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Abstract: Potentially toxic elements (PTEs)-induced genotoxicity on aquatic plants is still an open
question. Herein, a single clone from a population of water hyacinth covering a large distribution area
of Nile River (freshwater) was transplanted in two drainage water resources to explore the hazardous
effect of PTEs on molecular, biochemical and anatomical characters of plants compared to those
grown in freshwater. Inductivity Coupled Plasma (ICP) analysis indicated that PTEs concentrations
in water resources were relatively low in most cases. However, the high tendency of water
hyacinth to bio-accumulate and bio-magnify PTEs maximized their concentrations in plant samples
(roots in particular). A Random Amplified Polymorphic DNA (RAPD) assay showed the genotoxic
effects of PTEs on plants grown in drainage water. PTEs accumulation caused substantial alterations
in DNA profiles including the presence or absence of certain bands and even the appearance of new
bands. Plants grown in drainage water exhibited several mutations on the electrophoretic profiles
and banding pattern of total protein, especially proteins isolated from roots. Several anatomical
deteriorations were observed on PTEs-stressed plants including reductions in the thickness of
epidermis, cortex and endodermis as well as vascular cylinder diameter. The research findings of
this investigation may provide some new insights regarding molecular, biochemical and anatomical
responses of water hyacinth grown in drainage water resources.

Keywords: water hyacinth; potentially toxic elements; genotoxicity; protein patterns; anatomical characters

1. Introduction

The fast global discharge of potentially toxic elements (PTEs) into the hydrosphere has attracted
serious focus due to their high bioavailability, bioaccumulation, and biomagnification potentials [1–3].
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The consumption of aquatic products is the main pathway of PTEs accumulation in the human body [4].
Some of PTEs such as cadmium (Cd), lead (Pb), arsenic (As), mercury (Hg) and chromium (Cr) have
several toxic effects even at low concentrations including series of cancers, anemia, heart attacks,
embryotoxicity, neurotoxicity and weakness in the immune system [5]. Therefore, the maximum
permissible limits of these elements have been set by the World Health Organization (WHO) to ensure
that zero or only the threshold limits of trace levels (part per billion, ppb) are allowed in a water
resource [6].

On the other hand, PTEs have several phytotoxic effects on plants by targeting central molecules
and vital processes in cells [7]. In this regard, biochemical disorders are the early responses associated
with these phytotoxic effects, including enzymes deactivation and several oxidative stress responses
linked to the over-production of reactive oxygen species (ROS) [8–10]. According to Jalmi et al. [11],
the responses of plant against these early phytotoxic effects are shown in intricate signaling networks
functioning in plant cells (e.g., calcium, hormone, and mitogen-activated protein kinase signaling).
Furthermore, phytotoxicity of PTEs may also cause severe damage to DNA either through modifying
the protein structure of enzymes and/or constraining the production of enzymes at the transcription
level, which could also lead to chromosomal aberrations in mitotic cells [12–14]. In addition, PTEs
phytotoxicity induced several disorders in biochemical and physiological plant systems including
disturbance in cell division, cell cycle impairment, disorders in mitochondrial respiration, dysfunctions
in synthesis of photosynthetic pigments, alterations in plasma membrane permeability and defects
in water status and nutrients uptake [15]. These biochemical and physiological disorders are associated
with several malformations in the anatomical and ultrastructural aspects of plant cells and tissues.
The electron-microscopic investigation on reed plants (Phragmites australis Cav.) grown in heavy
metals-polluted soil illustrated substantial ultrastructural alterations in cell membranes and cytoplasmic
organelles of root and stem cells [16]. Additionally, ultrastructural investigation of reed plants showed
a distortion in epidermis and mesoderm, which inhibited the radial migration of fluids from roots
into peripheral parts and constrained the uptake and translocation of nutrients from roots into shoots.
Following these biochemical, physiological and anatomical deteriorations, the common morphological
symptoms of PTEs phytotoxicity are chlorosis, withering, falling of leaves as well as defects in shoot
and root development [17].

Over the classical techniques of water effluent decontamination (e.g., adsorption, ion exchange,
precipitation, coagulation-flocculation, and membrane separation), rhizofiltration could be considered
as the most efficient and affordable one at relatively low concentrations of PTEs and large quantities of
contaminated water resources. This eco-friendly and cost-effective technique involves using aquatic
plans to sequester PTEs from contaminated water effluents into their biomass [18]. Water hyacinth
(Eichhornia crassipes) has received significant attention to clean-up contaminated water effluents due
to its hyperaccumulating potentials of PTEs, rapid proliferation, extensive rooting network and high
resistance against biotic and abiotic stress conditions [19,20]. In addition, the potential reuse of water
hyacinth biomass in several applications (e.g. biofuels production and biosorbents engineering)
provides a circular win-win approach for recycling phytoremediation disposals into value-added
products [21]. The bioaccumulation factors of Fe, Mn, Zn, Pb, Cu into water hyacinth biomass can reach
respectively 8081, 1540, 3663, 3083, and 538, suggesting its hyperaccumulating potentials to PTEs [22].
Smolyakov et al. [23] evaluated the phytoremediation efficiency of Zn (500 µg L−1), Cu (250 µg L−1),
Pb (250 µg L−1) and Cd (50 µg L−1) by water hyacinth plants. After 8 days, the removal efficiencies
of Cu, Pb, Zn, and Cd were respectively 92, 89, 82 and 76%. Another investigation revealed that
water hyacinth plant could remove about 99.5% of Cr (VI) from industrial mines wastewater as well
as reducing total dissolved solids (~19%), biological oxygen demand (~50%) and chemical oxygen
demand (~34%) [24].

