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Abstract: Regional sustainable development has become a worldwide issue in recent years, but
there is no single and universally agreed method of choosing indicators for sustainable development
assessment. The subjective selection of indicators will affect the results of assessment. Each evaluation
method has its own advantages and disadvantages, and the methods used to determine indicator
weight also differ. Regional sustainable development is a complex system, which is difficult to
evaluate objectively and scientifically using a single method. Therefore, a new integrated indicator
system and evaluation model is constructed here to more accurately reflect regional sustainable
development level. The indicator system and evaluation model were constructed using a case
study of 17 cities in Shandong Province, China. The indicator system includes 4 subsystems, i.e.,
economy, society, resource, and environment. These indicators were selected through correlation
analysis and discrimination analysis. A back propagation neural network was applied to evaluate the
respective scores of the 4 subsystems. The comprehensive score for regional sustainable development
was evaluated using the analytic hierarchy process with entropy correction. The results show that
sustainable development levels in these 17 cities show a gradually decreasing trend from east to west
and from coast to inland. Cities with an underdeveloped economy usually display poor levels of
social development and serious environmental pollution. Through the improvement of indicator
screening, evaluation model, and result correction, the error caused by a single evaluation method can
be reduced significantly. This new methodology for indicator selection and comprehensive evaluation
provides a new perspective for the assessment of regional sustainable development.

Keywords: regional sustainable development; evaluation; indicator system; back propagation
artificial neural network; entropy correction

1. Introduction

Excessive resource consumption, high population levels, severe environmental pollution and
rapid climate change represent significant challenges for achieving sustainable development around
the world. Breaking the globe into regions provides an approach to tackling worldwide sustainable
development. A quantified indicator system and evaluation model can be used to reflect the current level
of regional sustainable development; this baseline can then inform the development of corresponding
policies and plans.
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There has been a good deal of research in the field of regional sustainable development. Sala et
al. [1] present a novel methodological framework for sustainability evaluation models and indicators
by addressing critical decision-making elements to recognize the ontological, epistemological, and
methodological foundations of sustainability. Arushanyan et al. [2] present a new sustainability
assessment framework to assess the environmental and social risks and opportunities in future
scenarios. Their qualitative assessment of environmental and social aspects uses a consumption
perspective. Popovic et al. [3] developed a clear definition of quantitative indicators that can be
used to perform social sustainability assessment. Research has also explored the application of
multi-methodology strategies to define a set of indicators for quantitative assessment of social
sustainability in supply chains based on uncertainty analysis of different sustainability assessment
methods. Reznichenko et al. [4] propose that modern institutional conversions confirm the relevance of
the research on problems of sustainable development of socio-economic systems and the identification
of effective management tools at the level of regions. Some of the most important issues in ensuring
sustainable regional development are the state of the social and production infrastructure, the provision
of the region with food, fuel, and energy resources. For example, high dependence on outdated and
inefficient manufacturing processes is likely to impact on resources and environmental aspects of the
region. Similarly, the choice of renewable or non-renewable energy sources is likely to impact on
environmental quality. Mally [5] presents the findings of a study that used a selection of 32 economic,
social, and environmental indicators to evaluate the extent of achieving these objectives in Slovenian
statistical regions from 2010 to 2014.

China has been undergoing rapid economic development over the past few decades, but this
progress has also brought serious environmental pollution. In order to achieve sustainable development,
the Chinese government has issued a series of policies and plans [6–8]. However, a key issue
in measuring sustainable development is how to establish an indicator system and evaluation
method. Liu [9] presented an effective framework of general sustainability indicators for renewable
energy systems. Naganathan and Chong [10] addressed issues of quantification and policy intent
through the proposed State Sustainable Transportation Performances matrices, and ranked sustainable
transportation performance based on the indicators of the USA. Wu et al. [11] proposed a new hybrid
evaluation method based on an analytical hierarchy process (AHP)-entropy weight and the cloud model
to evaluate community sustainability. This method makes use of the superiority of the cloud model to
transform qualitative remarks into quantitative representations to reflect fuzziness and randomness.
Davor et al. [12] presented an empirical study to assess the sustainability performance of European
countries using differential multi-criteria analysis. Their Preference Ranking Organization Method
for Enrichment Evaluations was applied on 38 headline and operational sustainable development
indicators defined under the EU Sustainable Development Strategy.

Sustainable development has been a basic principle of national development in many countries, at
both the regional level and city level, but existing problems and the level of sustainable development
vary across different regions [13,14]. A quantitative evaluation of the sustainable development level of
different regions is useful in understanding constraints and proposing corresponding counter measures
to enhance sustainability. Phillis et al. [15] selected 46 indicators across 7 aspects to evaluate the
sustainable development level of 106 cities in different countries using the fuzzy evaluation method.
The results can guide decision makers in allocating their available resources to one or more indicators
to obtain the largest improvement of sustainability. Elgadi et al. [16] constructed an indicator system
with three levels and four categories to evaluate the sustainable development of Tripoli through
primary index screening. Using an indicator system of three fields, Widomski et al. [17] compared the
indicator values of Lublin, Poland with other EU countries, and evaluated its sustainable development
level. Tsai [18] selected a set of indicators divided into six dimensions to analyze the sustainable
development trend of Taiwan over several years using the Pressure-State-Response (PSR) model.
Davor et al. [19] investigated the feasibility of modeling municipal waste generation for countries at
different levels of development using artificial neural networks (ANN) and selected generic indicators
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of sustainability. Based on a comparison of actual municipal waste generation data with predictions
given by the model, it showed that ANN can be applied to modeling and forecasting municipal waste
generation on a national scale. Ugwu and Haupt [20] proposed a comprehensive model to assess the
sustainability of infrastructure projects from the aspects of economy, environment, society, resource
utilization, health and safety, and project management. Marynych [21] used a methodology based on
the vector autoregressive and Johansen VEC approach procedures. The results of the estimation of
the aggregate index of sustainable development showed a significant impact and variability in the
economic component, which had further influence on social and environmental indicators. These
studies demonstrate that the international evaluation of sustainable development started years ago,
but there is no unified determination method for indicator systems, and the conclusions using different
systems are often quite different.

