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Abstract: The growing concerns about human pollution has motivated practitioners and researchers
to focus on the environmental and social impacts of logistics and supply chains. In this paper, we
consider the environmental impact of carbon dioxide emission on a vehicle routing problem with
multiple depots. We present a hybrid evolutionary algorithm (HEA) to tackle it by combining a
variable neighborhood search and an evolutionary algorithm. The proposed hybrid evolutionary
algorithm includes several distinct features such as multiple neighborhood operators, a route-based
crossover operator, and a distance- and quality-based population updating strategy. The results
from our numerical experiments confirm the effectiveness and superiority of the proposed HEA in
comparison with the best-performing methods in the literature and the public exact optimization
solver CPLEX. Furthermore, an important aspect of the HEA is studied to assess its effect on the
performance of the HEA.

Keywords: variable neighborhood search; hybrid evolutionary algorithm; depot-based crossover
operator; distance- and quality-based population updating strategy; multi-depot green vehicle
routing problem

1. Introduction

During the past decades, the acceleration of energy consumption and environmental pollution have
become worldwide concerns. In particular, greenhouse gas emissions and the resulting climate change
may have caused more and more disasters worldwide. Consequently, many countries and regions
are making huge efforts to reduce greenhouse gas emissions [1]. Meanwhile, consumer pressures
and environmental regulations have incentivized many companies to incorporate the environmental
considerations into their logistics and supply chain management. As a result, many logistics providers
have endeavored to integrate environmental management with their logistics. This has increased
the complexity in logistics optimization problems partly because of the potential conflicts between
economic and ecological concerns [2].

The environmentally sensitive logistics system requires designing sustainable distribution
networks with less negative impact on the environment and the ecology. There are many factors
related to green transportation, such as alternative fuels, electric vehicles, and environmental protection
infrastructure. In addition, an explicit consideration is given to reducing CO2 levels through better
operating plans. Particularly, the uncertainty about the carbon emissions and mitigation design have
obtained lots of attention and research in recent years [3,4] since it has become a huge issue in real life.
In order to better study the impact of carbon emissions, in this study we consider and address the
carbon emissions as an economic factor.
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The vehicle routing problem (VRP) and its related variants have become the subject of lots of
research in the literature, which is mainly due to the additional constraints and increasing number of
targets caused by realistic problems. For the classic vehicle routing problem, the focus of research is
based on the economic part of vehicle routing on companies that provide distribution services. Given
the increasing global concern over environmental problems, VRP problems have recently begun to
include “green” issues such as alternative fuels and pollution. In particular, multiple objectives and
more operational constraints have been incorporated in vehicle routing models for green logistics,
which lead to more difficult and more complex optimization problems. As a matter of fact, green
logistics have been extensively studied in the literature [5,6] focusing on the environmental effects
of different distribution strategies, managing waste disposal, reducing the energy consumption, and
adopting the delivery service of the unmanned aerial vehicles. In addition, many new models of
transport have recently been presented to improve fuel efficiency and reduce adverse environmental
impacts, such as the latest survey on green freight. [7,8].

In order to enrich the research and provide effective ideas and competitive methods for solving
the VRP variant regarding these sustainable transportation issues, in this study we attempt to consider
a VRP variant with a realistic multi-depot scenario by harmonizing the environmental and economic
costs and determining the assignment of customers to depots.

1.1. Literature Review

The literature on green vehicle routing problems mainly considered three factors: energy
consumption, pollution reduction, and waste management. In the following paragraphs, we will
review the related papers in terms of the three aspects.

Palmer [9] was the first to study the environmental issues in the VRPs. Unlike the previous
studies that investigated the environmental costs based on the total distance or duration, the authors
considered other issues such as road terrain, vehicle speed, and traffic congestion to generate a matrix of
CO2 gas emissions. Their computation results showed that, compared with the distance minimization
model and the duration minimization model, the proposed CO2 minimization model reduced the CO2

gas emissions.
Later on, Kara et al. [10] proposed a mathematical formula called the energy-minimizing vehicle

routing problem (EMVRP), whose purpose was to minimize the sum of the product of the load
and distance for each arc. A similar approach was presented to reduce fuel consumption or CO2

emissions [11,12]. Specifically, Demir et al. [11] made numerical comparisons of several freight vehicle
emission models in consideration of their performance in field studies. They demonstrated that
reducing greenhouse gas emissions in freight required the use of appropriate emission models in the
planning process.

The pollution routing problem (PRP) is a class of green vehicle routing problems. Bektas and
Laporte [13] first proposed the PRP that aimed to minimize both environmental and operational
costs, taking the greenhouse emissions, fuel, and travel times into account. The authors made a
computational analysis to achieve the balance between each variation and speed constraints on the
energy, distance, and costs. After that, Demir et al. [14] presented an adaptive large neighborhood
search (ALNS) for the PRP problem with the time-window constraints. As a further extension, Demir
et al. [15] considered a bi-objective PRP, in which both objectives, namely the minimization of fuel
consumption and the minimization of driving time, were conflicting and tackled, respectively. They
solved the bi-objective PRP by combining the ALNS method with four a posteriori methods. Their
experimental results showed the presented hybrid approach can solve PRP instances with up to 100
nodes. Gajanand and Narendran [16] developed a multiple-route VRP to assess alternative routes
between benchmarks and addressed the issue to minimize fuel consumption. Tiwari and Chang [17]
employed the distance-based method to calculate the CO2 emissions, where vehicle load was tackled
as an important factor. They generated different clusters for each city they traveled to using different
trucks and applied a block reorganization method to the GVRP problem, where each cluster denoted a
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block. Suzuki [18] considered the minimization of the emissions from vehicles and fuel consumption.
For solving it, they proposed a solution method which employed the mechanism of efficient frontier to
exploit the promising area in the solution space.

