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Abstract: Shifting cultivation is a widely practiced agriculture system in the tropics. Regardless of
the dominant land use, the dynamics of shifting cultivation over large areas are of limited knowledge.
We conducted patch-based assessments and characterization of shifting cultivation extracted from
already developed dataset, which detected shifting cultivation by a trajectory-based analysis using
annual Landsat TM/ETM+/OLI time series images from 2000 to 2014 in Myanmar. An accuracy
assessment was conducted in terms of the size and number of cleared areas compared with
reference polygons of shifting cultivation, which were manually delineated by visual interpretation
using Landsat and high-resolution satellite images from Google Earth™ in the selected areas.
The producer’s and user’s accuracies in detecting the number of shifting cultivation patches were
78.1% and 88.4%, respectively. In whole study area, the probability of disturbances caused by shifting
cultivation was significantly affected by distance to the nearest village, indicating the importance
of accessibility from residences. The number of shifting cultivation patches showed a decreasing
trend in this region and it will lead to less cleared forests such as located far from residences.
These dynamics of shifting cultivation have possibility to affect the mosaic patterns of landscape and
function maintained in the landscape in this region.
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1. Introduction

Shifting cultivation (also known as slash-and-burn agriculture or swidden agriculture) is a
subsistence agricultural practice characterized by a field rotation with the slashing and burning of
forests for a short term cropping period followed by a long term fallow period [1]. Shifting cultivation
has been practiced for centuries mainly in tropical regions [2]. Although there are various causes
of tropical forest disturbances, shifting cultivation has been one of major proximate drivers of
deforestation and forest degradation in Southeast Asia, Africa, and Latin America [3–5]. The frequent
burning of vegetation at each cycle of shifting cultivation under shorter fallow lengths has significant
negative impacts on regional ecosystems such as carbon sequestration [2]. While the negative aspects
of shifting cultivation are often raised, shifting cultivation also plays a positive role in biodiversity
compared with permanent agriculture [6]. Because permanent agriculture converts forest to other land
use, it directly contributes to forest loss. Although the extent of land affected by shifting cultivation has
declined in the last few decades [6,7], the practice still affects a global area of approximately 280 million
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hectares [8]. Because there is a substantial area of shifting cultivation, applying suitable management
to maximize the positive aspects of shifting cultivation is of great importance.

A key factor in this management is the characteristic landscape pattern of shifting cultivation.
This is a mosaic of agriculture fields, and fallows of different ages, which is created from repeated
small-scale forest clearing (hereafter called patches). The mosaic landscape plays an important role in
maintaining the biodiversity of shifting cultivation [9,10]. Moreover, the characteristics of the patch
itself—such as size and topographic condition—are also important because these characteristics affect
vegetation recovery [11]. Thus, information on the temporal and spatial patterns of patches and their
characteristics is required for the better management of shifting cultivation. Satellite remote sensing
is well suited to attaining spatially and temporally explicit information especially for tropical forests
where ground records are generally inadequate [12].

Past studies have used various kinds of satellite images to detect areas affected by shifting
cultivation (e.g., [13,14]). However, because of fast vegetation recovery after burning, detecting
shifting cultivation using single-date remote sensing data or multi-date data, where the observation
intervals are usually between 5 to 10 years, is difficult [15]. Time series satellite data, for example,
annual observations, is required to further investigate the detailed and accurate dynamics of shifting
cultivation. The use of Landsat images is a viable option for time series analysis because the long
term records of the United States Geological Survey (USGS) Landsat archives (i.e., more than 40 years)
are freely available [16]. Because of the large area coverage and the suitable spatial resolution of
Landsat images, several studies have used near annual, or more frequent, Landsat time series images
for detecting shifting cultivation (e.g., [17–20]).