Despite intensive research undertaken on wastewater purification using water hyacinth plants,
research trials undertaken to improve its adaptability and bioaccumulation potentials to PTEs are
still very few. In this regard, studying the genotoxicity of PTEs based on protein profile and DNA
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variability has advantageous due to their sensitivity and rapid responses. PTEs-induced phytotoxicity
caused significant alterations in leaf protein profiles including reduction of photosynthetic protein and
cellular damage at the DNA level and organelles such as mitochondria or lysosomes [25]. In this regard,
the behavior of PTEs on biochemical parameters of water hyacinth is contradictory. For instance,
the interference of Cd and Mn ions with protein synthesis caused inhibition in RNA and DNA content.
However, Zn ions caused the opposite effect through increasing RNA and DNA content and protein
synthesis [26]. To the best of the authors’ knowledge, molecular and anatomical investigations on
water hyacinth plants grown under toxic elements stress are still insufficient. Therefore, the main
objectives of this study are to investigate the effect of PTEs contamination on DNA pattern, protein
profile characters, and anatomical structure of water hyacinth populations grown in two drainage
water resources compared to another population grown in freshwater source (Nile River).

2. Results

2.1. Potentially Toxic Elements Concentration in Water and Water Hyacinth Plants

Elemental analysis of water and plant samples is illustrated in Table 1. In general, elements
concentration in drainage water samples was greatly higher than freshwater samples. Ca, Na, Mg,
and K showed the highest concentrations in water samples. Concentrations of PTEs in fresh and
drainage water samples were relatively low in most cases, and some of these PTEs were below detection
limit. Elamom drain recorded the highest Ca, Mg, K, Na, and P levels (3.11, 4.08, 4.74, 8.34, and 8.0-fold
of the freshwater source). Arsenic (As) and nickel (Ni) were detected only in Elamom drain. This drain
recorded the highest concentrations of Ba, Sr, and V. Concentrations of Ca, Mg, K, Na, and P showed
higher values in root and leaf samples, particularly in drainage water sources. These elements showed
higher accumulation in leaves than roots suggesting their nutritional functions in plant [27].

Table 1. Concentration of PTEs in water and water hyacinth samples.

Element
Water (mg L−1) Plant Roots mg kg−1 Plant Leaves mg kg−1

A B C A B C A B C

Major Elements

Ca 39.82 49.84 123.95 5115.49 3506.76 3637.54 9368.2 5687.34 9160
Mg 16.06 18.69 65.53 2762.73 1999.23 1761.56 2067.46 2015.32 2924.29
K 6.93 10.29 32.85 10,529.1 3811.48 5475.24 21,437.14 16,600.94 12,658.13

Na 33.33 51.07 278.15 2206.35 2713.04 3062.65 1451.18 5601.7 6519.1
P 0.05 0.02 0.40 1261.99 1982.92 1538.97 1908.3 1628.3 3438.18

Ag 0.001 N.D N.D 0.48 0.68 0.42 0.61 0.54 1.17

PTEs

Al 0.0049 0.0087 0.0028 5290.05 12,431.01 2832.28 431.49 520.26 487.33
As N.D N.D 0.0054 0.15 1.69 1.71 0.01 N.D N.D
Ba 0.053 0.06 0.1016 3.00 2.78 3.51 5.98 5.38 6.15
Cd 0.0021 0.0016 N.D 0.26 0.23 0.06 N.D N.D N.D
Co N.D N.D N.D 4.47 3.5 3.15 N.D N.D N.D
Cr N.D N.D N.D 14.29 33.1 6.85 2.38 2.71 2.57
Cu 0.0036 0.0031 0.0023 22.64 27.14 19.25 17.78 15.5 14.9
Fe N.D N.D N.D 5142.03 8697.08 3285.98 673.4 529.63 589.45

Mn 0.0011 0.0367 0.0013 1489.01 245.98 418.64 149.76 169.63 174.13
Mo 0.0071 N.D N.D 0.04 0.35 N.D N.D N.D N.D
Ni N.D N.D 0.0006 12.84 10.54 6.27 2.93 1.42 1.98
Sb 0.011 0.0092 N.D 1.09 1.38 0.56 0.54 0.12 0.46
Sr 0.3437 0.3782 1.107 40.58 32.89 30.36 59.01 44.98 62.16
Ti 0.0024 0.0007 0.0005 575.53 874.73 324.7 56.41 47.72 54.32
V 0.0096 0.014 0.0174 22.27 36.07 13.7 1.53 1.47 1.61
Zn 0.0056 0.0098 0.0044 31.99 50.31 20.63 16.42 19.37 16.89