Considering the importance of multiple depots and maximum capacity constraints in practical
scenarios, Jabir et al. [19] integrated emissions and economic costs for a capacitated multi-depot
GVRP. An integer linear programming model was formulated to solve a lot of small-scale instances
by employing the optimization solver Lingo. In addition, they employed an ant colony optimization
(ACO) algorithm to tackle small-scale as well as large-scale problems within a reasonable amount
of time.

1.2. Motivations and Contributions

The key point to design an effective heuristic method relies on an appropriate trade-off

between search intensification and diversification. Hybrid evolutionary algorithms have shown great
performance for solving many optimization problems, such as the job shop scheduling problem [20],
cutwidth minimization problem [21], and course timetabling problem [22]. To the best of our
knowledge, there have been no previous papers using evolutionary algorithms to solve the MDGVRP.
Additionally, there are few neighborhood operators in the previous studies in the literature. To help
tackle this computationally challenging problem in MDGVRP, in this study we propose a hybrid
evolutionary algorithm (HEA) to achieve a better trade-off between the exploitation and exploration in
the solution space.

Generally, the HEA algorithm [20,23] is a well-known variant algorithm of the evolutionary
algorithm that combines the intensification strength of local optimization and the diversification power
of the evolutionary algorithm. The proposed HEA can further be employed to solve the single-depot
GVRP, since it can be considered as a special issue of multi-depot GVRP when the number of depots
equals 1.

The main contributions in our study are summarized as follows:

• We first present a hybrid evolutionary algorithm by incorporating a variable neighborhood search
method into the framework of an evolutionary algorithm to solve MDGVRP;

• We propose several dedicated neighborhood operators extending the previous search operators
in ACO method [19] for search intensification, and the route-based crossover operator for
search diversification;

• We present a distance- and quality-based replacement strategy to update the population;
• Extensive experimental results demonstrate the proposed HEA method can obtain a better trade-off

in terms of the computational efficiency and solution quality in comparison with the previous
ACO method in literature;

• These ideas of the proposed combined evolutionary-based framework and the variable
neighborhood search suitable for solving MDGVRP are general and can be employed as a
reference for other related GVRPS.

The sections of the paper are organized as follows. Section 2 gives the MDGVRP and its mathematic
model. Section 3 proposes the hybrid evolutionary algorithm. Section 4 gives the experimental protocols
and parameter setting and reports the computational results and performance comparisons with the
best-performing heuristics in the literature and the exact optimization solver CPLEX. The effectiveness
of the route-based crossover operator, a key component in the proposed algorithm, is evaluated in
Section 5. Section 6 shows the advantages and limitations of the proposed HEA method. At last,
conclusion comments and future potential research areas are presented in Section 7.

2. Problem Description and Mathematic Model

In line with [19], we assume that the vehicles and depots were capacitated with maximum limit
constraint. Additionally, we considered similar vehicles with the same speed, capacity, and emissions
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characteristics. There were environmental and economic costs related with the distribution plan.
To be specific, there were two components, i.e., the variable cost and fixed cost, in the economic
part. The fixed cost is usually associated with one-time expenditures, such as the rent, the insurance
expenses, and other maintenance costs of vehicles. The variable cost considers the expenditure on fuel
consumption. Additionally, the environmental costs in this study evaluated the monetary values of
CO2 emissions in the route of vehicle.

We followed the mathematical model from Jabir et al. [19]. The symbols and their definitions for
MDGVRP are given in Table 1. The mathematical model for MDGVRP is given as follows:

total cost =
V∑

v=1

m+n∑
i=1

m+n∑
j=1

Cvarli jxi jv +
V∑

v=1

m∑
i=1

m+n∑
j=m+1

C f ixxi jv+

V∑
v=1

m+n∑
i=1

m+n∑
j=1

li jPco2wco2Ve f f wi jvwp+

V∑
v=1

m+n∑
i=1

m+n∑
j=1

xi jvli jPco2wco2Ve f f wcurb/k

(1)

Model constraints:
V∑

v=1

m∑
i=1

xi jv = 0 , j = 1, . . . , m (2)

V∑
v=1

m+n∑
i=1

xi jv = 0 , j = 1, . . . , m + n and j = i (3)

V∑
v=1

m+n∑
i=1

xi jv = 1 , j = m + 1, . . . , m + n (4)

V∑
v=1

m+n∑
i=1

xi jv =
V∑

v=1

m+n∑
i=1

x jiv , j = m + 1, . . . , m + n (5)

m+n∑
j=m+1

xi jv =
m+n∑

j=m+1

x jiv , i = 1, . . . , m, v = 1, . . . , V (6)

m∑
i=1

m+n∑
j=m+1

xi jv ≤ 1 , v = 1, . . . , V (7)

wi jv ≤ 0, i = 1, . . . , m + n, j = m + 1, . . . , m + n, v = 1, . . . , V (8)