Landsat time series images have enabled researchers to conduct change detection using various
approaches [21]. A trajectory-based analysis, which analyzes the temporal trajectories of spectral
indices (e.g., Normalized Difference Vegetation Index or Enhanced Vegetation Index) to detect forest
changes, has been accomplished by constructing near annual Landsat time series images. Since this
trajectory-based analysis provides insights on the conditions of pre- and post- disturbance through the
trajectories of spectral indices, detecting disturbances caused by shifting cultivation in this approach
has great potential for understanding temporal and spatial dynamics. In this regard, Schneibel et al. [22]
investigated cultivation patterns from 1989 to 2013 using annual Landsat TM/ETM+/OLI time series
images based on a trajectory segmentation in Angola. Dutrieux et al. [23] enhanced all available
Landsat TM/ETM+/OLI images to reconstruct land use history defined as the number of cultivation
using an object-based approach in Brazil. Jakovac et al. [24] used the products of land use history
maps generated by [23] to analyze fallow period changes and relationships between land use patterns
and human accessibility. While previous studies have demonstrated that the trajectory-based analysis
using Landsat time series has successfully detected shifting cultivation, from our knowledge no study
has investigated the temporal and spatial patterns of the patches comprising the mosaic landscapes.

In this study, we investigated the characteristics of shifting cultivation in patch-based
change detection using annual Landsat time series images in a mountainous region of Myanmar.
Shifting cultivation has been practiced for centuries in this region as an economically and ecologically
important land use. Based on visual interpretation, we firstly conducted a patch-based accuracy
assessment to shifting cultivation patches, which were detected using Landsat time series images.
Then, the patch-based characteristics of shifting cultivation including the size of cleared area and
spatial and temporal change were investigated by analyzing the temporal trajectories of Landsat time
series images.

2. Materials and Methods

2.1. Study Area

The study area is in the Bago Mountains, in the central part of Myanmar. The study area is
a mountainous landscape covering approximately 158,000 ha across two townships (i.e., Thoungoo
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and Yedashe Township) (Figure 1). We only used areas near villages in this region for analysis.
Detailed procedures are explained in later sections (i.e., 2.4). Mean annual precipitation is approximately
2000 mm. Mean annual temperature in this region is approximately 27 ◦C with the highest mean
temperature in April (31 ◦C) and the lowest mean temperature in January (24 ◦C). Elevation ranges
from 10 to 400 m above sea level. The forests in this region are dominated by deciduous species such as
Teak (Tectona grandis).

Shifting cultivation in this region has been practiced by the Karen people who have been allowed
to conduct cultivation for self-sufficiency [25]. The practices of shifting cultivation in this region consist
of slashing and burning from the end of the dry season (February) to the hot season (April), seeding at
the beginning of the rainy season (May), and harvesting during the dry season (December) with the
mean size of cleared areas ranging from 1.72 ha to 2.70 ha [26,27]. The fallow period after harvesting is
approximately from 9 to 12 years on average [28]. Aboveground biomass after the start of the fallow
period rapidly increases through bamboo species, followed by tree species which reach similar levels
of aboveground biomass as bamboo after 10 years [25]. The total aboveground biomass reaches almost
the same level as old forests after 20 to 35 years [29,30].
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were sourced from Myanmar Information Management Unit (http://www.themimu.info/). The World 
Borders Dataset provided by Thematic Mapping (http://thematicmapping.org/) was used as the 
country border. 
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disturbance agents in the Bago Mountains. Here we provide a brief summary of the data processing 
below. Please note that we did not conduct the processing in this study. All processing in this section 
had already been completed in [31] and we merely used the processed dataset for our analysis. 

Figure 1. The location of the study area in Myanmar. The two townships colored grey indicate where
shifting cultivation has been actively practiced. Villages except in the urban area are shown on a natural
color Landsat 8 OLI image acquired in 2014. Administrative boundaries and village locations were
sourced from Myanmar Information Management Unit (http://www.themimu.info/). The World
Borders Dataset provided by Thematic Mapping (http://thematicmapping.org/) was used as the
country border.

