRef]
33. Teng, Y.; Huang, X.; Ye, S.; Li, Y. Prediction of particulate matter concentration in Chengdu based on

improved differential evolution algorithm and BP neural network model. In Proceedings of the 2018 IEEE
3rd International Conference on Cloud Computing and Big Data Analysis (ICCCBDA), Institute of Electrical
and Electronics Engineers (IEEE), Chengdu, China, 20–22 April 2018; pp. 100–106.

34. Dong, Y.; Wang, H.; Zhang, L.; Zhang, K. An improved model for PM2.5 inference based on support vector
machine. In Proceedings of the 2016 17th IEEE/ACIS International Conference on Software Engineering,
Artificial Intelligence, Networking and Parallel/Distributed Computing (SNPD), Institute of Electrical and
Electronics Engineers (IEEE), Shanghai, China, 30 May–1 June 2016; pp. 27–31.

35. Air Korea. Available online: http://www.airkorea.or.kr/web (accessed on 6 April 2019).
36. Korea Meteorological Agency. Available online: https://data.kma.go.kr/cmmn/main.do (accessed on 6 April 2019).
37. Mahata, S.K.; Das, D.; Bandyopadhyay, S. MTIL2017: Machine Translation Using Recurrent Neural Network

on Statistical Machine Translation. J. Intell. Syst. 2019, 28, 447–453. [CrossRef]
38. Wang, Q.; Lin, J.; Yuan, Y. Salient Band Selection for Hyperspectral Image Classification via Manifold Ranking.

IEEE Trans. Neural Networks Learn. Syst. 2016, 27, 1279–1289. [CrossRef]
39. Graves, A.; Mohamed, A.-R.; Hinton, G.; Graves, A. Speech recognition with deep recurrent neural networks.

In Proceedings of the 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, Institute
of Electrical and Electronics Engineers (IEEE), Vancouver, BC, Canada, 26–31 May 2013; pp. 6645–6649.

40. Milan, A.; Rezatofighi, S.H.; Dick, A.; Reid, I.; Schindler, K. Online Multi-Target Tracking Using Recurrent
Neural Networks. arXiv 2016, 1604, 03635.

41. Liu, T.; Wu, T.; Wang, M.; Fu, M.; Kang, J.; Zhang, H. Recurrent Neural Networks based on LSTM for
Predicting Geomagnetic Field. In Proceedings of the 2018 IEEE International Conference on Aerospace
Electronics and Remote Sensing Technology (ICARES), Institute of Electrical and Electronics Engineers
(IEEE), Bali, Indonesia, 20–21 September 2018; pp. 1–5.

42. Chung, J.; Gulcehre, C.; Cho, K.; Bengio, Y. Empirical Evaluation of Gated Recurrent Neural Networks on
Sequence Modeling. arXiv 2014, 1412, 3555.

43. Fan, J.; Li, Q.; Hou, J.; Feng, X.; Karimian, H.; Lin, S. A Spatiotemporal Prediction Framework for Air Pollution
Based on Deep RNN. ISPRS Ann. Photogramm. Remote. Sens. Spat. Inf. Sci. 2017, 4, 15–22. [CrossRef]

44. Xu, G.; Fang, W. Shape retrieval using deep autoencoder learning representation. In Proceedings of the 2016
13th International Computer Conference on Wavelet Active Media Technology and Information Processing
(ICCWAMTIP), Institute of Electrical and Electronics Engineers (IEEE), Chengdu, China, 16–18 December
2016; pp. 227–230.

45. Zhao, X.; Nutter, B. Content Based Image Retrieval system using Wavelet Transformation and multiple input
multiple task Deep Autoencoder. In Proceedings of the 2016 IEEE Southwest Symposium on Image Analysis
and Interpretation (SSIAI), Santa Fe, NM, USA, 6–8 March 2016; pp. 97–100.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/ACCESS.2019.2897028
http://dx.doi.org/10.1016/j.chemosphere.2018.12.128
http://www.ncbi.nlm.nih.gov/pubmed/30594800
http://dx.doi.org/10.1007/s11356-016-7812-9
http://dx.doi.org/10.1109/TITS.2014.2345663
http://dx.doi.org/10.1109/TITS.2014.2311123
http://www.airkorea.or.kr/web
https://data.kma.go.kr/cmmn/main.do
http://dx.doi.org/10.1515/jisys-2018-0016
http://dx.doi.org/10.1109/TNNLS.2015.2477537
http://dx.doi.org/10.5194/isprs-annals-IV-4-W2-15-2017
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Research
	Materials
	Study Areas
	Dataset
	PM Data
	Meteorological Data

	Proposed Methods
	LSTM Models
	Deep Autoencoders (DAEs)
	Autoencoder
	The DAE Model

	Model Performance Evaluation

	Results
	Fine PM Prediction
	LSTM Model Performance
	DAE Model Performance

	Conclusions
	References