Existing indicator systems for assessing sustainable development can be divided into two kinds:
single and comprehensive evaluation indicator systems. The former adopts a hybrid indicator system
to summarize progress on regional sustainable development. Examples are genuine saving [22], energy
analysis [23,24], ecological footprint [25,26], the human development index [27,28], and the social
progress index [29]. These indicator systems work well in respect of specific criteria, but less well as a
general measure of sustainability.

The latter, comprehensive indicator systems, analyse regional sustainable development levels
with multi-hierarchy indicators, such as the PSR model, three component model [30], or an indicator
system based on AHP. They can reflect sustainable development levels widely and clearly, but data
acquisition and results calculation become difficult once the indicator system is complex. With respect
to the evaluation methods of sustainable development level, AHP [31], principal component analysis
(PCA) [32], data envelopment analysis (DEA) [33], technique for order preference by similarity to ideal
solution (TOPSIS) [34], and ANN [35] are often applied. The AHP method is used most frequently,
and is usually combined with the entropy method and fuzzy comprehensive evaluation because of its
strong subjectivity. The weight determination of PCA is objective, but the correlation among indicators
should be significant. The DEA model is also objective, but it can only evaluate relative efficiency.
TOPSIS has simple principles and fast calculations, but can only evaluate the relative strengths and
weaknesses of objects, and the weight component may suffer from subjectivity. ANN can realize the
fitting of arbitrary nonlinear functions, which is consistent with the characteristics of the complex
nonlinear system of regional sustainable development. At present, the ANN algorithm is complex. If
the sample cannot guarantee accuracy, the findings may be incorrect.

In summary, two existing problems need to be improved upon in the current study. Firstly,
there is no single and universally agreed upon method for choosing indicators. The subjective
selection of indicators will affect the results. Secondly, each evaluation method has its own advantages
and disadvantages, and the methods used to determine indicator weight also differ. It should be
ensured that the evaluation system can evaluate the regional sustainable development level accurately
and comprehensively.

In this research, a comprehensive selection of indicators was the first step. These indicators were
then screened by means of discrimination analysis and correlation analysis to reduce the subjectivity
of indicator selection. Spurious relationships among sustainable development indicators were found
and improved using partial correlation analysis. This method ensures the accuracy of the selected
indicators. ANN and AHP with entropy correction were applied to evaluate and rank the levels
of regional sustainable development. This improvement of indicator screening, evaluation model,
and result correction can reduce the error caused by single evaluation method significantly. This
new indicator system and evaluation model can reflect the regional level of sustainable development
accurately, which provides theoretical guidance for increasing the capability of sustainable development
in different regions.
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2. Research Method

2.1. Area of Study

Shandong Province is one of the more economically developed provinces in China, and covers an
area of 157.1 thousand km2. Its GDP amounted to 7646.97 billion RMB in 2018, which accounts for
8.5% of national GDP [36]. The population of Shandong Province is 0.1 billion, ranking it second place
in Chinese provinces. The social and economic situation of Shandong Province is similar to China
as a whole, with more economically developed regions on the eastern coastline and underdeveloped
regions in the western inland areas. The level of development of economy, society, resources, and
environment in the 17 cities of Shandong Province is variable. Thus, Shandong Province is a typical
representative of the whole country. Figure 1 shows the location of Shandong Province in China.
Figure 2 shows the geographical locations of the 17 cities in Shandong Province.

Figure 1. Geographical map of Shandong Province in China.

Figure 2. Detailed map of the 17 cities in Shandong Province.

In order to construct a more objective and scientific indicator system and evaluation model
for regional sustainable development, discrimination analysis, Pearson correlation analysis, partial
correlation analysis, back propagation (BP) ANN, and AHP with entropy correction were applied.
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2.2. Construction of Indicator System

To construct the indicator system for regional sustainable development, it is necessary to
follow principles of hierarchy, simplicity, comprehensiveness, and operability [37]. Referring to
the viewpoints of the China Sustainable Development Strategy Report 2016 [38], Widomski et al. [17]
and Phillis et al. [15], and the framework of the Drive-State-Response (DSR) model proposed by
UNCSD [39], the indicator system is divided into four layers, i.e., object layer, system layer, feature
layer, and indicator layer. The sustainable development system is divided into four subsystems, i.e.,
the economy, society, resources, and environment. Figure 3 shows the layout of the indicator system
for regional sustainable development. The indicators were screened using discrimination analysis and
correlation analysis after the initial comprehensive selection of indicators.

Figure 3. Layout of indicator system for regional sustainable development.

2.3. Discrimination Analysis

The discrimination of an evaluation indicator refers to its ability to distinguish the feature
differences of the objects evaluated. If an indicator has similar values for all evaluated regions, it
means the discrimination of this indicator is too weak to recognize the difference of sustainable
development level for these regions. In practice, the coefficient of variation is usually used to describe
the discrimination of the indicators [40], see Equation (1).

Vi =
Si

X
(1)

where X = 1
n

n∑
i=1

Xi is the average value, and Si =
√

1
n−1

∑(
Xi −X

)2
is the standard deviation. The

indicator discrimination was analyzed using SPSS 19.0 software to determine the descriptive value,
and assess the discrimination of indicators. The smaller the coefficient of variation Vi, the weaker the
indicator discrimination will be. By comparing Vi and the critical value, smaller Vi values were deleted
to ensure the simplicity and comprehensiveness of the selected indicators.