V∑
v=1

d jxi jv ≤

V∑
v=1

wi jv , i = 1, . . . , m + n, j = m + 1, . . . , m + n (9)

wi jv ≤ (Vcap − di)xi jv , i = 1, . . . , m + n, j = m + 1, . . . , m + n, v = 1, . . . , V (10)

m+n∑
i=1

wi jv −

m+n∑
i=1

w jiv = d j , j = m + 1, . . . , m + n, v = 1, . . . , V (11)

V∑
v=1

m+n∑
j=m+1

xi jv ≤ Di
cap , i = 1, . . . , m (12)

|S|+m∑
i=m+1

|S|+m∑
j=m+1

xi jv ≤ |S| − 1 , 2 ≤ |S| ≤ Vcap/min{demand}; v = 1, . . . , V (13)

xi jv ∈ {0, 1} (14)
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Table 1. Symbols and the corresponding definitions for the MDGVRP.

Symbols Definitions

n Maximum number of customer nodes
m Maximum number of depots
V Maximum number of vehicles

xi jv 1, if vehicle v travels from customer node i to customer node j,
i, j, v Customer index and vehicle index, respectively

Ii j Driving distance from customer node i to customer node j
C f ix Fixed vehicle cost
Cvar Variable vehicle cost per unit distance
Ve f f Volume of fuel consumption per unit vehicle weight per unit distance
FCO2 CO2 emissions cost per vehicle weight per unit distance
wp Weight of every transportation product

PCO2 Average cost per unit weight of CO2
wCO2 CO2 emission weight per liter fuel consumption wcurb
wcurb Average gross weight per vehicle on each route d j

d j Requirement of customer node j
k Ratio of vehicle volume to curb weight

Di
cap Depot i capacity

Vcap Vehicle capacity

The objective function presented in Equation (1) seeks to minimize the total cost. Constraint (2)
ensures the transportation from a depot to another depot is not permitted. Constraint (3) avoids that
the source and the destination are the same. Constraint (4) ensures that a vehicle only can serve one
customer each time. Constraint (5) ensures that a single link arrives at and departs from the customer
routine. Constraint (6) ensures that the number of outbound links from a depot should be equal to
the number of inbound links. Constraint (7) ensures that each vehicle should depart from a depot.
Constraint (8) ensures that an empty vehicle returns to a depot. Constraint (9) ensures that the lower
bound of the vehicle load in which the vehicle should satisfy the requirement of the destination node
as the minimum value. Constraint (10) ensures the upper bound of vehicle load, where the difference
between the maximum capacity of vehicle and the requirement of customer node j when a vehicle
departs from vertex i to vertex j. Constraint (11) ensures the vehicle load flow balance. Constraint (12)
ensures that the depot capacity cannot exceed the maximum capacity upper bound. Constraint (13)
illustrates the sub-tour elimination constraints. Constraint (14) guarantees the binary integrality.

3. A Hybrid Evolutionary Algorithm for MDGVRP

The hybrid evolutionary algorithm proposed in our study was a population-based approach
that included several important phases: initial population procedure, variable neighborhood search
phase, crossover operator, and population updating mechanism. The initial population procedure
aimed to generate diversified solutions with good quality. The variable neighborhood search phase
was able to effectively obtain the local optima for search intensification. The route-based crossover
operator and distance-and-quality population updating strategy can enhance the search diversification
of the proposed method. We present the general framework of HEA and its ingredients in the
following subsection.

3.1. The Main Framework of HEA for MDGVRP

The proposed HEA algorithm follows the general scheme of evolutionary algorithms and consists
of three major components: the population initialization phase to produce a random initial population,
the variable neighborhood search (VNS) procedure to improve the incumbent solution, and the
route-based crossover operator to generate an offspring. The algorithm progresses through a number
of iterative cycles involving VNS and crossover operations. A pictorial representation of one cycle of
the algorithmic framework is given in Algorithm 1.
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3.2. Initial Population Phase

The initial population procedure aims to generate diversified solutions with good quality.
Specifically, in order to obtain an initial solution S, which consists of several routes, we present a
random greedy construction method inspired from the iterated greedy construction procedure in [24]
given as follows:

• Step 1: Each route of S is initialized by generating a randomly selected depot Rc as the first node
and a randomly customer node as the second node.

Algorithm 1. The framework of the proposed HEA for MDGVRP.

1: Input: Problem instance I, size p of population P
2: Output: Best found solution Sbest
3: S1, . . . , S2 ← Population_Initialization(I, p)
4: for i ={1, . . . , p } do
5: Si← Variable_Neighborhood_Search(Si)
6: end for
7: while the maximum running time Tmaxt is not met do
8: Choose two random individuals S j and Sk from population P

9: S0 ← Route_Based_Crossover
(
S j, Sk

)
10: S0 ← Variable_Neighborhood_Search(S0)

11: if f (S0) < f (Sbest) then
12: Sbest ← S0 , f (Sbest) ← f (S0)

13: end if
14: P← Population_Updating(P, S0)

15: end while
16: return Sbest

• Step 2: As for each route, a nearest node to the last node of the current route Rc is iteratively
selected and inserted into the current route Rc until the current vehicle cannot serve the
remaining customers.

The initial construction procedure is iteratively executed p times to generate several random
and initial solutions. Additionally, each solution can be further optimized with a dedicated variable
neighborhood search phase. The initialization phase generates an initial population consisting of
several solutions with relatively good quality.

