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Abstract: Many countries worldwide have poor air quality due to the emission of particulate matter
(i.e., PM10 and PM2.5), which has led to concerns about human health impacts in urban areas. In this
study, we developed models to predict fine PM concentrations using long short-term memory (LSTM)
and deep autoencoder (DAE) methods, and compared the model results in terms of root mean
square error (RMSE). We applied the models to hourly air quality data from 25 stations in Seoul,
South Korea, for the period from 1 January 2015, to 31 December 2018. Fine PM concentrations
were predicted for the 10 days following this period, at an optimal learning rate of 0.01 for 100
epochs with batch sizes of 32 for LSTM model, and DAEs model performed best with batch size 64.
The proposed models effectively predicted fine PM concentrations, with the LSTM model showing
slightly better performance. With our forecasting model, it is possible to give reliable fine dust
prediction information for the area where the user is located.

Keywords: air pollution; deep autoencoder (DAE); deep learning; long short-term memory (LSTM);
fine particulate matter; PM10; PM2.5

1. Introduction

As industry and population expand rapidly in South Korea, air pollution is increasingly becoming
problematic for human health in the country. In 2017, South Korea ranked 173rd among the 180
countries with the greatest air pollution impact [1]. Air pollution in urban areas consists of carbon
dioxide (CO2), carbon monoxide (CO), nitrogen oxide (NO2), nitrogen monoxide (NO), ozone (O3),
and fine particulate matter (PM), the last of which is of greatest concern in South Korea. Fine PM
is classified into PM10 and PM2.5 based on particle diameter, where PM10 and PM2.5 are particles
with diameters <10 and <2.5 µm, respectively (Figure 1). PM includes dust, pollen, soot, smoke,
and liquid droplets that harm the respiratory system [2,3], causing respiratory symptoms including
irregular heart rate, coughing, airway irritation, abnormal lung function, breathing difficulty, heart
attack, stroke-associated diseases, and asthma. Despite increasing air pollutant concentrations in South
Korea, the Korean government has reported difficulties in gaining accurate air pollution data due to
insufficient air pollution measurement stations for reasonable nationwide coverage.
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Figure 1. Particulate matter (PM) size comparison. 

Thus, many studies have been conducted to determine and analyze air quality. The recent 
development of machine learning techniques, especially deep learning, have provided new 
opportunities to improve air quality research. Deep learning consists of an artificial intelligence (AI) 
system that can obtain data unsupervised, in unstructured or unlabeled learning approaches such as 
deep neural network or deep neural learning methods [4]. Deep learning requires three essential 
elements: the graphics processing unit (GPU), which controls operation processing speed; vast 
quantities of data for experiments; and signal information processing. Deep learning has been widely 
adopted in academic and practical applications such as translation, speech recognition, language 
processing, and image classification [5,6] (Figure 2). Several studies of air quality prediction have also 
adopted AI and deep learning techniques [7–14]; many of these studies have used deep neural 
networks to obtain short-term air quality forecasts. Using these approaches, current fine PM 
concentrations have been found to be strongly correlated with pollution emissions from power 
plants, factory chimneys, and various other sources. 
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Figure 1. Particulate matter (PM) size comparison.

Thus, many studies have been conducted to determine and analyze air quality. The recent
development of machine learning techniques, especially deep learning, have provided new
opportunities to improve air quality research. Deep learning consists of an artificial intelligence
(AI) system that can obtain data unsupervised, in unstructured or unlabeled learning approaches
such as deep neural network or deep neural learning methods [4]. Deep learning requires three
essential elements: the graphics processing unit (GPU), which controls operation processing speed; vast
quantities of data for experiments; and signal information processing. Deep learning has been widely
adopted in academic and practical applications such as translation, speech recognition, language
processing, and image classification [5,6] (Figure 2). Several studies of air quality prediction have also
adopted AI and deep learning techniques [7–14]; many of these studies have used deep neural networks
to obtain short-term air quality forecasts. Using these approaches, current fine PM concentrations have
been found to be strongly correlated with pollution emissions from power plants, factory chimneys,
and various other sources.
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In the current study, we used hourly PM10 and PM2.5 measurement data collected in Seoul, South
Korea during 2015–2018, as well as data on meteorological features such as humidity, rain, wind speed
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and direction, temperature, and atmospheric conditions. These air pollution data attributes were
learned by long short-term memory (LSTM) and deep autoencoder (DAE) models. The models were
then used to predict fine PM concentrations in Seoul, and the performance of the two models was
compared in terms of root mean square error (RMSE).