2.4. Correlation Analysis

2.4.1. Pearson Correlation Analysis

There were some correlations among the indicators in the system, and the repeated information
reflected by them would impact the results of the regional sustainable development evaluation. The
correlation coefficient between two indicators was calculated by Pearson correlation analysis [41]. One
of the indicators was deleted if the correlation coefficient between two indicators was high, so as to
reduce the impact of repeated information reflected by the indicators on the evaluation results. This
was done in three steps [42]:

Firstly, the standardization of the original value was calculated with Equation (2):

Zi =
Xi −X

Si
(2)
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where Zi is the standardized value, Xi is original value of an indicator, and Si is the standard deviation.
Secondly, the correlation coefficient Rij between two indicators was calculated with Equation (3):

Ri j =

n∑
k=1

(
Zki −Zi

)(
Zkj −Z j

)
√

n∑
k=1

(
Zki −Zi

)2(
Zkj −Z j

)2
(3)

Thirdly, a critical value A was set. If Rij > A, the indicator or whichever has less significance was
deleted. Otherwise, both indicators were retained.

2.4.2. Partial Correlation Analysis

Partial correlation analysis is a method where the impact of other elements is regarded as constant
when researching the correlation between two factors in a multi-element system [43]. In this way, the
partial correlation between two evaluation indicators can be identified, which can enhance the accuracy
and reliability of the evaluation system. The partial correlation coefficient is calculated by Equation (4).

Ri j(k) =
Ri j −RikR jk√

1−R2
ik

√
1−R2

jk

(4)

Due to the complicated relations among various factors in the regional sustainable development
system, it was difficult to select control variables. Some policy- or management-related factors cannot
be quantified, which leads to partial correlation analysis failure due to the lack of data availability.
Therefore, an expert judgment method was adopted and the correlation between two indicators was
classified on a four-point differential as one of: no correlation, weak, strong, or very strong. One of the
two indicators in pairs with a strong or very strong correlation was deleted.

2.5. Back Propagation Artificial Neural Network

BP ANN is a multi-layer feed-forward neural network; it can approximate complex nonlinear
functions with any precision [44]. It is widely used due to its simple structure, rich algorithm, and
strong nonlinear mapping capability. The learning algorithm of BP ANN is the error back propagation
algorithm. Therefore, as long as the parameters are fully adjusted and the samples are accurate and
reliable, errors generated by the neural network can be significantly reduced. The indicator system and
evaluation model can accurately reflect the sustainable development level of each region. MATLAB
software was applied to establish the BP ANN model of regional sustainable development evaluation
and calculate the scores of the four subsystems for sustainable development in different sample cities.

(1) Data normalization

X′i =
Xi −Xmin

Xmax −Xmin
(5)

In Equation (5), Xi is the indicator value of one evaluated object. Xi
′ is the normalized value. Xmin

is the minimum indicator value. Xmax is the maximum indicator value. For the negative indicators, the
final value is 1 minus the normalized value.

(2) Building training samples
The calculation of BP ANN requires predicted output, which is unknown for evaluation. Based

on the linear interpolation of sample data between min and max, influence levels are set to generate
training samples [45–49]. In this research, 500 training samples were established. Referring to Kennedy
et al. [45] and Sun et al. [46], and combining with the expert judgment method, sustainable development
capacity was classified into 5 levels: (0, 1] means very low level, (1, 2] means low level, (2, 3] means
moderate level, (3, 4] means high level, (4, 5] means very high level.

(3) The establishment of the back propagation artificial neural network
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a. The quantification of hidden layers
The three-layer neural network applied in this research can approach continuous function

precisely [49]. Increasing the number of hidden layers can reduce errors, but it will also increase the
training time.

b. The quantification of hidden layer nodes
Fewer hidden layer nodes will decrease the ability to find the trend of samples in a network and

result in too many minimum points. By contrast, more hidden layer nodes can increase the training
time. The general way to determine the optimal number of hidden layer nodes is cut and trial method.
Varying the number using a cut and trial method can be useful to optimize the number of hidden
layer nodes [50]. The estimated value was used as the initial value of the cut and trial method, which
was obtained by Equations (6)–(9) respectively. The number of hidden layer nodes was increased
gradually. After comparing the prediction performance of the network, the number of nodes with the
best performance was selected as the number of hidden layer nodes.

s = log2m (6)

s =
√

mn (7)

s =
√

m + n + a (8)

s =
√

0.43mn + 0.12n2 + 2.54m + 0.77n + 0.35 + 0.51 (9)

where S is the number of hidden layer nodes, m is the number of input nodes, n is the number of
output nodes, and a is a constant between 1 and 10.

c. The selection of transfer function
For nonlinear mappings, the sigmoid transfer function [51] and linear transfer function are usually

applied for the hidden layer and output layer. The output values of the entire network can be arbitrary.
In this research, logsig or tansig was selected as the hidden layer transfer function, purelin was selected
as the output layer transfer function, and traingdx or trainlm was selected as the training function.

d. The determination of learning parameters
The range of learning rates was set in the range from 0.01 to 0.8. A higher rate may result in

network instability, while lower rates may increase training time. Generally, a lower rate is used in
order to make the network converge easily.

e. The selection of training function
The improved training algorithm is usually adopted for BP ANN. Furthermore, the additional

momentum factor may cause the network to slip through the local minimum point, which can speed
up the convergence rate. Adaptive learning efficiency can adjust learning efficiency automatically and
enhance the network’s stability. The Levenberg–Marquardt (LM) algorithm has a quick convergence
rate, which is suitable for small and medium sized networks. Based on these analyses, the gradient
descent method, traingdx with adaptive learning efficiency and additional momentum, and trainlm of
LM algorithm were adopted in this research.

2.6. Analytic Hierarchy Process with Entropy Correction

AHP with entropy correction was selected to calculate overall scores of regional sustainable
development levels. The main steps included establishing a multi-hierarchy model, structuring a
judgment matrix, level ranking, and consistency checking [52]. The weight coefficients were modified
by entropy correction in order to ensure the consistency of the judgment matrix. The main steps in
entropy correction were as follows:

(1) Calculating the output entropy ej of indicator fj.
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The judgment matrix (ai j)m×n was normalized by formula ai j/
n∑

j=1
ai j in order to get the standard

matrix A = (ai j)n×m. The output entropy ej of indicator fj was calculated with Equation (10).

e j = −
1

lnn

n∑
j=1

ai jlnai j (10)

(2) Calculating the deflection degree dj of indicator fj with Equation (11).

d j = 1− e j (11)

(3) Calculating the information weight µj of indicator fj with Equation (12).