3.3. Variable Neighborhood Search Procedure

The local refinement procedure is a very important component in the method to obtain the local
optima. In this study, the proposed HEA employs variable neighborhood search (VNS) as the local
refinement method to improve the initial solution and offspring solutions in population. The key
ingredients of a VNS-based approach are several neighborhood operators and shaking phase.

Neighborhood Structure

The proposed six neighborhood operators employed in the VNS procedure can be given as follows:

• Intra-insertion ( N1): The operator chooses a customer in a route and relocates it in the current
route (Figure 1);

• Intra-swap (N2): The operator exchanges the positions of two customers in the same route
(Figure 2);

• Inter-insertion (N3): Unlike the intra-insertion operator (N1), the operator chooses a customer
node from a given route and relocates it in another different route (Figure 5);
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• Inter-swap (N4): Unlike the intra-swap operator (N2), the operator exchanges the positions of two
customers in different routes (Figure 6);

• Intra-2opt (N5): The operator deletes two non-adjacent edges, reverses the intermediate customer
nodes in the route, and relinks the route by adding two new edges (Figure 3);

• Inter-2opt (N6): The operator eliminates two edges in different routes. Then, each route is cut
into two parts, respectively. After that, it reverses two middle customer nodes in two routes and
relinks each first part of a route with the last part of the other route to obtain two new routes
(Figure 4).

Algorithm 2. Variable neighborhood search

1: Input: Initial solution S0; maximum iterations without improvement Θ
2: Output: Local optimum S∗

3: k← 0
4: S∗ ← S0

5: S← S0

6: while Number of move operator does not exceed the maximum number (i.e., 4) of move operators (i.e.,
k ≤ kmax) do
7: S′ ← LocalSearch(S, k) by using the neighborhood operator Nk
8: if f (S′) < f (S∗) then
9: S∗ ← S′

10: k← 1
11: else
12: k← k + 1
13: end if
14: S∗ ← argmin { f (S′), f (S∗)}
15: S← Shake ( S, S∗)
16: end while
17: return S∗
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Figure 1. Insert customer node 5 between customer nodes 4 and 6 in the same route. 

 

Figure 2. Exchange the positions of two customer nodes 2 and 5 in the same route. 

Figure 1. Insert customer node 5 between customer nodes 4 and 6 in the same route.
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Figure 3. Remove customer 7 from the current route and relocate it to a different route. 

 

Figure 4. Exchange the positions of two different customer nodes 7 and 9 from two different routes. 
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(4→ 5→ 6→ 7) to (7→ 8→ 5→ 4), and add two new edges (4→ D and 3→ 7) in the same route. 

Figure 3. Delete two non-adjacent edges (3→4 and 7→D), reverse the intermediate customer nodes
(4→5→6→7) to (7→8→5→4), and add two new edges (4→D and 3→7) in the same route.
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Figure 4. Remove two edges (3→4) and (7→ D1) in the first route and two edges (8→9) and (10→ D2)
in the second route. Then, reverse the intermediate customer nodes (9→10) to (10→9) in second route,
and add two new edges (3→10) and (9→ D1) in the current route. Reverse the intermediate customer
nodes (4→5→6→7) to (7→6→5→4) in first route, and add two new edges (4→ D2) and (8→7) in the
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Figure 3. Remove customer 7 from the current route and relocate it to a different route. 
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Figure 5. Remove customer 7 from the current route and relocate it to a different route.
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(4→ 5→ 6→ 7) to (7→ 8→ 5→ 4), and add two new edges (4→ D and 3→ 7) in the same route. 

Figure 6. Exchange the positions of two different customer nodes 7 and 9 from two different routes.

The proposed variable neighborhood search algorithm, based on these four neighborhood
operators ( N1 − N4), is applied to obtain local optima in Algorithm 2. For each phase, the algorithm
starts by initializing a neighborhood generated by a random neighborhood operator. In the local
search procedure, we only considered the neighborhood operators that could generate a feasible
solution, i.e., one satisfying the maximum capacity of the depot and vehicle. The size and complexity
of the neighborhood structure significantly affected the algorithm’s performance. The intra-insertion
neighborhood operator ( N1) has nk candidate customers to be removed, and nk − 1 possible candidate
positions to consider for each route, where nk denotes the number of vehicles in route Rk. Hence the

size of N1 neighborhood is
K∑

k=1
(nk × (nk − 1)) where k denotes the number of routes. For intra-swap

neighborhood operator ( N2), the size of the neighborhood is the same as that of intra-insertion
neighborhood operator. The inter-insertion neighborhood operator ( N3) has n candidate customers to
be removed, and ( n− nk) possible candidate positions to consider for each route, where nk denotes the
number of vehicles in route Rk. Hence the size of N3 neighborhood is n× (n− nk). As for inter-swap
neighborhood operator ( N4), the size of the neighborhood is the same as that of the inter-insertion
neighborhood operator. Therefore, the complexity of the four neighborhoods operators employed in
the proposed method is bounded by O(n2). To escape from the local optima trap, we employed a
shaking procedure that used the intra-2opt operator ( N5) and the inter-2opt operator ( N6) for search
diversification. Since both move operators are able to cause a significant improvement in terms of
solution quality, we employed a threshold function to regulate its degree of convergence. Specifically,
a randomly chosen neighborhood solution constructed by N5 ∪N6 would replace the current solution
S if the neighboring solution matches the threshold (i.e., f (S′) > (1− λ)× f (S∗) ) (Algorithm 3 line 7).
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Algorithm 3. The shaking procedure