A: Fresh water (Nile River), B: Nashart drain, C: Elamom drain and ND means below detection limit.
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PTEs showed a high biomagnification potential based on their high concentration in plant
organs. Immobile PTEs (e.g., Al, As, Cd, Co, Cr, Cu, Fe, Mn, Mo, Ni, Sb, Ti, V, and Zn) showed
higher accumulation in roots; however, mobile PTEs (e.g., Ba and Sr) exhibited higher accumulation
in leaves. The bioaccumulation factor (BAF) of PTEs (Al, Ba, Cu, Mn, Sr, Ri, V, and Zn) confirmed
the hyperaccumulating potentials of water hyacinth (Table 2). According to Ma et al. [28], plants are
classified as hyperaccumulators when BAF value is higher than 10.

Table 2. Bioaccumulation factor (BAF) and translocation factor (TF) for the most detected PTEs
in water resources.

PTEs

BAF
TF

BAFroots BAFleaves

A B C A B C A B C

Al 1,079,602.0 1,428,851.7 1,011,528.6 88,059.2 59,800.0 174,046.4 0.082 0.042 0.172

Ba 56.6 46.3 34.5 112.8 89.7 60.5315 1.993 1.935 1.752

Cu 6288.9 8754.8 8369.6 4938.9 5000.0 6478.261 0.785 0.571 0.774

Mn 1,353,645.5 6702.5 322,030.8 136,145.5 4622.1 133,946.2 0.101 0.690 0.416

Sr 118.1 87.0 27.4 171.7 118.9 56.15176 1.454 1.368 2.047

Ti 239,804.2 1,249,614.3 649,400.0 23,504.2 68,171.4 108,640 0.098 0.055 0.167

V 2319.8 2576.4 787.4 159.4 105.0 92.52874 0.069 0.041 0.118

Zn 5712.5 5133.7 4688.6 2932.1 1976.5 3838.636 0.513 0.385 0.819

A: Fresh water (Nile River), B: Nashart drain, C: Elamom drain.

2.2. Molecular Analysis

A single clone from a population covering the entire distribution area in Nile River was selected
as a source of the studied populations. Nine random primers were used to differentiate among
populations grown in fresh and drainage resources (Table 3 and Figure 1). The OPA-01 primer
gave 8 different bands sized from 1560 to 250 bp. Two of which were polymorphic bands with 25%
polymorphism percentage and the other one was monomorphic. It was clear that the sizes of 100 bp
were existed only in the freshwater population and disappeared in other drainage water populations.
On the other hand, the band size of 375 bp was existed only in both drainage water populations.
The application of OPA-02 primer indicated the amplification of seven bands with a size ranged from
1400 to 375 bp, which one of them was polymorphic with 14.3% polymorphism percentage. The Band
with the size of 375 bp was unique and found once in the population of Elamom drain. The OPB-05
primer separated six amplified bands with a size ranging from 1300 to 370 bp. Two of these bands
were polymorphic (33.3% polymorphism percentage) and four were monomorphic. The band with
a size of 1000 bp was absent in the population of Nashart drain. However, the band with molecular
size of 370 bp was unique in the population of Elamom drain. The OPA-04 primer exhibited five
different bands ranging from 1450 to 600 bp, where one of them was polymorphic (22% polymorphism
percentage). Moreover, it is cleared that the band with a size of 1200 bp was existed only in both
populations grown in drainage water resources.
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Table 3. Primers, their respective base sequences, number of amplified bands, number of polymorphic
bands, and polymorphism percentages for the analyzed plants.

Primer Code Primer Sequence 5’→3’ No. Polymorphic Bands Total Bands Polymorphism %

OPA-01 5′-CAGGCCCTTC-3′ 2 8 33.3

OPA-02 5′-TGCCGAGCTG-3′ 1 7 16.7

OPB-05 TGCGCCCTTC 2 6 50

OPA-04 5′-AATCGGGCTG-3′ 1 5 25

OPC-03 GGGGGTCTTT 1 5 25

OPA-06 5′-GGTCCCTGAC-3′ 0 4 0.0

OPA-07 5′-GAAACGGGTG-3′ 0 7 0.0

OPC-14 5′-TGCGTGCTTG-3′ 0 6 0.0

OPV-07 5′-GAAGCCAGCC-3′ 0 9 0.0

Total 7 57
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Figure 1. RAPD fragment amplified from genomic DNA of Water hyacinth leaves resulted. (M: marker,
-ve: negative control (H2O), A: Nile River, B: Nashrat drain, C: Elamom drain).