µ j =
d j

n∑
j=1

d j

(12)

(4) Calculating the modified indicator weight coefficient λj with Equation (13).

λ j =
µ jω j

n∑
j=1

µ jω j

(13)

Figure 4 is the technical roadmap, which shows the concept and methods of constructing the
indicator system and evaluation model for regional sustainable development.
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Figure 4. Technical roadmap to construct the indicator system and evaluation model for regional
sustainable development.

3. Results

3.1. Initial Selection of Indicators

The input data of the 17 sample cities in Shandong Province were retrieved from the Shandong
Provincial Statistical Yearbook 2016 [53], and the statistical yearbooks and statistical bulletins of the 17
cities, respectively. Referring to the views of Phillis et al. [15], Popovic et al. [3], and Tran [39] there
were 58 indicators in the indicator system, namely: (1) 13 indicators in 5 categories for the Economic
subsystem, (2) 26 indicators in 5 categories for the Social subsystem, (3) 7 indicators in 3 categories for
the Resource subsystem, and (4) 12 indicators in 3 categories for the Environmental subsystem, see
Table A1 in the Appendix A.

3.2. Confirmation of the Indicator System

Due to data unavailability, d10, d16, and d58 were deleted. Indicators d14 and d15 were the
moderate indicators, which had different optimum populations for different regions. In order to ensure
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the accuracy of the results, d14 and d15 were deleted [54]. The 53 remaining indicators were then
tested using discrimination analysis, Pearson correlation analysis, and partial correlation analysis.

3.2.1. Discrimination Analysis

Table 1 shows the coefficient of variation of each indicator calculated by SPSS. According to the data
distribution and the importance of each indicator in sustainable development of Shandong Province,
0.12 was selected as the critical value of the coefficient of variation, referring to Arushanyan et al. [2],
Chen et al. [13], and Kılkış [23], The indicators with variation coefficients less than 0.12 were d4, d6,
d21, d23, d26, d27, d28, d37, d38, d53, d54, d55, and d57. Indicator d6 was retained because it was
one of the most appropriate indicators to reflect economic development. Forty one indicators were
retained after discrimination analysis.

Table 1. Coefficient of variation of each indicator after initial selection.

Indicator Coefficient of
Variation Indicator Coefficient of

Variation Indicator Coefficient of
Variation

d1 0.48 d23 0.09 d41 0.29
d2 0.16 d24 0.37 d42 0.27
d3 0.54 d25 0.32 d43 0.88
d4 0.11 d26 0.10 d44 0.44
d5 0.14 d27 0.00 d45 0.34
d6 0.10 d28 0.01 d46 0.72
d7 0.14 d29 0.68 d47 0.43
d8 0.12 d30 0.16 d48 0.49
d9 1.25 d31 0.30 d49 0.73

d11 0.48 d32 0.24 d50 0.65
d12 0.67 d33 0.77 d51 1.77
d13 0.24 d34 0.20 d52 3.65
d17 0.13 d35 0.15 d53 0.01
d18 0.85 d36 0.21 d54 0.00
d19 0.47 d37 0.07 d55 0.08
d20 0.21 d38 0.04 d56 0.26
d21 0.10 d39 0.13 d57 0.05
d22 0.15 d40 0.36

Bold means value less than 0.12.

3.2.2. Pearson Correlation Analysis

An absolute value of correlation coefficient less than 0.3 indicates no linear correlation, 0.3–0.5
indicates low correlation, 0.5–0.8 indicates moderate correlation, and above 0.8 indicates significant
correlation [55,56]. If the correlation coefficient ≥0.8, it means that the correlation is high for the two
indicators and one of these two indicators should be deleted. In this way, d7 and d11 were deleted
in the Economic subsystem. All indicators were retained in the Resources subsystem. In the Social
subsystem, d24, d25, and d35 had high correlation, but these indicators were retained because they
were the crucial indicators in relation to the total emissions control target in The 13th Five-Year Plan for
National Eco-Environmental Conservation [7].

3.2.3. Partial Correlation Analysis

Analyzing the partial correlation of d1 and d3 as examples, d12 was regarded as a control
variable. When the control variables were not controlled, the correlation coefficient between d1 and
d3 was 0.961, and the significance level was 0.000, which is highly correlated and significant. The
correlation coefficient dropped down to 0.587 when considering d12 as a control variable; as a result,
the significance level was 0.017. See Table 2.
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Table 2. Correlation coefficient between d1 and d3 with or without control variable d12.

Control Variable d1 d3 d12

None

d1
Correlation coefficient 1.000 0.961 0.942

Significance (both sides) 0 0 0
df 0 15 15

d3
Correlation coefficient 0.961 1.000 0.966

Significance (both sides) 0 0 0
df 15 0 15

d12
Correlation coefficient 0.942 0.966 1.000

Significance (both sides) 0 0 0
df 15 15 0

d12

d1
Correlation coefficient 1.000 0.587

Significance (both sides) 0 0.017
df 0 14

d3
Correlation coefficient 0.587 1.000

Significance (both sides) 0.017 0
df 14 0

It can be seen that d12 was significantly correlated with d1 and d3 at the same time. According to
the correlation logic, d1 and d3 should also be significantly correlated, but partial correlation analysis
showed that when d12 was regarded as a control variable, the correlation coefficient between d1 and
d3 decreased significantly. Indicators d1 and d3 were moderately correlated. Therefore, d1 and d3 can
be considered to reflect the characteristics of different aspects within the economic subsystem. Both d1
and d3 were retained in the final indicator system.

According to partial correlation analysis, there may be a spurious relationship between two
indicators with a high correlation coefficient. After correlation analysis, expert judgement was applied
to delete indicators with high correlation. Indicators d7, d11, d24, d25, and d35 were deleted in
this step.