1: Input: Current solution S, local optimum S∗, the shaking strength Ω, the interval of threshold Λ
2: Output: Perturbed solution S
3: ω← 0
4: while ω < Ω do
5: Randomly pick a neighboring solution S′ ∈ N5(S)∪N6(S)
6: λ← Random(Λ)

7: if f (S′) > (1−λ) × f (S∗) then
8: S← S′

9: ω ← ω+ 1
10: end if
11: end while
12: return S

3.4. Route-Based Crossover Operator

For each iteration of HEA, a crossover operator is employed to generate a new offspring by
recombining two randomly chosen parent solutions from the population. The key to design an HEA
depends on the crossover operator, which should not only produce different solutions but also pass on
valuable parts from parent solutions to offspring solutions. The route-based crossover operator was
proposed for MDGVRP by composing several routes. Given two parent solutions S1 ={ R1

1, R1
2, . . . ,

R1
K1} and S2 ={ R2

1, R2
2, . . . , R2

K2}, where K1 and K2 denote the number of routes in parent solutions,
respectively, the crossover operator is composed of two steps shown as follows:

• Step 1: Copy one route Ri (1≤i≤K1 or K2) based on the iterated greedy strategy from two parent
solutions S1 and S2 to the offspring solution. Specifically, the route with maximum value of ∆ f
(Ri)/| Ri | is obtained from the parents, where ∆ f (Ri) denotes the incremental objective value after
inserting the route, and | Ri | represents the number of customer nodes in route Ri.

• Step 2: Remove the customer nodes in route Ri from both two parent solutions S1 and S2.

The route-based crossover operator iteratively alternates with these two steps until all the customer
nodes and routes are copied to the offspring solution. The crossover operator can not only inherit some
route with good solution quality from two parent solutions, but it also modifies other existing routes
by deleting duplicated customer nodes and inserting customer nodes. The crossover operator is able
to result in an offspring one that is significantly different from the parents.

3.5. The Distance- and Quality-Based Population Updating Mechanism

For the evolutionary algorithm, the population updating mechanism is employed to determine
if the offspring solution should replace the worst one in the population. In this study, we propose
a distance- and quality-based population updating mechanism to obtain a better balance between
computational efficiency and solution quality.

The population updating mechanism employed in the proposed HEA is presented in Algorithm
4, where we denote the offspring solution by S0, the closest solution to the offspring solution by Sc, and
the worst one in the population by Sw. As shown in Algorithm 4, the population updating procedure
can be described as follows: First, if offspring solution S0 is better than the closest solution Sc, and
the distance between the solutions S0 and Sc according to the Hamming distance is not more than
the distance threshold β × n, then the offspring solution S0 can be added in the new population P′

by displacing the closest one, Sc (lines 6–7). Second, if the offspring solution S0 is better than the
worst one Sw and the distance between the offspring solution S0 and the worst solution Sw is not less
than the distance threshold β × n, then the offspring solution S0 is added in the new population PJ by
displacing the worst one Sw (lines 8–9). Finally, the new population P′ is returned after the distance-
and quality-based population updating mechanism (line 11).
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Algorithm 4. The distance- and quality-based population updating mechanism

1: Input: Population P, offspring solution S0, distance factor parameter β
2: Output: The new population P′ after population updating strategy
3: Sw = argmax{ f (Si): i = 1, . . . , p}
4: Sc ← the closest solution to the offspring solution S0 according to the Hamming distance
5: Dis← the Hamming distance between the offspring solution S0 and the closest solution Sc

6: if f (S0) < f (Sc) and Dis < β× n then
7: P′ ← P∪ {S0}\{Sc}

8: else if f (S0) < f (Sw) and Dis > β× n then
9: P′ ← P∪ {S0}\{Sw}

10: end if
11: return P′

4. Experiment Results

To evaluate the algorithm performance of HEA, we conducted extensive experiments in the
following paragraph. In addition, we compared the proposed algorithm with the best-performing
methods in the literature and the exact optimization solver CPLEX.

4.1. Benchmark Instances and Experiment Setting

The proposed HEA was tested with two instance sets generated with a similar method employed
in [19] for the MDGVRP.

• The first instance set—The small-scale instance set with two depots and the number of customer
nodes that ranged from 9 to 14 are given as follows: {The number of depots n, The number of
customers m} = {(2,9), (2,10), (2,11), (2,12), (2,13),(2,14)}; The solver CPLEX and the previous
best-performing ACO procedure and the proposed HEA algorithm are used for solving the
mathematical model proposed in Section 2;

• The second instance set—The large-scale instance set with the number of depots ranging from 3
to 5 and the number of customer nodes ranging from 20 to 40 are considered as follows: {The
number of depots n, The number of customers m} = {(3,20), (3,30), (4,20), (4,30), (5,20),(5,40)}; The
proposed HEA algorithm and the previous best-performing ACO procedure are used for solving
the mathematical model presented in Section 2.

The data for the benchmark instances are designed in accordance with [7,19]. We coded the
HEA algorithm in C++ and ran it on a PC with a 2.60GHz Intel Core processor with the Windows 10
operating system. To avoid over-fitting of the parameters, we adopted ten representative instances to
select the best setting of parameters of the proposed method.