2. Related Research

Kalapanidas et al. [15] reported detailed air pollution effects using ordinal air pollution data (low,
medium, high, and alarm levels) with a case-based reasoning (CBR) system and the lazy learning
method. Similarly, Athanasiadis et al. [16] predicted air pollution based on O3 concentrations classified
as low, medium, and high levels of pollutants including SO2, NO, and NO2 using a σ-fuzzy lattice
neurocomputing (FLN) model. Land-use regression was also applied to estimate NOx and NO2

concentrations [17], and O3 concentrations [18]. Hoek et al. [19] concluded that land-use regression
methods are able to model annual mean PM2.5 concentrations. The LUR model is considered to be
suitable for PM2.5 prediction due to the linear relationship between PM2.5 and explanatory variables,
while the ANN based model designed to handle non-linearity may perform better in general as
well [20]. Kunwar et al. [21] applied an ensemble learning method and a principal components analysis
(PCA) algorithm to integrate air quality data to forecast air quality index (AQI) values. However, these
approaches involving regression of categorical variables can produce ambiguous results because some
data are ignored.

Various studies have predicted air pollutant concentrations under different circumstances.
Corani [22] forecasted hourly O3 and PM10 concentrations from previous-day air pollution data
using a neural network algorithm to train pruned neural network (PNN) and feed-forward neural
network (FFNN) models. Fu et al. [23] also applied an FFNN model with a undulating scheme and the
gray method. Jiang et al. [24] predicted air pollution using traditional chemical and physical models in
combination with regression and multiple-layer perceptron models. Ni et al. [25] found that a linear
regression model performed better than several other models for predicting fine PM concentrations in
Beijing, China.

Detailed air pollution predictions have been obtained by combining various model designs
based on LSTM and convolutional neural network (CNN) approaches. One such study proposed an
experimental model to forecast fine PM concentrations [25]; another used LSTM and RNN models as a
framework to obtain long-term PM2.5 trends from time-series data for use in government policy making
and resource allocation [26]. Fully connected LSTM (LSTM-FC) has been applied with a neural network
to forecast and visualize PM concentrations at urban meteorological stations [27]. LSTM and RNN
have also been used as a framework for large-scale, long-term time series data for PM forecasting [28].
Another study proposed an LSTM-based model to predict hourly fine PM concentrations at 25 target
locations in Seoul [29].

Deep spatiotemporal learning based on an air quality forecast method has been applied to discuss
spatial and temporal correlations in PM concentration based on a stacked autoencoder (SAE) model for
training air pollution data with the greedy layer-wise technique [30]. These techniques have also been
used to predict local traffic flow [31]. Another study applied multitask learning (MTL) approaches
involving homogeneous and deep belief network (DBN) methods using unsupervised learning for
predictive models [32].

A back-propagation (BP) neural network was combined with an integrated development
environment (IDE) model to predict fine PM concentrations using meteorological and fine PM
data for Chengdu, China [33]; model results were improved in the IDE-BPNN combination model.
Another study applied a support vector machine (SVM) method using fine PM data, meteorological
elements, and geographical information to predict air quality at pollution measurement stations by
incorporating nonlinear PM characteristics [34].
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3. Materials

3.1. Study Areas

Seoul, South Korea, contains 25 air pollution measurement stations (one station per district)
separated by from one another by 5 km along the transverse Mercator (TM) link system (Figure 3).
The stations are mainly situated far from major roadways and at the tops of public buildings.
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These stations automatically collect hourly air quality data 24 h per day; the data are then uploaded
to a website that is open to the general public. Seoul also contains several special monitoring stations
including the Namsan Mountain high-altitude station, the Gwanak Mountain station, which measures
levels of air pollution that has traveled long distances, and the Bukhan Mountain station, which is
located in a clean zone; there are also 14 roadside measurement stations and 12 measurement stations
located on highway bus line medians.

3.2. Dataset

3.2.1. PM Data

PM concentration (µg/m3) data used in this study were derived from hourly measurements at the
25 monitoring stations in Seoul, South Korea, from 1 January 2015, to 31 December 2018 [35]. Trends in
the PM10 and PM2.5 data are shown in Figures 4 and 5, respectively.
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3.2.2. Meteorological Data

Meteorological data for the study period were obtained from the Korea Meteorological Agency
website [36]. The dataset contained preprocessed hourly values of wind speed, wind direction,
temperature, sky condition, and rainfall (Figure 6).