The OPC-03 primer separated five different bands with a size ranging from 1500 to 600 bp. One of
them was polymorphic (20% polymorphism percentage) and another one with the size of 1500 bp
was absent only in the population of Elamom drain. Data presented in Table 2 showed that the nine
used RAPD primers produced a total of 57 amplified bands. Among them, five were polymorphic
with 12.3% polymorphism percentage. The OPB-05 primer gave the highest total polymorphic bands,
whereas OPA-02 primer recorded the lowest ones. Furthermore, the primers OPA-06, OPA-07, OPC-14
and OPV-07 produced only monomorphic bands, and these primers were not able to differentiate
among the populations of fresh and drainage water resources.
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2.3. Total Protein Analysis by SDS-PAGE

The electrophoretic profiles and banding pattern of total protein isolated from leaves and roots of
water hyacinth grown in fresh and drainage water resources are presented in Figure 2 and Table A3.
SDS-PAGE banding patterns of leaves revealed 23 bands with different molecular weights. Among them,
five bands showed high variability; however, the other 18 bands were commonly detected in the studied
populations. Both sources of drainage water caused changes in the protein electrophoretic profiles.
These changes include alteration in band intensities (66, 65.8 and 36 KDa) and the appearance of new
bands (64.3 and 50.5 KDa). The protein banding pattern of roots revealed higher variation among
plants grown either in fresh or drainage water resources compared to the banding pattern of proteins
isolated from leaves. SDS-PAGE banding patterns showed 15 scorable bands, where 12 out of them
were de novo synthesized in plants grown in drainage water. The most visible alterations in SDS-PAGE
patterns of roots were the appearance of new bands with molecular weight of 46, 45.7, 45, 44.4, 36, 29,
28.4, 28, 17.6, 15, 14, and 13.9 and 139 KDa in populations grown in drainage water sources.
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leaves. a: Nile River, b: Nashrat drain, c: Elamom drain).

2.4. Anatomical Structure

The anatomical investigation of water hyacinth plants (roots, leaves, and petioles) in transverse
sections is illustrated in Figure 3 and Table 4. It is realized that the epidermis of root, leaf, and petiole
consists of one layer of quadrangular cells. Unlike leaf and petiole, root epidermis was not covered by
cuticle. Root diameter showed a noticeable reduction in plants grown in drainage water. This reduction
was associated with a notable decrease in epidermis, cortex and endodermis thickness as well as
vascular cylinder diameter. Additionally, number of metaxylem and diameter of xylem vessels
were higher in plants grown in freshwater compared to those grown in drainage water resources
(Figure 3A–C and Table 4). Furthermore, epidermis of leaf lamina in transverse section has one layer
with very thin cuticle layer, and the mesophyll tissue was distinguished into a palisade and spongy
tissue. Substantial reductions in lamina thickness, upper epidermis, lower epidermis and mesophyll
tissue thickness as well as length and width of vascular bundles were observed on plants grown
in drainage water relative to those grown in freshwater (Figure 3D,F and Table 4).
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Figure 3. Transverse sections in roots (A–C), leaves (D–F) and petiolees (G–I) of Eichhornia crassipes
(Mart.) Solms. A. Root (Nile River), B.Root (Nashrat drain), C.Root (Elamom drain), D. Lamina
(Nile River), E.Lamina (Nashrat drain), F.Lamina (Elamom drain), G.Petiolee (Nile River), H.Petiolee
(Nashrat drain), I.Petiole (Elamom drain).
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Table 4. Anatomical characters of roots, leaves and petioles of water hyacinth grown in fresh water
(control) and drainage water resources.

Anatomical
Characters of

Roots

Diameterof
Root (µ)

Thickness of
Epidermis (µ)

Thicknessof
Cortex (µ)

Thickness of
Endodermis (µ)

Diameter of
Vascular

Cylinder (µ)
Diameter of Xylem Vessel (µ)

(Fresh water) 596 4.52 241.39 6.5 182.66 14.26
Nashrat drain 336.66 2.75 158.61 7.5 148.61 9.65
Elamom drain 476.20 3.22 210.4 6.29 154 12.43

Anatomical
characters of

leaves

Thickness of
lamina (µ) Thickness of upper epidermis (µ)

Thickness of
lower

epidermis (µ)

Thickness of
mesophyll
tissue (µ)

Length of
vascular

bundle (µ)

Width of
vascular

bundle (µ)

(Fresh water) 164.16 8.26 7.3 148.6 49.9 30.24
Nashrat drain 140.44 6.44 5.7 128.3 43. 2 31.72
Elamom drain 148.47 8.07 6.2 129.2 44.5 29.61

Anatomical
characters of

petioles

Thickness of
epidermis (µ) Length of lacuna (µ) Width

oflacuna (µ)

Length of
vascular

bundle (µ)
Width ofvascular bundle (µ)

(Fresh water) 5.18 61.38 39.53 67.60 43.37
Nashrat drain 4.97 54.91 32.49 73.73 39.72
Elamom drain 5.13 52.49 28.32 50.81 35.32

The microphotographs in Figure 3G–I show that the petiole consists of single epidermis layer
and parenchyma cells contain vascular bundles. Each bundle was surrounded by bundle sheath of
sclerenchyma cells. Epidermis thickness of petiole showed a reduction in plants grown in drainage
water compared with plants grown in freshwater. Likewise, length and width of lacuna and vascular
bundle of petiole (µ) showed reductions in plants grown in drainage water compared to those grown
in freshwater (Figure 3G–I and Table 4).