The parameters of ( p, Ω, Λ, and β) were tuned with Iterated F-race (IFR) [25]. The total time
budget for IRACE was set to 300 executions for HEA, with the maximum time limit being 60 seconds
for each benchmark instance. The parameter settings given by IFR are reported in the final value
column in Table 2.

Table 2. Settings of the parameters used in HEA.

Parameters Description Candidate Values Final Value

p The number of individual solutions
in the population {5, 10, 20} 5

Ω The threshold of shaking strength in
the shaking procedure 3, 6, 9 3

Λ Interval of threshold ratio values in
the shaking procedure (0,1) [0.1, 0.2]

β
Distance factor parameter in the

population updating strategy 0.05,0.1,0.2 0.1
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4.2. Lower Bound

As the mathematical model presented in Section 2, which can be suitable for solving the
small-scale instances, a lower bound is required to estimate the solution quality obtained by HEA.
Thus, we provided a simple but effective lower bound for this problem. Precisely, we assumed each
customer node was visited from the closest customer or depot node, and all the customer nodes were
traveled in a route by disregarding capacity constraints of vehicle and depot. Then, the lower bound
can be calculated as follows:

LB =
m+n∑

j=m+1
Cvarlγ( j) j + (n + 1)C f ix +

m+n∑
j=1

lγ( j) jPCO2 wCO2Ve f f d jwp +
m+n∑
j=1

lγ( j) jPCO2wCO2Ve f f Wcurb/k (15)

where γ( j) denotes the closest customer or depot node to the current customer node j. Although
this lower bound is quite crude, it presents an effective and important reference indicator of solution
quality for the proposed HEA approach when the CPLEX solver cannot solve the instances.

4.3. Experimental Results on the First Instance Set

Our comparisons of HEA with the best-performing heuristic ACO and the general optimization
solver CPLEX are given in Table 3. The first three columns give the instance number, the number of
depots m, and the number of customers n, respectively. Additionally, the following three columns
show the lower bound found by CPLEX solver CPLEXLB, the upper bound CPLEXUB, and the gap
in percentage (Gap (%)) between the CPLEXLB and CPLEXUB, respectively. The experimental results
obtained by the heuristics (i.e., ACO and HEA) are presented in the following eight columns, including
the best and average results fbest and favg, the average running time Tavg, and gap Gap (%) in
percentage to lower bound. The row #Avg indicates average value of each measure, and the row #Best
demonstrates the number of instances where the associated approach finds the best results among all
compared methods.

Table 3 reports 30 instances in the first instance set consisting of problems with the number of
depots m = 2, where the CPLEX solver can find optimum solutions for 15 out of 30 instances when the
number of customer nodes n is less than 12, within the allotted 3600 second time limit. As the scale
of the instance or the number of customer nodes increases, the results found by CPLEX deteriorate.
In particular, the optimal solutions of the following 15 instances cannot be found by CPLEX. Here
the HEA algorithm obtains the best results for all 30 instances, obtaining better results in terms of
the minimum total cost than the best reference heuristic ACO (1670.6 vs. 1674.2) with significantly
better computing time (1.1 s vs. 2.3 s). More significantly, HEA finds the best solutions (comparing the
solutions obtained by ACO and CPLEX) for 29 out of 30 instances, while ACO and CPLEX are able to
obtain best solutions only for 21 instances and 20 instances, respectively.

In summary, one can observe that our proposed HEA method is more effective than the available
best-performing algorithms, including the exact optimization solver CPLEX for the first instance set.
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Table 3. The performance of the HEA compared with the ACO algorithm and the general solver CPLEX for the first instance set.