Korean government agencies use an air quality index (AQI) to quantify air quality concentration
effects for communication with the general public. This AQI has five categories (Table 1), which
indicate relative health risks due to air pollution.

Table 1. Air quality index (AQI) classification.

AQI Description

PM10 PM2.5

0–30 0–15 Good
31–50 16–25 Moderate

51–100 26–50 Unhealthy
100+ 50+ Hazardous
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4. Proposed Methods

4.1. LSTM Models

RNNs have been used to create sequential information data for many deep learning applications
including translation [37], image classification [38], voice recognition [39], and object tracking [40].
Two types of RNNs are LSTM [41] and gated recurrent units (GRUs) [42].

The RNN architecture is unrolled or unfolded to show the entire network as a complete sequence,
with one layer per word (Figure 7).
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The recursive RNN formulas are as follows:

ht = tanh(Whht−1 + Wxxt) (1)

yt = Wyht (2)

where xt is the input vector, ht is the hidden layer, yt is the experiment output vector, and Wh is a
weighted matrix. The RNN is applied to LSTM to create an environment for the computation process,
obtain input, and create output [43]. During this process, long-term memory is created from short-term
memory. The LSTM system consists of an input gate, a forget gate, and an output gate.

LSTM calculates the hidden state as follows:

it = σ
(
W f [ht−1, xt] + bi

)
(3)

ft = σ
(
W f [ht−1, xt] + b f

)
(4)
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Sigmoid =
1

1 + e−1
(5)

ot = σ(Wo[ht−1, xt] + bo) (6)

c̃t = tanh(Wc[ht−1, xt] + bc) (7)

ct = ft ∗ ct−1 + it ∗ c̃t (8)

ht = ot ∗ tanh(ct) (9)

where σ is the logistic sigmoid function; i, f, and o are the input, forget, and output gates, respectively;
h is a hidden vector that is the same size in each layer; W is a weight matrix for the transformation of
information from cell to gate vectors; and m is a vector-only feature in every gate that obtains input
from feature m of the cell vector. In Equation (7), c̃t is a hidden element that is tasked with the current
input layer; ct is the internal memory computed in this unit; and ht is the output of a hidden state,
derived through memory multiplication (Figure 8).
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The forget gate (Figure 9a) is responsible for removing information from the cell state; it receives
two inputs: the hidden state output from the previous time step (ht−1) and the input for the current
time step (xt). These inputs are multiplied by weight matrices, and a bias is added. A sigmoid function
is then applied to obtain an output vector with values ranging from 0 to 1, which is used to decide
which values to keep and which to discard.
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Next, the input gate transfers information to the cell state in a two-step method (Figure 9b). Similar
to the input gate, a sigmoid function is applied as a filter for ht−1 and xt to build a vector of suitable
values for the cell state ranging from −1 to 1. This vector then provides values that can be added to the
cell state.

The output gate (Figure 9c) decides which information to output from the cell state. In LSTM, the
output gate function is performed in three steps. First, the vector is built and the hyperbolic tangent
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function tanh is applied to the cell state to scale the values from −1 to 1. The sigmoid function is then
applied to the previous hidden state to create a filter for values of ht−1 and xt. Finally, the filtered
values are multiplied by the vector created in step 1 to produce LSTM output information.

The LSTM algorithm used in our prediction system is described in detail in Table 2.

Table 2. Training the LSTM algorithm.

Step Description

1 Preprocessing of all fine particulate matter and meteorological data

2

LSTM pre-training

• Denote x(t) as an element-wise input, ignoring bias
• Create weight matrix W to transform information from cell to gate vectors
• Define m for each element of the gate vector and obtain input from the

cell state
• Set c as an internal memory of the cell state

3
Fine tuning
• Build a vector by applying the tanh function to the cell state
• Apply the sigmoid function to create a filter for values of ht−1 and xt