3. Discussion

Large-scale utilization of water hyacinth for contaminated effluent purification is of great
importance due to its high tolerance against biotic and abiotic stress conditions [29]. Although
PTEs concentration in drainage water resources was relatively low, their mutual effects caused several
deteriorations on molecular and anatomical characters of water hyacinth plants. These results are
in agreement with [30] as water hyacinth plants can survive under a mixture of PTEs (Cd, Co, Cr,
Cu, Mn, Ni, Pb, and Zn) up to 3 mg L−1 and under Pb2+ stress up to 100 mg L−1. Concentrations
of Ba and Sr were the highest among other PTEs (0.053–0.1016 mg L−1) and (0.3437–1.107 mg L−1),
respectively. The translocation factor (TF) of the PTEs was > 1 suggesting the higher rhizofiltration
efficiency of these metals by water hyacinth plants. According to Ma et al. [28], hyperaccumulating
plants with TF > 1 are classified as high-efficient plants for PTEs translocation from roots into shoots.
PTEs showed higher accumulation in roots compared to leaves. PTEs are mainly localized in vascular
tissues and epidermal cells to mediate their translocation to other plant tissues [15]. Additionally,
it may be localized as precipitates into metal binding compounds existed in cell walls (carbohydrates,
cellulose, hemicellulose and lignin)

Results of PCA were performed by applying Varimax rotation with Kaiser normalization to assist
the interpretation of PTEs concentration (Tables A1 and A2, and Figure A1, supporting information).
PCA is commonly used in such studies to investigate the relationship between elements and their
potential origins. Data as the different groups of elements that correlate together might have a similar
common origin and similar behavior. The initial principal components (PC1 and PC2) explained about
87.5% of the variation (72.17 and 15.32%, respectively). In addition, PC1 and PC2 had the highest
e eigenvalues (11.55 and 2.45, respectively) as indicated in Table A1 in Appendix A, supporting
information. Principle components 1 (PC1) showed high positive correlation and was loaded with
Ba, Sr, Cu, Mn, Zn, Sb, and Ni, and it is suggested that these elements are derived from natural and
anthropogenic origins. However, the rotated component matrix revealed that Fe, Cd, Cr, As, Al, Co,
Ti, and Mo showed negative correlation and strongly correlated with principal component 2 (PC2),
and these elements might be derived from industrial origins.
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The obtained results illustrated the high tolerance of water hyacinth against PTEs stress.
Genotoxicity of toxic elements can be assessed by molecular techniques such as Randomly Amplified
Polymorphic DNA (RAPD). RAPD analysis showed generation of new DNA bands in plants
grown in drainage water resources. These bands have not existed in plants grown in freshwater.
Some of these bands have only existed in plants grown in the higher contaminated drainage water
(Figure 1). [31] illustrated that DNA alterations detected by RAPD analysis offered a useful biomarker
assay for the evaluation of genotoxic effects of PTEs in Capsicum annum. It was also reported that
Cd has the capacity not only to cause morbidity to the exposed organisms but also has the potential
to induce genotoxic adverse effects [32,33]. RAPD assay indicated damages and mutations in DNA
induced directly and/or indirectly by the phytotoxic effect of copper [34]. RAPD assay also showed
variations in band intensity, loss of typical bands and appearance of new bands suggesting several
damages in DNA of barley seedling treated with Cd (30–120 mg/L−1) [35].

The present study demonstrated the presence of 21 protein bands separated from leaves of water
hyacinth plants grown in freshwater. Meanwhile, other plants grown in Elamom and Nashrat drains
showed the presence of 22 and 23 protein bands, respectively. The protein profile of roots revealed
detection of three protein bands of control plants. However, 16 protein bands were detected in roots
of water hyacinth plants grown in drainage water resources. These findings are consistent with
several reports confirming that PTEs exposure might cause complete elimination of some protein
bands and creation of new ones [36,37]. Proteins are directly responsible for most biological processes
in living cells. Therefore, it is necessary to conduct proteomic studies, which elucidate protein presence
and role under certain environmental conditions [38]. It is well known that PTEs stress can activate
a range of potential cellular mechanisms in plants, some of which being the mobilization of specific
molecules such as stress proteins that play a very significant role in Cd detoxification and tolerance
in plants [39,40]. The changes in protein banding patterns have been attributed to the occurrence of
either gene mutation or induction of cytological aberrations. The absence of some bands might be due
to the deletion of their corresponding genes.