Instance m n CPLEXLB CPLEXUB Gap (%) ACO HEA

fbest favg Tavg Gap % fbest favg Tavg Gap %

1 2 9 1246.7 1246.7 0 1246.7 1246.7 1.1 0 1246.7 1246.7 0.1 0
2 2 9 1481.6 1481.6 0 1481.6 1481.6 1.3 0 1481.6 1481.6 0.9 0
3 2 9 1434.9 1434.9 0 1434.9 1434.9 1.5 0 1434.9 1434.9 0.2 0
4 2 9 1222.6 1222.6 0 1222.6 1222.6 0.9 0 1222.6 1222.6 0.6 0
5 2 9 1285.7 1285.7 0 1285.7 1285.7 2.3 0 1285.7 1285.7 1.1 0
6 2 10 1688.3 1688.3 0 1688.3 1688.3 2.8 0 1688.3 1688.3 1.1 0
7 2 10 1553.8 1553.8 0 1553.8 1553.8 1.7 0 1553.8 1553.8 0.8 0
8 2 10 1341.8 1341.8 0 1341.8 1341.8 2.1 0 1341.8 1341.8 0.9 0
9 2 10 1464.6 1464.6 0 1464.6 1464.6 2.8 0 1464.6 1464.6 0.5 0
10 2 10 1416.2 1416.2 0 1416.2 1416.2 2.2 0 1416.2 1416.2 0.9 0
11 2 11 1581.8 1581.8 0 1581.8 1581.8 1.2 0 1581.8 1581.8 1.2 0
12 2 11 1769.3 1769.3 0 1769.3 1769.3 2.9 0 1769.3 1769.3 1.9 0
13 2 11 1792.3 1792.3 0 1792.3 1792.3 1.5 0 1792.3 1792.3 2 0
14 2 11 1667.6 1667.6 0 1667.6 1667.6 1.7 0 1667.6 1667.6 0.9 0
15 2 11 1807.9 1807.9 0 1807.9 1807.9 1.9 0 1807.9 1807.9 0.6 0
16 2 12 1807.7 1846.2 2.1 1807.7 1892 1.8 0 1807.7 1849.4 0.3 0
17 2 12 1995 2053.7 2.9 1995 2013.1 2.1 0 1995 2013.3 0.5 0
18 2 12 1839.6 1940.2 5.5 1839.6 1861 1.6 0 1839.6 1881.6 1.9 0
19 2 12 1779 1851 4.1 1779 1838.8 2.3 0 1779 1780.2 1.7 0
20 2 12 1799.7 1853.3 2.9 1799.7 1851.1 3.5 0 1799.7 1838.7 1.6 0
21 2 13 1710.8 1765.5 3.2 1722.8 1765.3 1.3 0.7 1717.6 1752.2 1 0.4
22 2 13 1876.9 1928.7 2.8 1884.4 1976 3.4 0.4 1878.8 1931.4 0.7 0.2
23 2 13 1809.5 1916.6 5.9 1814.9 1850.3 3.9 0.3 1816.7 1837.9 1.4 0.5
24 2 13 1716 1802.1 5.0 1738.3 1804.7 2 1.3 1721.1 1782.2 1.4 0.3
25 2 13 1996.5 2097.1 5.0 2008.5 2080.3 2.1 0.6 2000.5 2040.5 1.1 0.2
26 2 14 1902.2 2101.9 10.5 1921.2 1988.7 2.3 1.2 1907.9 1943.6 1.3 0.4
27 2 14 1718.4 1908.6 11.1 1739 1823.3 3.9 1.2 1720.1 1764.4 2.5 0.2
28 2 14 1759.3 2035.5 15.8 1778.7 1794 3.8 1.1 1764.6 1807 1.1 0.4
29 2 14 1824.3 2081 14.1 1837.1 1917.3 2.9 0.8 1827.9 1840 1.5 0.3
30 2 14 1784 2099.4 17.7 1803.6 1833.6 2.8 1.2 1785.8 1812.6 2.2 0.2

#Avg 1669.1 1734.5 7.2 1674.2 1701.5 2.3 0.8 1670.6 1687.7 1.1 0.2
#Best 20 21 29
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4.4. Experimental Results on the Second Instance Set

Table 4 reports the second instance set with a larger number of depots (m = 3, 4, and 5). The
fourth column shows the lower bound (LB) calculated by Equation (15). In addition, columns 8 and 12
show the gap between LB and best results obtained by ACO and HEA algorithms, respectively. As
shown in Table 4, the HEA algorithm again obtained the best results among the compared algorithms
in terms of all the measures, which included the best total cost fbest (6490.5 vs. 6034.1), the average
total cost favg (6514.3 vs. 7033.1), the average computing time Tavg (15.1 vs. 23 s), and the average gap
to the lower bound Gap (%) (7.6 vs. 14.7) for all the second instance set.

Table 4. The performance of HEA compared with the ACO algorithm and the general solver CPLEX
for the second instance set.

Instance m n LB
ACO HEA

fbest favg Tavg Gap % fbest favg Tavg Gap %

31 3 20 4069.9 4688.5 4719.7 6.3 15.2 4367 4372.3 5.7 7.3
32 3 20 4793.2 5564.9 5638 6 16.1 5267.7 5269.7 4.9 9.9
33 3 20 3203.6 3780.2 3832.2 5.3 18 3463.1 3490.4 2.5 8.1
34 3 20 3972.6 4457.3 4532.4 6.9 12.2 4302.3 4302.7 5.8 8.3
35 3 20 3279.2 3656.3 3686.1 7 11.5 3495.6 3507.6 2.5 6.6
36 3 30 9361.6 11,215.2 11,315 26.1 19.8 10,110.5 10,139 9.6 8
37 3 30 7422.4 8172.1 8336.9 24.2 10.1 7904.9 7924.2 7.5 6.5
38 3 30 7160.4 8470.8 8622.7 29.2 18.3 7547.1 7581.8 10 5.4
39 3 30 7702.9 8935.4 8997 24.6 16 8326.8 8336.9 13.6 8.1
40 3 30 8056.4 9506.6 9703.6 27.6 18 8507.6 8514.9 18.7 5.6
41 4 20 3990.3 4417.3 4499.5 6.8 10.7 4201.8 4221.8 4.5 5.3
42 4 20 4082.4 4535.5 4642.9 5 11.1 4355.9 4382.8 3.1 6.7
43 4 20 6181.6 6972.8 7063.9 8.1 12.8 6645.2 6650.1 3.6 7.5
44 4 20 5476.2 6127.9 6156.8 7 11.9 5930.7 5979.6 5.1 8.3
45 4 20 6633.6 7641.9 7754.9 5.7 15.2 7151.3 7157.9 2 7.8
46 4 30 6239.5 7075.6 7202.8 44.5 13.4 6564.2 6597.9 19.2 5.2
47 4 30 6195.4 6969.8 7067.9 40.5 12.5 6548.5 6566.9 24.2 5.7
48 4 30 5792.3 6881.3 7026.6 38.9 18.8 6284.6 6346.7 23.4 8.5
49 4 30 6537.8 7505.4 7675.8 39.8 14.8 7047.7 7099.2 42.9 7.8
50 4 30 6761.8 7749 7821.1 41.6 14.6 7370.4 7376.5 36.8 9
51 5 20 5007.4 6003.9 6147.4 12.4 19.9 5503.1 5522.9 6.4 9.9
52 5 20 6779 7680.6 7696.3 9.8 13.3 7429.8 7479.1 4.2 9.6
53 5 20 3871.4 4363.1 4442.6 8.4 12.7 4243.1 4274.4 9.1 9.6
54 5 20 4035.1 4600 4623.7 9.2 14 4382.1 4384 3.5 8.6
55 5 20 3057.9 3458.5 3534.1 12.3 13.1 3265.8 3273.1 12.5 6.8
56 5 40 6774.6 7865.3 7931.8 32.1 16.1 7201.4 7201.5 27.6 6.3
57 5 40 6140 6809.3 6856.1 57 10.9 6606.6 6650.4 33.6 7.6
58 5 40 10,628.1 11,999.1 12,258.4 50 12.9 11,467.7 11482 38.7 7.9
59 5 40 9201.7 10,858.4 10,926.1 55.7 18 9910.2 9987.8 30.9 7.7
60 5 40 8614.4 10,268.4 10,280.1 40.5 19.2 9312.2 9356.1 42.7 8.1