Following indicator selection, the final indicator system with 36 indicators is shown in Table A2 in
the Appendix A.

3.3. Subsystem Assessment with Back Propagation Artificial Neural Network

The network training parameters for the subsystems are listed in Table 3. According to Equations
(5)–(9), the training results are described in Figure 5. The simulink model is used to simulate the
trained network. The network output for different subsystems is listed in Table 4, which represents the
scores of different subsystems in each city. The Economic, Social, Resources or Environmental level
of each city can be compared separately. A higher score represents a higher level of development in
this subsystem.

Table 3. The network training parameters of subsystems.

Name
Number of Nodes

Objective
Precision

Times of
Training

Learning
Rate

Transfer Function
Training
FunctionInput

Layer
Hidden
Layer

Output
Layer

Hidden
layer

Output
layer

Economic
subsystem 9 9 1 1 × 10−4 1000 0.01 logsig purelin traingdx

Social
subsystem 13 12 1 1 × 10−4 1000 0.01 tansig purelin traingdx

Resources
subsystem 7 7 1 1 × 10−4 1000 logsig purelin trainlm

Environmental
subsystem 7 7 1 1 × 10−4 1000 logsig purelin trainlm
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Figure 5. The network training results of different subsystems. (a) Economic subsystem; (b) Social
subsystem; (c) Resources subsystem; (d) Environmental subsystem.

Table 4. Network output results of different subsystems.

Cities Economic
Subsystem Social Subsystem Resources

Subsystem
Environmental

Subsystem

Weihai 3.51 3.61 4.32 4.55
Qingdao 4.43 4.74 3.15 4.24

Yantai 3.93 3.21 4.17 4.04
Dongying 3.67 4.03 2.65 4.42

Jinan 4.38 3.26 2.43 3.52
Linyi 3.23 2.53 3.60 2.76

Rizhao 2.52 2.61 3.33 3.39
Weifang 2.74 2.88 2.92 3.43
Tai’an 2.07 2.89 2.87 3.48

Zaozhuang 2.12 2.99 2.83 3.15
Dezhou 1.67 2.41 3.47 3.08

Zibo 2.78 2.71 1.72 3.76
Jining 2.38 2.46 2.43 2.83

Binzhou 0.86 2.97 2.38 2.22
Liaocheng 1.08 2.27 2.16 2.65

Heze 0.68 1.78 2.67 2.24
Laiwu 1.25 2.82 1.83 1.92
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3.4. Comprehensive Evaluation for Regional Sustainable Development by Analytic Hierarchy Process with
Entropy Correction

The weight of different subsystems was calculated by AHP with entropy correction through
Equations (10)–(13), see Table 5. The overall score of regional sustainable development level for the 17
different cities can be obtained through their overall score and weight for the four subsystems, see
Table 6 and Figure 6.

Table 5. The weights of different subsystems.

Subsystems Weight

Economic subsystem 0.1028
Social subsystem 0.2681

Resources subsystem 0.3146
Environmental subsystem 0.3146

Table 6. The overall score of regional sustainable development levels of different cities.

Weihai Qingdao Yantai Dongying Jinan Linyi Rizhao Weifang Tai’an

4.09 4.05 3.89 3.66 3.31 3.06 3.04 3.03 2.90

Zaozhuang Dezhou Zibo Jining Binzhou Liaocheng Heze Laiwu

2.82 2.78 2.74 2.49 2.35 2.11 1.97 1.94

Figure 6. Graphical distribution of cities based on regional sustainable development levels.

4. Discussion

4.1. Construction of Indicator System

To construct the indicator system for regional sustainable development, it was necessary to follow
principles of hierarchy, simplicity, comprehensiveness, and operability. But it is difficult to ensure
both the comprehensiveness and simplicity of the indicator system at the same time. Among the
indicators with variation coefficients less than 0.12, only d6 was retained, due to its characteristic to
reflect economic development. In each subsystem, the retained indicators were more representative
than those deleted in discrimination analysis.

One of two related indicators will be deleted by correlation analysis if the correlation coefficient
≥0.8, but the remaining one may be deleted in the discrimination analysis, which leads to incomplete
information being reflected by the indicators. Therefore, discrimination analysis should be given
priority. Compared with the indicator systems such as the United Nations Sustainability Development
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Goals and China Sustainable Development Strategy Report, this indicator system applied multiple
methods, such as correlation analysis, discrimination analysis, back propagation neural network, and
AHP with entropy correction, and can reflect regional sustainable development more comprehensively
and concisely.

4.2. Back Propagation Artificial Neural Network and Analytic Hierarchy Process with Entropy Correction

For nonlinear mappings, the sigmoid transfer function is usually applied for hidden layer and
output layer. The output values of the entire network may be arbitrary. Three error curves in Figure 5
represent the training sample, validation sample, and test sample, respectively. The neural network
automatically divides training samples into three types according to the default values of 75%, 15%,
and 15%. The error of all three samples was very low, which means the neural network simulation was
good. It also shows that ANN can realize the fitting of arbitrary nonlinear functions, which is consistent
with the characteristics of the complex nonlinear system of regional sustainable development.

In order to ensure the consistency of the judgment matrix, the weights of different subsystems
were calculated by AHP with entropy correction. The Economic, Social, Resources, and Environmental
subsystems were weighted as 0.1028, 0.2681, 0.3146, and 0.3146, respectively. The economic
development of Shandong Province has been rapid, but this also has also led to serious resource
consumption and environmental pollution. The larger weight for the Resources subsystem and
the Environmental subsystem shows these two subsystems are more important than the other
two subsystems.

4.3. Analysis of Sustainable Development Levels

The overall score of regional sustainable development levels shows that Weihai and Qingdao
have a very high level of regional sustainable development. Yantai, Dongying, Jinan, Linyi, Rizhao,
and Weifang have a high level. Tai’an, Zaozhuang, Dezhou, Zibo, Jining, Binzhou, and Liaocheng
have a general level. Heze and Laiwu have a low level.