Anatomically, water hyacinth has an epidermis layer, which is not covered by a cuticle or only
covered with thin cuticle layer to support gas and nutrients absorption from surrounding water.
The adverse effects of PTEs on cell growth and sizing caused a noticeable reduction in root diameter as
well as thickness in cortex and vascular cylinder diameter in plants grown in drainage water. So far, no
sufficient details are available regarding the anatomical responses of water hyacinth under PTEs stress.
According to [41] no injurious effects on root anatomy of water hyacinth grown under the presence of
As. Contrariwise, [42] reported that arsenic (As) stress caused several deteriorations in anatomical
characters of water hyacinth leaves due to the reduction of cell size. The harmful effect of PTEs
on the anatomical structure of water hyacinth may be attributed to the adverse effects on cell organelles
and the nutrients imbalance in plant tissues [43,44]. The same harmful effects on anatomical structure
were recorded under differs biotic and abiotic stresses in numerous plants [45–49]

4. Materials and Methods

4.1. Plant Material

A single clone from a population of water hyacinth covering large distribution area of Nile
River (freshwater) was selected and surrounded by an opened cage to ensure the similar genetic
background of experimented plants. Three groups of two weeks-old clones were transplanted in three
different water resources: (i) freshwater source (Nile River) located at Desouk District, Kafr El-Sheikh
Governorate (31◦08′07.0” N 30◦38′01.6” E), (ii) Elamom drain, Shubrakhit District, Beheira Governorate
(31◦01′40.2” N 30◦40′33.7” E) and (iii) Nashart drain, Kafr El-Sheikh Governorate (31◦05′51.3” N
30◦57′45.9” E). The three homogenous clones were surrounded by a cages and left for three months
until sexual reproduction and formation of homogenous clones comprising stolons, rhizomes, long
pendant roots, and fruit clusters.
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Samples were taken from each population for elemental, molecular, biochemical and anatomical
analyses. Experimental procedures of all analyses were conducted at Genetics, Soil Sciences and Plant
Pathology & Biotechnology Laboratory (PPBL) as well as EPCRS Excellence Center (certified according
to ISO 17025, ISO 9001, ISO 14001 and OHSAS 18001), Department of Agricultural Botany, Faculty of
Agriculture, Kafrelsheikh University, Kafr El-Sheikh, Egypt.

4.2. Elemental Analysis

Uniform-sized bottles were rinsed with the representative resources before water sampling.
Water samples were taken at a depth of 10 cm from the surface of fresh and drainage water.
Representative water samples were inserted into bottles leaving an appropriate head-space, and the
bottles were tightly closed by caps to avoid potential contamination. Bottles were placed directly
in the fridge until elemental analysis.

Water hyacinth plants were divided into roots and leaves in order to distinguish between
the accumulation potentials of different plant organs. Plant samples (roots and leaves) were air-dried
for a week, oven-dried at 70 ◦C until weight constant and mechanically ground to a fine powder using
a stainless steel grinder. Plant samples were acid-digested for elemental determination of Ag, Al, As,
Ba, Ca, Cd, Co, Cr, Cu, Fe, K, Mg, Mn, Mo, Na, Ni, P, Sb, Sr, Ti, V and Zn. Subsamples (1.0 g) of roots
and leaves were digested using the mixture of concentrated nitric acid (HNO3), hydrochloric acid
(HCl) and 30% hydrogen peroxide (H2O2) [50,51].

Total elements concentration in water and plant samples was determined using Inductively
Coupled Plasma Optical Emission Spectrometry (ICP-OES, model 5100, Agilent, Santa Clara, CA 95051,
United States) at the Institute of Graduate Studies & Research, Alexandria University (accredited
according to ISO/IEC 17025-2005). In the current study, bioaccumulation factor (BAF) and translocation
factor (TF) for the most detected PTEs in water resources (Al, Ba, Cu, Mn, Sr, Ti, V, Zn) are given by:

BAFroots = (Croot)/(Cwater)

BAFleaves = (Cleaves)/(Cwater)

TF = (Cleaves)/(Croot)

where Cwater, Croot, and Cleaves are PTEs concentrations in water (mg L−1), leaves (mg kg−1), and roots
(mg kg−1), respectively [28]. Quality control of data was performed with the use of repeat measurements
for all obtained data. The mean relative standard deviation (RSD) was less than 5%. Principal component
analysis (PCA) was performed using MVSP software ver 3.13 (Kovach Computing Services, Pentraeth,
UK) [52] to assist the interpretation of PTEs concentration in water and plant samples.