4 Obtain prediction results

4.2. Deep Autoencoders (DAEs)

4.2.1. Autoencoder

An autoencoder is a type of neural network that encodes input data for reconstruction as output
data [44]. To begin this process, the autoencoder must learn to capture the significant features of
the input. An example of an autoencoder with a single input layer, single hidden layer, and single
output layer is shown in Figure 10. To train set {x(1), x(2),...x(n)} such that x(i)∈Rd, the first step of the
autoencoder model is to encode the single input x(i) to hidden layer y(x(i)) according to Equation (10);
this layer is then decoded as output layer z(x(i)) according to Equation (11), as follows:

y(x) = f (W1x + b) (10)

z(x) = g(W2x + c) (11)

where W1 is a weight matrix for the optimization process, b is an encode bias vector, W2 is a decoding
matrix of the output layer, and c is a decoding bias vector. In this study, we also applied the logistic
sigmoid function 1/(1 + exp(−x)) to f (x) and g(x).
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The autoencoder model uses a vector input layer (x) and encoding function (f ) to approximate
another vector (y); during reconstruction, a decoder function (g) is applied to vector y to recreate vector
x; the resulting output layer from the application of (g) is vector z. Reconstruction error is determined
by scaling with the loss function LH(x,z); this function is minimized as L(X, Z) to obtain optimal
parameter values as follows:

θ = argθminL(X, Z) = argθmin
1
2

N∑
i=1

||x(i) − z
(
x(i)

)
||

2
. (12)

One urgent problem in the application of autoencoder models is the size of the hidden layer,
which is set as equal to or larger than the output layer. This problem is generally addressed by the
design of the model functions. In the present study, we used a nonlinear autoencoder with a hidden
layer that is one unit larger than the input layer by applying the sparsity constraint method, such that
the autoencoder model was transformed into a sparse autoencoder. To obtain sparse representation,
we imposed a sparsity constraint to minimize reconstruction error as follows:

SAO = L(X, Z) + γ
HD∑
i=1

KL
(
ρ ‖ ρ̂ j

)
(13)

ρ̂ j = (1/N)
N∑

i=1

y j
(
x(i)

)
(14)

where γ is the weight, HD is the number of hidden units, ρ is the sparsity parameter, and HD is the
number of hidden units. In Equation (14), the average value of the activation function for hidden unit j
in the training set is the Kullback–Leibler (KL) divergence for machine learning, KL

(
ρ ‖ ρ̂ j

)
, which is

calculated as follows:

KL
(
ρ ‖ ρ̂ j

)
= ρ log

ρ

ρ̂i
+ (1− ρ) log

1− ρ
1− ρ̂i

. (15)

KL divergence defines the parameter KL
(
ρ ‖ ρ̂ j

)
= 0 if = ρ̂ j. The sparsity constraint on the input

process and back propagation (BP) method are applied to modify this problem.

4.2.2. The DAE Model

Deep or stacked autoencoder models are among the most powerful types of neural network
architecture [45]. The DAE model begins by pre-training a single input layer, followed by hidden
layers, such that the output of the kth hidden layer is used as input for the (k + 1) th hidden layer. Thus,
hidden layers are stacked hierarchically within the DAE, so the final hidden layer is a higher-level
representation of all layers of input, and may be used in forecasting.

In this study, we applied a DAE model for fine PM forecasting by adding a standard forecaster at
the top of the model layer. Layer-wise training of the resulting DAE is shown in Figure 11. Figure 12
shows the structure of a DAE, including stacked autoencoder nodes.

We applied a DAE model to represent fine PM features; the prediction was then applied to a
logistic regression model. In the proposed method, the DAE model was combined with a dropout
process to handle multiple faults. The workflow of the DAE model is shown in Figure 13, and the
algorithm is described in detail in Table 3.
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Table 3. Training the deep autoencoder (DAE) algorithm.

Step Description

1 Preprocessing of all fine particulate matter and meteorological data

2

Preparation of the DAE framework

• Define a weight γ and parameter ρ to randomize the matrices
• Apply the greedy layer-wise method to the hidden layers

• Assign the output of the kth hidden layer
{
W1

k+1, b1
k+1

} l− 1
k = 0 , as the input of the (k + 1) th

hidden layer
• Determine reasonable encoding for the (k + 1) th hidden layer

3

Fine tuning
• Apply supervised training to define weight and bias terms

{
W1

k+1, b1
k+1

}
to obtain

random values
• Apply the gradient descent optimization method and back propagation to adjust

hyperparameters throughout the network

4 Obtain prediction results

4.3. Model Performance Evaluation

We evaluated the performance of the proposed model in terms of the root mean square error
(RMSE) between measured air pollution values and predicted values. RMSE was calculated as follows:

RMSE =

√√√ N∑
i=1

(Pm − Pr)
2/N, (16)

where Pm and Pr are the measured and predicted PM concentrations, respectively, and N is the number
of measured values.