Table 4 shows that coastal cities have comparatively high scores for different subsystems. The
development of subsystems is coordinated, and economic and social development will not cause
serious negative impacts on the Resources and Environment subsystems. As an inland city, the
geographical advantage of Jinan is not obvious, but its Economic and Social development levels are
better because it is the capital city of Shandong Province. The Resources subsystem is the main limiting
factor affecting sustainable development for Qingdao, Jinan, and Dongying, since it is lower than the
other three subsystems in these cities. For other inland cities, the four subsystem levels of Binzhou and
Liaocheng are generally low, and the levels of Laiwu and Heze are even lower than these latter two
cities. The constraints of Laiwu are shortage of resources and low environmental quality. For Heze, the
levels of economic and social development are low, and the level of environmental quality also needs
to be improved.

The sustainable development levels of different cities in Shandong Province present the following
characteristics. Firstly, regional sustainable development shows a gradually decreasing trend from east
to west and from coast to inland (see Figure 6). Secondly, coastal cities have higher regional sustainable
development capacity, due to their geographical advantages. Their foreign trade capabilities are strong,
and their economic development does not rely on heavy industries. Their proportions of tertiary
industry are large and environmental quality is superior. Thirdly, cities such as Jining, Liaocheng,
Dezhou, and Heze, which suffer from poor economic development, usually lag behind in social
development. This is reflected in aspects such as residential living standards, educational attainment
levels, urban infrastructure construction, levels of medical care, science and technology, and social
security. In order to improve the level of social development, these cities need to show improvement in
education, technology, and urban construction. At the same time, accelerating economic development
and providing financial support for social development are further issues. Fourthly, environmental
pollution is serious in economically backward cities. In these cities, the industrial structure is dominated
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by secondary industry. More efforts should be made to enhance science and technology development,
optimize industrial structure, and reduce pollutant emissions.

This research provides a new integrated indicator system and evaluation model for regional
sustainable development, which can provide a useful reference for developing policies to increase
the capability of regional sustainable development in Shandong Province. Compared with the 234
indicators in the United Nations Sustainability Development Goals, this indicator system with 36
indicators and the evaluation model with correlation analysis, discrimination analysis, back propagation
neural network, and AHP with entropy correction can reflect regional sustainable development more
comprehensively and concisely. This methodology is applicable for different cities or different provinces
in a country, but it is not suitable for making comparison between countries, because some indicators
may represent different factors in different countries. Additionally, the data for some indicators are
not available in some countries. In the future, a common index system that is suitable for evaluating
national sustainable development needs to be explored.

5. Conclusions

An indicator system for regional sustainable development was established using the processes
of initial indicator selection, discrimination analysis, and partial correlation analysis, which includes
3 layers, 4 subsystems, and 36 indicators. BP ANN was used to calculate the scores of the four
subsystems. The overall score of the regional sustainable development of the 17 cities was evaluated
by AHP with entropy correction. The results show that the cities with a very high level of sustainable
development are Weihai and Qingdao, and those with a low level are Heze and Laiwu. The sustainable
development levels of these 17 cities in Shandong Province show a gradually decreasing trend from
east to west and from coast to inland. Cities with an underdeveloped economy usually have backward
social development and serious environmental pollution. Through the indicator system and the scores
of subsystems, the restrictive factors of the sustainable development level of each city were identified.
These findings provide a useful reference for developing policies to increase the capability of regional
sustainable development.
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Appendix A

Table A1. Original indicator system for evaluation of regional sustainable development.

Object Layer System Layer Characteristic Layer Indicator Layer No.

Regional sustainable
development

Economic development

Economic scale
GDP per capita (RMB) d1
Proportion of public finance budget in GDP (%) d2
Total fixed assets investment per capita (RMB) d3

Economic structure
Proportion of the secondary industry in GDP (%) d4
Proportion of the tertiary industry in GDP (%) d5

Economic development rate
Growth rate of GDP (%) d6
Growth rate of the output value of the secondary industry (%) d7
Growth rate of the output value of the tertiary industry (%) d8

Export-oriented economy Total export-import volume per capita (millions US$) d9

Economic benefit

Elasticity coefficient of energy consumption (%) d10
Labour productivity per capita (thousand RMB) d11
Industrial added value per capita (thousand RMB) d12
Proportion of high and new technology industry output value in total
designated size enterprises (%) d13

Social progress

Population development

Population density (person/km2) d14
Population growth rate (%�) d15
Proportion of people over 65 years old (%) d16
Urbanization rate (%) d17
Number of students in ordinary universities for every thousand persons d18
Number of books in public libraries per capita d19

Living standard

Disposable income of urban residents per capita (thousand RMB) d20
Engel coefficient of urban residents (%) d21
Disposable income of rural residents per capita (thousand RMB) d22
Engel coefficient of rural residents (%) d23
Total volume of retail sales per capita (million RMB) d24
Number of private vehicles per million persons d25
Living area per capita in urban (m2) d26

Infrastructure construction

Water supply penetration (%) d27
Nature gas supply penetration (%) d28
Number of urban public transport vehicles for every million persons d29
Area of urban road per capita (m2) d30
Density of the drainage pipes in built-up areas (km/km2) d31
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Table A1. Cont.

Object Layer System Layer Characteristic Layer Indicator Layer No.