#Avg 6034.1 6805.9 7033.1 23 14.7 6490.5 6514.3 15.1 7.6
#Best 0 30

Based on the computational results presented above, we can clearly observe that the HEA approach
was more effective than the best-performing algorithms, including the exact optimization solver CPLEX
for the second instance set.

5. Analysis for the Route-Based Crossover Operator

HEA applies the route-based crossover operator presented in Section 3.4 to generate feasible and
promising offspring solutions. To study the impact of this crossover operator, we compared HEA with
two variants that used only one-point and two-point crossover operators, respectively. Both operators
are classic crossover operators used in scheduling and routing problems [26,27], and they can be
described as follows. In the one-point crossover operator, the first step is to randomly select one cutting
point. The subsequent customer node on one side of the cutting point is copied from a parent solution
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to the offspring solution. Then, the remaining customers are copied to the offspring solution by keeping
the same order unchanged. In the two-point crossover operator, two cutting points are randomly
chosen to cut parents. By reference to the two parent solutions S1 and S2, the offspring is generated
by firstly copying the subsequent nodes between two cutting points in S1, and then transferring the
remaining nodes in the same order from S2. In contrast to the route-based operator, both two reference
operators usually generate infeasible solutions, violating the maximum capacity constraint. Hence, we
employed the inter-insertion neighborhood operator (N3) to reschedule the position of the conflicting
customer node so the infeasible solution could satisfy the maximum capacity constraint.

The experimental condition of this analysis was the same as that of the previous section. The gap to
lower bound found by CPLEX and Equation (15) for each test instance is plotted in Figure 7. In terms of
the gap indicator, one can observe the better performance of the HEA algorithm when the route-based
crossover operator is used, which highlights its importance in HEA.

1 

 

 

Figure 7. Comparisons between HEA and its variants that use two crossover operators.



Sustainability 2020, 12, 2127 17 of 19

6. Discussion

The main advantages of the proposed hybrid evolutionary algorithm for MDGVRP can be
summarized as follows: First, the variable neighborhood search procedure uses several dedicated
neighborhood moves to quickly obtain the local optima for search intensification, which extends
the neighborhood operators used in the previous ACO in the literature. Second, the route-based
crossover operator and a distance- and quality-based population updating mechanism can effectively
enhance the search diversification. Third, the experimental results mentioned above show the proposed
HEA method can obtain a better balance in terms of computational efficiency and solution quality
in comparison with the ACO algorithm. The limitations of the proposed HEA is that our study only
presents the effectiveness of the proposed HEA on the MDGVRP, and the effectiveness on other vehicle
routing problems needs to be explored.

7. Conclusions and Future Research

The green vehicle routing problem has emerged as an important and practical problem in green
logistics. To help provide effective methods to solve MDGVRP and its related variants, in this study
we considered a VRP variant with a realistic multi-depot scenario by harmonizing the environmental
and economic costs and determining the assignment of customers to depots. Specifically, we proposed
a hybrid evolutionary algorithm (HEA) for MDGVRP. In addition, we demonstrated the effectiveness
of the HEA and its key features, which included a variable neighborhood search embedded into
several neighborhood operators, a route-based crossover operator utilizing the ideas of iterated greedy
strategy, and a distance-and-quality population updating strategy.

Computational results on small-scale and large-scale benchmark instances demonstrate that our
proposed HEA performs very favorably compared with the existing heuristic ACO in the literature
and the exact solver CPLEX. Particularly, HEA can find better results in terms of solution quality as
well as computational speed for both instance sets.

Future work can be extended in the following directions. First, in order to further enhance the
search intensification, we can employ the local search breakout to replace the variable neighborhood
search. Second, other diversification techniques can be applied for use in these problems such as
scatter search or path-relinking. Finally, the effectiveness of the proposed ideas for tackling the
MDGVRP suggests that in the future we test the performance for solving other variants of the
vehicle routing problems or other similar combinatorial optimization problems in logistics and supply
management [28].
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