2.2. Maps of Disturbance and Disturbance Agents

To assess the patch-based characteristics of shifting cultivation, we used a dataset developed
by Shimizu et al. [31], which detected the timing and locations of disturbances and then classified
disturbance agents in the Bago Mountains. Here we provide a brief summary of the data processing
below. Please note that we did not conduct the processing in this study. All processing in this section
had already been completed in [31] and we merely used the processed dataset for our analysis.

http://www.themimu.info/
http://thematicmapping.org/


Sustainability 2018, 10, 3350 4 of 12

This dataset is composed of a total of 126 Landsat Thematic Mapper (TM), Enhanced Thematic
Mapper plus (ETM+), and Operational Land Imager (OLI) images in five path/row of Worldwide
Reference System 2 to cover the whole study area. All images were acquired in the dry season (from
November to January) from 2000 to 2014. After downloading Landsat images from the USGS Landsat
archives, all images were atmospherically corrected by LEDAPS [32] and normalized by IR-MAD [33],
and then subjected to topographic correction. Missing pixels caused by clouds, cloud shadows, and the
failure of the Scan Line Corrector were filled with auxiliary images acquired in the same year using a
weighted linear regression algorithm [34].

After the Landsat time series images were preprocessed for change detection, a LandTrendr
temporal segmentation algorithm [35] was applied to detect forest changes using trajectory-based
analysis. The accuracy of pixel-based change detection was evaluated with 379 pixel-based reference
samples. Detected disturbance pixels were grouped as disturbance patches based on spatial adjacency
and then attributed to disturbance agents (e.g., shifting cultivation, logging, and plantation expansion)
using a random forest attribution model. The producer’s accuracy for disturbance in pixel-based
change detection was 91.9%, which means 8.1% of actual disturbances were not detected in change
detection (Table 1). The overall accuracy for the patch-based attribution of disturbance agents
was 84.7%, and the producer’s and user’s accuracies for shifting cultivation were 87.5% and 100%,
respectively (Table 1). Further details of the processing of Landsat times series can be seen in [31].

Table 1. Producer’s and user’s accuracies of pixel-based change detection and patch-based change
attribution in [31].

“Disturbance“ in Pixel-Based Change Detection “Shifting Cultivation“ in Patch-Based Change Attribution

Producer‘s accuracy (%) 91.9 87.5
User‘s accuracy (%) 35.8 100.0

2.3. Accuracy Assessments

To implement the patch-based accuracy assessment, we selected a 25 km2 area, where shifting
cultivation has been actively conducted, within the whole study area covering 158,000 ha. We assumed that
this 25 km2 area can cover a sufficient number of shifting cultivation patches for the validation of whole
study area. Although an accuracy assessment of the dataset was conducted in Shimizu et al. [31], it aimed
to evaluate the class allocation of disturbance agents rather than the spatial extent of patches detected and
attributed through the trajectory-based analysis. Thus, an accuracy assessment for spatial matching against
actual shapes should be conducted. Because reference field data indicating exact location and timing of
shifting cultivation is lacking in the study area, we employed a thematic accuracy assessment for shifting
cultivation based on spatial overlap with reference patches, which were delineated by visual interpretation.
All the disturbances caused by shifting cultivation in the selected area from 2000 to 2014 were visually
interpreted and manually delineated as polygons using the Landsat images and high-resolution satellite
images from DigitalGlobe and CNES/Airbus in Google Earth™. We assumed that little bias arose in
visual interpretation because the signs of shifting cultivation were visually clear in the reference images.
This procedure resulted in 568 patches (hereafter called reference patches).