5. Results

5.1. Fine PM Prediction

In this study, we obtained PM10 and PM2.5 concentration data and meteorological data consisting
of rainfall, wind speed and direction, temperature, humidity, and sky condition for use as input nodes.
The output variable was predicted PM10 or PM2.5 concentration. All data were partitioned into two
sets, with 85% used for training and 15% for testing.

We combined all raw data obtained from the open data website and performed preprocessing to
check for missing values and categorical values within the dataset. We then split the data into training
and test datasets and applied the LSTM and DAE models to predict PM10 and PM2.5 concentrations for
the 10 days following the study period. Figure 14 shows the workflow for predicting PM concentrations
using the LSTM and DAE model.

Finally, we evaluated the accuracy of the proposed method using the RMSE between observed
and predicted values. We adjusting the learning rate, epoch, and batch size of the model to obtain
optimal results.
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5.2. LSTM Model Performance

The optimal settings for the LSTM model for both PM10 and PM2.5 prediction were a learning rate
of 0.01, epoch of 100, and batch size of 32. For a batch size of 32, the RMSE values were 11.113 for PM10

and 12.174 for PM2.5, with a processing time of 11:18 min (Figure 15, Table 4).

Table 4. LSTM model performance for predicting PM10 and PM2.5 concentrations. Optimal root mean
square error (RMSE) values are indicated in bold.

Batch Size Learning Rate Epoch RMSE Processing Time (Min)
PM10 PM2.5

32 0.01 100 11.113 12.174 11:18
64 0.01 100 11.163 12.237 17:05

128 0.01 100 11.139 12.243 23:57
256 0.01 100 11.228 11.642 38:18
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Figure 15. (a) Comparison of observed and 10-day predicted concentrations of (a) PM10 and (b) PM2.5

obtained using the LSTM model.

5.3. DAE Model Performance

The optimal settings for the DAE model for both PM10 and PM2.5 prediction were a learning rate
of 0.01, epoch of 100, and batch size of 64. For a batch size of 64, the RMSE values were 15.038 for PM10

and 15.437 for PM2.5, with a processing time of 15:40 min (Figure 16, Table 5).

Table 5. DAE model performance for predicting PM10 and PM2.5 concentrations. Optimal RMSE values
are indicated in bold.

Batch Size Learning Rate Epoch RMSE Processing Time (Min)
PM10 PM2.5

32 0.01 100 15.644 17.493 11:50
64 0.01 100 15.038 15.437 15:40

128 0.01 100 16.024 15.711 24:05
256 0.01 100 16.825 17.473 35:58
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6. Conclusions

Recent advances in the development of deep learning models have led to a rapid increase in their
application in academic and industrial settings. In South Korea, the greatest environmental concern is
air pollution in the form of fine PM, which consists of liquid and solid particle compounds that are
dangerous to human health. Despite increasing levels of air pollutants in South Korea, the number of
measurement stations remains insufficient to obtain accurate PM levels throughout the country. In this
study, we proposed predictive models of fine PM concentration using LSTM and DAE approaches, and
compared their RMSE values for 10-day PM10 and PM2.5 concentration prediction results for Seoul.
The principal contributions of this study are as follows: (1) According the experimental results, we
have optimized the LSTM and DAE model with a learning rate of 0.01, epoch of 100, and batch sizes of
32, 64, 128, and 256. For the prediction result, the LSTM model had minimum RMSE values of 11.113
for PM10 and 12.174 for PM2.5 at a batch size of 32. At the same time, the DAEs model had minimum
RMSE values of 15.038 for PM10 and 15.431 for PM2.5 at a batch size of 64. (2) We also compared the
total average RMSE of prediction of PM10 and PM2.5, the LSTM prediction model were more accurate
than the DAE model. The comparison showed that our proposed algorithm can predict and receive
the appropriate accuracy between LSTM and DAE model. In the future, we will design alternative
deep learning models to obtain more accurate results with larger data sets. We will also improve our
model’s performance by considering GIS-based spatial data.
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