4.3. Molecular Analysis

4.3.1. Total DNA Extraction

Total DNA was extracted from young leaves using the modified cetyl trimethylammonium
bromide (CTAB) method [53] with some modifications. Leaves were wrapped in filter papers under
hand pressure for five min to remove moisture, and 150 mg of samples were ground using pistil and
mortar. Thereafter, 600 µL of preheated (65 ◦C) extraction buffer (2% CTAB, 20 mM EDTA, 100 mM
Tris-HCl, 1.4 M NaCl, 2% polyvinylpyrrolidone, and 0.2% mercaptoethanol) were added. The mixture
was transferred to a centrifuge tube (2 mL), incubated for 30 min in a 65 ◦C water bath, and samples
were inverted every 5 min. 600 µL of chloroform-isoamyl alcohol (24:1) was added and mixed by
inverting the tubes carefully for 8 times, and the mixture was centrifuged at 12,000 rpm for 10 min at
room temperature. The supernatant was collected, carefully mixed with a two-third volume of ice-cold
isopropanol, and the DNA samples were collected by centrifuging for 10 min. RNase (10 µg/mL) was
added to the 50 µL of TE buffer (10 mM Tris and 0.1 mM EDTA) prior to dissolving the DNA to remove
any RNA, and the mixture was incubated at 37 ◦C for 30 min. After incubation, 100 µL and 750 µL
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volumes of 3.0 M sodium acetate and ice-cold absolute ethanol were added, respectively. The DNA
was collected by high-speed centrifugation for 10 min, carefully washed with ice-cold absolute and 70%
ethanol and centrifuged at 120000 rpm for 10 min. Finally, samples were dried at room temperature
and dissolved in 50–100 µL of TE buffer. The quality and concentration of DNA were determined by
a P330 photometer (EMPLEN, Munich, Germany).

4.3.2. RAPD—PCR

For DNA amplification, nine decamer RAPD primers (Operon technologies, CA, USA) were used
(Table 1). PCR was performed as follows: initial denaturation at 94 ◦C for 5 min; followed by 35 cycles
at 94 ◦C for 1 min, specific annealing temperature (Ta) for 30 s according the primer sequence and
72 ◦C for 3 min and the final extension step at 72 ◦C for 10 min. Amplification was carried out in MJ
Mini Bio RAD, thermal cycler in 25 µL reaction volume containing the following reagents: 1.0 µL of
dNTPs (10 mM), 1.0 µL of MgCl2 (25 mM), 5 µL of 10 × buffer, 1.0 µL of primer (10 pmol), 1.0 µL
of DNA (25 ng/µL), 0.3 µl of Taq polymerase (5u/µL) and 15.7 d.d. H2O. The amplification products
were resolved electrophoretically on 1.5% agarose gels in TAE buffer (40 mM Tris-acetate, 20 mM
glacial acetic acid, 1 mM EDTA, pH 7) at 75 V. The gel was stained with ethidium bromide and then
destained with tap water. Bands were detected on UV-trans-illuminator and photographed by a gel
documentation system (UVITEC, city, UK).

4.3.3. Total Protein Extraction

Total proteins were extracted from water hyacinth leaves and roots. Briefly, approximately 0.5 g
powder of fresh leaves and roots were homogenized by mechanical grinding and mixed well with 500 µl
of the protein extraction buffer (62.5 mM Tris-Hcl, pH 6.8, 2% SDS, 10% glycerol, 5% β-mercaptoethanol,
5 M Urea and 0.01% bromophenol blue) by vortexing. Protein extracts were centrifuged at 14,000 rpm
for 10 min at 4 ◦C and separated by 12% (SDS-PAGE) according to [54]. Molecular weights of different
bands were calibrated with a mixture of standard protein markers (Molecular Weight Marker, M. W.
14.000–66.000; Catalog No. SDS7, Sigma-Aldrich, Munich, Germany). The banding profile was stained
by Coomasie blue dye then photographed and scored.

4.4. Anatomical Studies

Roots, leaves, and petioles of water hyacinth plants were sampled for anatomical characterization.
Samples (0.5 cm length) were placed in FAA solution (killing and fixing), washed in 50% ethyl alcohol,
and dehydrated in butyl alcohol series. Samples were impeded in paraffin wax (56–58 ◦C). Transverse
sections (15 microns thick) were done with rotary microtome model 820, fixed with albumin, stained
with a combination of safranin and light green, and finally fixed in Canada balsam [55]. The sections
were investigated microscopically and photomicrographed (Leica, Wetzlar, Germany) [48,56,57].