Shifting cultivation detected with trajectory-based analysis using Landsat time series images by
Shimizu et al. [31] was compared with the reference patches in the selected area. Firstly, simple area-based
accuracies were calculated using area (ha) that was overlapped and not overlapped between detected and
reference patches. Then, patch-based thematic accuracies were calculated based on 1 or 0 category, that was
spatially matched (1) or not matched (0) between reference and detected patches, similar to Linke et al. [36].
Here, we defined detected patches that overlapped with reference patches by at least one pixel as ‘matched
(1)’. This was because we could assess the number of detected patches, which overlapped with reference
patches by more than one pixel. By doing this, we calculated the patch-based producer’s and user’s
accuracies. We showed some patterns of the area-based and patch-based accuracy assessments in Figure 2.
For example, when a reference patch (area: 1.6 ha) overlaps with a detected patch (area: 1.5 ha) by 1.4 ha as
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shown in the left end pattern in Figure 2, then we calculate 1.4 ha matched, 0.2 ha omission, and 0.1 ha
commission in the area-based accuracy assessment, while we count this case as 1 matched, 0 omission,
and 0 commission in the patch-based accuracy assessment.
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Figure 2. The procedure for area-based and patch-based accuracy assessment. Visual interpretation was
conducted using reference data. Detected patches were assessed based on the spatial overlap with the
reference patches. The high-resolution satellite image in this figure was from Image © 2018 DigitalGlobe.

2.4. Patch-Based Characteristics

In this study, shifting cultivation patches located within 6 km from villages were targeted, because
most shifting cultivation is practiced within 6 km from a village in this region [26]. We downloaded village
points in the Bago region from Myanmar Information Management Unit (http://www.themimu.info/).
Village points located in Thoungoo and Yedashe Township were selected and visually inspected for their
location and existence using high resolution satellite images from DigitalGlobe and CNES/Airbus in Bing
Map and Google Earth™. In total, 2 village points were removed because of dam construction, and 17 points
were added after visual inspection. Then, villages located in the region where shifting cultivation had
been conducted were selected and shifting cultivation patches within 6 km of the village points were used
for analysis. The threshold (i.e., 6 km) was validated by the actual location and distribution of shifting
cultivation in this study (Figure 3). Finally, 52 village points were retained and 6453 patches surrounding
the villages were used for our analysis.

The factors affecting spatial and temporal patterns of shifting cultivation were investigated using
a logistic regression model with variables derived from the trajectory-based analysis and topographic
data. The response variable was shifting cultivation (1) or no shifting cultivation (0) in each year.

http://www.themimu.info/
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Explanatory variables were elevation (scaled to 100 m intervals), slope (degree), distance to the nearest
village (km), distance to the nearest shifting cultivation in the same year (km), distance to the nearest
shifting cultivation in the preceding year (km), and tasseled cap wetness (TCW) value in the preceding
year. Because TCW was used as a spectral index in the trajectory-based analysis, we included TCW to
represent the condition of vegetation. We randomly selected 6453 points avoiding shifting cultivation
patches in the same year to include in the logistic regression model. The explanatory variables were
selected by performing a stepwise model selection.

The results of trajectory-based change detection in the first and last periods of the time series images
are generally unreliable because there are no Landsat images before or after the Landsat images bounded
by the time series [37]. Thus, we only used the detected patches from 2003 to 2012 in this analysis.
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The mean and median of the distance to the nearest village were 1943 m and 1741 m, respectively (n = 6453).

3. Results

3.1. Accuracy Assessments

In the selected 25 km2 area, a total of 531 shifting cultivation patches were detected, which
accounted for 8.2% of the total detected shifting cultivation patches in the study area. The result of
area-based accuracy assessment is shown in Table 2. The producer’s and user’s accuracies for shifting
cultivation across all years were 45.1% and 74.4%, respectively (Table 2).

The producer’s and user’s accuracies for shifting cultivation in the patch-based accuracy
assessment were 78.1% and 88.4%, respectively. The mean size of all detected patches and reference
patches were 1.34 ha and 2.07 ha, respectively. The temporal change of producer’s and user’s accuracies
are shown in Figure 4. The producer’s accuracies in some years were quite low compared with those
of other years (e.g., 2011 and 2013).
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Table 2. Confusion matrix of the area-based accuracy assessment in the selected 25 km2 area from
2000 to 2014.