Science and technology Proportion of R&D cost in GDP (%) d32
Total number of R&D (person) d33

Social stability and security

Registered urban unemployment rate (%) d34
Number of hospital beds per thousand persons d35
Number of doctors per thousand persons d36
Coverage rate of endowment insurance (%) d37
Coverage rate of medical insurance (%) d38
Retirement pay per capita (thousand RMB) d39

Resources condition

Resources conservation
Water resources per capita (m3) d40
Area of cultivated land per capita (m2) d41
Forest coverage rate (%) d42

Resource consumption Electricity consumption per capita (MWh) d43
Water consumption per captia (m3) d44

Resource utilization efficiency Energy yield (thousand RMB/tce) d45
Water resource yield (RMB/m3) d46

Ecological environment

Environmental state

Ammonia-nitrogen emissions per unit GDP (t/billion RMB) d47
COD emissions per unit GDP (t/billion RMB) d48
SO2 emissions per unit GDP (t/billion RMB) d49
NOx emissions per unit GDP (t/billion RMB) d50
Soot emissions per unit GDP (t/billion RMB) d51
Industrial solid waste emissions per unit GDP (t/billion RMB) d52

Pollution control
Treatment rate of domestic sewage (%) d53
Innoxious treatment rate of household garbage (%) d54
Comprehensive utilization rate of industrial solid waste (%) d55

Natural ecological protection
Area of public park per capita (m2) d56
Coverage rate of green area in built-up areas (%) d57
Proportion of natural reserve area to total land area (%) d58
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Table A2. The indicator system for evaluation of regional sustainable development.

Object Layer System Layer Characteristic Layer Indicator Layer No.
Value of Indicators

Jinan Qingdao Zibo Zaozhuang Dongying Yantai Weifang Jining Tai’an

Regional
sustainable

development

Economic
development

Economic scale
GDP per capita (thousand RMB) D1 85.9 102.5 89.2 52.7 163.9 92 55.8 48.5 56.5

Proportion of public finance budget in GDP
(%) D2 10.07 10.82 7.7 7.35 6.38 8.42 9.37 9.19 6.5

Total fixed assets investment per capita
(thousand RMB) D3 49.1 72.1 58.8 41.9 146.2 66.5 48.7 34.8 46.7

Economic structure Proportion of the tertiary industry in GDP (%) D4 57.2 52.8 42.5 39.7 31.9 41.6 43 41.4 45.2

Economic
development rate

Growth rate of GDP (%) D5 8.06 8.06 7.1 7.07 6.86 8.37 8.31 8.4 8.05

Growth rate of the output value of the tertiary
industry (%) D6 8.89 9.42 7.8 8.3 7.86 9.84 9.84 10.67 9.89

Export-oriented
economy

Total export-import volume per capita (million
US$) D7 1.39 7.72 1.64 0.41 6.12 7.04 2.04 0.66 0.41

Economic benefit
Industrial added value per capita (thousand
RMB) D8 25.91 39.03 42.24 24.78 103.84 42.74 23.51 20.16 22.2

Proportion of high and new technology
industry output value in total designated size
enterprises (%)

D9 42.63 41 31.83 19.83 35.02 41.11 31.85 28.87 26.85

Social progress

Population
development

Urbanization rate (%) D10 67.96 69.99 67.26 53.46 65.52 60.35 55.8 52.75 57.04

Number of students in ordinary universities
for every thousand persons D11 75.18 35.43 22.19 7.84 14.23 26.03 16.92 12.53 19.46

Number of books in public libraries per capita D12 0.56 0.66 0.53 0.36 0.61 0.82 0.42 0.23 0.28

Living standard
Disposable income of urban residents per
capita (thousand RMB) D13 39.89 40.37 33.79 25.79 38.74 35.91 31.06 27.89 28.13

Disposable income of rural residents per
capita (thousand RMB) D14 14.23 16.73 14.53 12.04 13.89 15.54 14.89 12.57 13.32

Infrastructure
construction

Number of urban public transport vehicles for
every million persons D15 94 96 48 39 37 35 19 24 29

Area of urban road per capita (m2) D16 27.58 23.47 23.40 25.50 34.76 21.32 28.55 31.85 25.85

Density of the drainage pipes in built-up areas
(km/km2) D17 6.70 12.35 10.09 8.34 9.45 11.85 12.40 9.18 6.87

Science and
technology

Proportion of R&D cost in GDP (%) D18 2.25 3.04 2.2 1.54 2.72 2.59 2.71 1.84 2.45

Total number of R&D (thousand persons) D19 75.38 69.69 30.86 8.58 16.80 39.06 39.08 25.09 26.79

Social stability and
security

Registered urban unemployment rate (%) D20 2.04 3.00 2.81 2.33 2.15 3.23 2.93 3.00 2.07

Number of doctors per thousand persons D21 3.70 2.97 2.88 2.11 2.80 2.51 2.53 2.37 2.24
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Table A2. Cont.

Object Layer System Layer Characteristic Layer Indicator Layer No.
Value of Indicators

Jinan Qingdao Zibo Zaozhuang Dongying Yantai Weifang Jining Tai’an

Retirement pay per capita (thousand RMB) D22 329.1 290.1 295.5 326.7 378 310 313.5 323.7 299

Resource
condition

Resources
conservation

Water resources per capita (m3) D23 165.87 31.55 151.66 118.36 238.79 250.92 118.46 168.09 141.41

Area of cultivated land per capita (m2) D24 504.4 574.8 451.9 610.9 1056.5 636 857.9 732.4 650.2

Area of afforestation per capita (m2) D25 16.84 11.07 21.34 30.89 17.04 19.34 22.71 18.36 26.21

Resource
consumption

Electricity consumption per capita (MWh) D26 3.70 3.76 7.00 3.16 11.63 6.21 4.68 3.27 3.09

Water consumption per capita (m3) D27 204.85 89.59 222.53 145.44 452.95 123.89 138.83 280.27 194.44

Resource utilization
efficiency

Energy yield (thousand RMB/tce) D28 144.4 178.2 80.2 98.5 160.1 182.5 124.1 142.7 135.8

Water resource yield (RMB/m3) D29 417.54 1141.11 399.83 360.11 360.95 741.78 401.44 172.53 290.03

Ecological
environment

Environmental state

Ammonia-nitrogen emissions per unit GDP
(t/billion RMB) D30 14.8 13.3 13.2 25.7 11.1 18.1 30.1 32.2 28.3

COD emissions per unit GDP (t/billion RMB) D31 176.6 157.5 140.8 242.5 184.1 217.6 312.8 326.1 344.7

SO2 emissions per unit GDP (t/billion RMB) D32 163.4 99 454.2 348.9 144.1 129.1 236.1 309.1 253.1