5. Conclusions

Water hyacinth (Eichhornia crassipes (Mart.) Solms) is one of the most critical aquatic plants in Egypt
and worldwide. Due to its hyper accumulating potentials of PTEs and its high resistance against biotic
and abiotic stress conditions, water hyacinth has received significant attention to clean-up contaminated
water effluents. However, research trials undertaken to improve adaptability of water hyacinth against
PTEs stress are still very few. The novelty aspects of this research are to study molecular, biochemical
and anatomical characters of water hyacinth subjected to PTEs stress. Although PTE’s concentration
in drainage water resources was relatively low, the hyperaccumulating potentials of water hyacinth
maximized their concentration in plant tissues. Immobile PTEs (e.g., Al, As, Cd, Co, Cr, Cu, Fe, Mn,
Mo, Ni, Sb, Ti, V, and Zn) showed higher accumulation in roots; however, mobile PTEs (e.g., Ba and
Sr) exhibited higher accumulation in leaves. DNA alterations detected by RAPD analysis confirmed
the genotoxic effects of PTEs. Protein profile alterations in electrophoretic profiles and banding patterns
were observed on plants grown in drainage water resources, especially protein isolated from roots.
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The ultrastructural analysis also showed several deteriorations on the anatomical structure of plants
grown under PTEs stress. Further investigations should be undertaken to explore molecular and
biochemical characters of plants grown under higher PTEs concentrations.
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Figure A1. Biplot of principal component analysis (PC1 and PC2): Wa (water samples of Nile River),
Wb (water samples of Nashart drain), Wc (water samples of Elamom drain), Ra (root samples of Nile
River), Rb (root samples of Nashart drain), Rc (root samples of Elamom drain), La (leaf samples of Nile
River), Lb (leaf samples of Nashart drain), and Lc (leaf samples of Elamom drain).

Table A1. Eigenvalues and variance percentage of PCA axes.

PC Eigenvalue % Variance

1 11.5466 72.166
2 2.45113 15.32
3 1.40781 8.7988
4 0.531421 3.3214
5 0.0542793 0.33925
6 0.00853064 0.053317
7 0.0001916 0.0011975
8 3.04211E-05 0.00019013
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Table A2. Correlation values between PTEs and PCA axes.

PC 1 PC 2 PC 3 PC 4 PC 5 PC 6 PC 7 PC 8

Fe 0.98706 −0.1504 0.055309 0.0015026 0.0029266 0.0031235 −0.0023979 0.00053446
Mn 0.6014 0.22974 −0.76378 −0.014811 0.039769 0.018957 0.0036508 0.00022535
Zn 0.95651 0.20998 0.16118 −0.063946 0.10446 0.0033057 −0.00071601 −0.0019101
Cu 85914 0.48739 0.090644 0.096371 0.049532 −0.066118 0.00059223 0.00026169
Cd 0.92614 −0.13717 −0.31575 −0.15343 0.011846 0.0078615 0.0012176 −0.0020004
Ni 0.94772 0.07455 −0.30531 0.025616 −0.035216 −0.033954 −0.00095696 0.0025461
V 0.98391 −0.17681 0.02068 0.0055642 0.0075217 0.011478 −0.002238 0.00037662
Cr 0.95266 −0.17325 0.20767 −0.13679 0.022293 0.0088111 −0.0041898 0.00020853
As 0.7089 −0.23022 0.33205 0.57763 −0.018081 0.014545 0.0019363 −0.00030312
Al 0.95133 −0.22099 0.18919 −0.10026 0.013453 0.0096037 −0.0040299 0.00037437
Co 0.8962 −0.098352 −0.35947 0.24016 0.0041221 0.015569 0.0024217 0.00016284
Sr 0.34233 0.92456 0.13955 −0.057268 −0.061917 0.037568 −0.0010578 0.0022479
Ti 0.98866 −0.14892 −0.0029339 −0.015794 0.0059686 0.0081479 −0.0022106 0.00049535
Sb 0.97084 0.13976 −0.0079054 −0.078706 −0.17742 −0.014078 0.00039766 −0.002582
Mo 0.79596 −0.32305 0.44719 −0.24897 0.00016716 0.001651 0.010578 0.0013171
Ba 0.21113 0.9466 0.23648 0.042286 0.03895 0.011402 0.0016721 −0.001319

Table A3. SDS-PAGE banding patterns of total protein isolated from leaves and roots of water hyacinth
grown in fresh and drainage water resources.

Roots Leaves

Band No (KDa) Elamom Drain Nashrat Drain Fresh Water Elamom Drain Nashrat Drain Fresh Water (KDa) Band No.

1 46 ++ + - ++++ ++++ ++ 66 1
2 45.7 + + - ++++ ++++ ++ 65.8 2
3 45 + + - + - - 64.3 3
4 44.4 + + - + + + 60.2 4
5 36 ++ ++ - + + - 50.5 5
6 29 ++ + - ++ ++ ++ 47 6
7 28.4 ++ + - +++ +++ +++ 45 7
8 28 + - - +++ +++ +++ 44.6 8
9 20.6 ++ ++ + +++++ +++++ ++++ 36 9

10 18.1 + + + ++ ++ ++ 29 10
11 17.6 + + - ++ ++ ++ 28.7 11
12 16.3 ++ ++ + ++ ++ ++ 27.6 12
13 15 + + - ++ ++ ++ 26.4 13
14 14 + + - ++ ++ ++ 18.2 14
15 13.9 + + - ++ ++ ++ 17.3 15

++ ++ ++ 16.5 16
+ + + 15.2 17
+ + + 14.9 18

+++ +++ +++ 14.8 19
+++ +++ +++ 14.7 20
+++ +++ +++ 14 21

+ + + 13.8 22
+ + + 13.5 23

Note: ++++→very strong; +++→strong: ++→intermediate; +→weak; -→absent.
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