NOx emissions per unit GDP (t/billion RMB) D33 150.2 111.3 296.8 344.3 114.2 135.9 210 368.5 187.5

Soot emissions per unit GDP (t/billion RMB) D34 178.1 44.6 261.5 177.8 20 60 128.6 171.4 73.2

Industrial solid waste emissions per unit GDP
(t/billion RMB) D35 0 0.16 1.74 -0.42 0 3.47 1.31 2.3 -3.76

Natural ecological
protection Area of public park per capita (m2) D36 10.5 14.2 18.4 15.1 25 21.1 18 14.3 20.2

Object Layer System Layer Characteristic Layer Indicator Layer No.
Value of Indicators

Weihai Rizhao Laiwu Linyi Dezhou Liaocheng Binzhou Heze

Regional
sustainable

development

Economic
development

Economic scale
GDP per capita (thousand RMB) D1 106.9 58.1 49.4 36.7 48.1 44.7 61.2 28.4

Proportion of public finance budget in GDP
(%) D2 8.32 7.28 7.54 7.54 6.64 6.6 8.67 7.4

Total fixed assets investment per capita
(thousand RMB) D3 90.7 48.9 45.8 31.2 39 35.2 51.6 12.6

Economic structure Proportion of the tertiary industry in GDP (%) D4 45.4 42.9 40.4 46 40.3 37.1 41.9 36

Economic
development rate

Growth rate of GDP (%) D5 8.5 7.5 6.57 7.1 7.6 8.79 7.08 9.26

Growth rate of the output value of the tertiary
industry (%) D6 9.5 7.4 7.12 8.4 9.1 7.9 7.95 10.13

Export-oriented
economy

Total export-import volume per capita (million
US$) D7 6.04 5.27 1.40 0.85 0.55 0.85 2.11 0.51

Economic benefit
Industrial added value per capita (thousand
RMB) D8 45.73 24.75 22.71 13.65 21.29 21.3 27.23 13.11

Proportion of high and new technology
industry output value in total designated size
enterprises (%)

D9 38.83 20.12 19.85 27.21 28.05 26.26 26.26 31.61
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Table A2. Cont.

Object Layer System Layer Characteristic Layer Indicator Layer No.
Value of Indicators

Jinan Qingdao Zibo Zaozhuang Dongying Yantai Weifang Jining Tai’an

Social progress

Population
development

Urbanization rate (%) D10 63.16 54.81 58.84 53.82 51.73 46.15 54.62 45.13

Number of students in ordinary universities
for every thousand persons D11 25.19 21.99 7.32 6.75 8.93 12.06 13.42 5.75

Number of books in public libraries per capita D12 0.63 0.26 0.37 0.27 0.25 0.19 0.35 0.15

Living standard
Disposable income of urban residents per
capita (thousand RMB) D13 36.34 26.22 30.22 28.63 21.04 21.57 28.39 20.37

Disposable income of rural residents per
capita (thousand RMB) D14 16.31 12.32 13.71 10.83 11.27 10.51 12.73 9.80

Infrastructure
construction

Number of urban public transport vehicles for
every million persons D15 59 32 81 17 10 22 28 10

Area of urban road per capita (m2) D16 33.41 30.41 29.08 23.01 32.95 27.28 21.99 22.27

Density of the drainage pipes in built-up areas
(km/km2) D17 19.17 14.63 9.04 14.12 7.92 13.91 12.73 8.74

Science and
technology

Proportion of R&D cost in GDP (%) D18 2.35 1.28 2.57 2.13 1.46 2.2 2.73 1.32

Total number of R&D (thousand persons) D19 20.71 6.44 7.09 22.33 12.99 14.16 20.91 9.52

Social stability and
security

Registered urban unemployment rate (%) D20 1.54 2.00 2.49 2.35 2.80 3.04 2.19 3.18

Number of doctors per thousand persons D21 2.56 1.91 2.32 1.69 2.02 1.79 2.29 2.17

Retirement pay per capita (thousand RMB) D22 252.1 215.4 253.8 283.6 316.2 321 281.1 352.5

Resources
condition

Resources
conservation

Water resources per capita (m3) D23 221.72 234.38 133.92 209.18 216.64 111.04 275.46 242.11

Area of cultivated land per capita (m2) D24 694.6 833 536.9 816.1 1121.1 946.1 1207.1 977.6

Area of afforestation per capita (m2) D25 25.57 24.22 32.55 21.62 24.09 20.66 34.33 16.68

Resource
consumption

Electricity consumption per capita (MWh) D26 3.74 5.90 7.37 3.44 3.47 6.54 2.49 2.11

Water consumption per captia (m3) D27 143.3 171.53 200.5 159.92 331.92 299.3 388.44 256.11

Resource utilization
efficiency

Energy yield (thousand RMB/tce) D28 160.3 66.1 43.5 134.4 126.2 108.9 59.0 113.0

Water resource yield (RMB/m3) D29 746.66 338.22 245.69 228.21 144.33 149.06 157.13 110.29

Ecological
environment

Environmental state

Ammonia-nitrogen emissions per unit GDP
(t/billion RMB) D30 14 26.6 30.4 41.9 43.5 33.8 32.7 50.5

COD emissions per unit GDP (t/billion RMB) D31 101 257.1 270 387.1 535.5 533.1 562.2 550

SO2 emissions per unit GDP (t/billion RMB) D32 139.4 352.2 1103.3 270.6 292.8 268 414.3 379.1

NOx emissions per unit GDP (t/billion RMB) D33 133.2 342.5 886.2 291.4 210.8 307.4 475.3 316

Soot emissions per unit GDP (t/billion RMB) D34 56 700 2310.9 338.1 174.8 81.9 159.9 259.7

Industrial solid waste emissions per unit GDP
(t/billion RMB) D35 0 0.1 -1.59 0.02 0 -0.01 17.72 -0.01

Natural ecological
protection Area of public park per capita (m2) D36 26.1 23.2 22.7 19.1 24.9 12.6 18.9 12.6
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