Reference Patches

Shifting Cultivation (ha) No Shifting Cultivation (ha) Sum (ha) User’s Accuracy (%)

Detected patches Shifting cultivation (ha) 529.9 182.3 712.3 74.4
No shifting cultivation (ha) 645.7 33782.2 34427.9 98.1

Sum (ha) 1175.6 33964.6
Producer’s accuracy (%) 45.1 99.5
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3.2. Patch-Based Characteristics

In the logistic regression model, all explanatory variables except slope were selected in the
stepwise model selection and determined as significant for explaining the probability of disturbance
caused by shifting cultivation in each year (Table 3). The probability of shifting cultivation increased
with increasing elevation and with decreasing distance to the nearest village, distance to the nearest
shifting cultivation in the same year, distance to the nearest shifting cultivation in the preceding year,
and the TCW value in the preceding year. The model revealed that a 1 km increase in distance to
the nearest shifting cultivation in the same year decreased the probability of shifting cultivation by
about 80% while a 1 km increase in distance to the nearest shifting cultivation in the preceding year
decreased the probability only by about 39%.

The patch size and the number of detected shifting cultivation patches in the study area are shown
in Figure 5. The mean patch size was 1.13 ha, ranging from 0.87 ha to 1.39 ha in each year. There was no
clear temporal trend for the mean patch size but the number of detected patches decreased (Figure 5).
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Table 3. Result of logistic regression for the probability of disturbance caused by shifting cultivation.

Coefficients Estimate Standard Error z Value p Value Odds Ratio

Intercept 1.5831 0.1768 8.954 <0.0001 4.870

Elevation (100 m) 0.1342 0.0627 2.139 0.0324 1.144

Distance to nearest village (km) −0.3059 0.0200 −15.334 <0.0001 0.736

Distance to nearest shifting
cultivation in the same year (km) −1.6090 0.0469 −34.302 <0.0001 0.200

Distance to nearest shifting
cultivation in the preceding year (km) −0.4895 0.0361 −13.548 <0.0001 0.613

Tasseled cap wetness value in the
preceding year −5.8257 1.0074 −5.783 <0.0001 0.003
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4. Discussion

The accuracy of detecting shifting cultivation in terms of spatial overlap was revealed in the
area-based and patch-based accuracy assessment. The patch-based accuracy assessment showed
satisfactory accuracies (i.e., producer’s accuracy = 78.1% and user’s accuracy = 88.4%). This indicated
that most disturbance patches caused by shifting cultivation were, at least partially, detected by the
trajectory-based analysis. In the area-based assessment, however, producer’s and user’s accuracies
were 45.1% and 74.4%, respectively (Table 2). These relatively low accuracies revealed that the
proportion of spatial overlap with the reference patches was low even though some parts of shifting
cultivation were successfully detected. The low spatial overlap was assumed to be caused by the
detection of too small an area rather than too large an area. Since the mean size of detected patches
(1.34 ha) were smaller than those of the reference patches (2.07 ha), we assumed that the detected
patches were smaller than the actual size of the cleared area. In total, about 60.6% of actual shifting
cultivation (1175.6 ha in Table 2) was detected as shifting cultivation (712.3 ha). Thus, in the whole
study area, estimated area of shifting cultivation would only account for about 60.6% of actual area.
One possible solution to ensure the successful detection of cleared area is to adjust the parameters
in the trajectory-based analysis. Because the change detection by trajectory-based analysis used
in this study was largely affected by the fitted temporal segmentation and the parameters for the
fitting were adjusted to extract not only shifting cultivation but also other disturbances, adjusting
the parameters might be a good way to detect the majority of areas of disturbance caused by shifting
cultivation. Although spatial overlap was relatively low, most disturbance patches were detected by
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the trajectory-based analysis and thus we assume that the timing and location of detected shifting
cultivation can be used for further analysis, such as logistic regression models.

The producer’s accuracy for shifting cultivation in the area-based accuracy assessment (i.e., 45.1%)
was relatively low considering the result of the pixel-based accuracy assessment and the patch-based
change attribution conducted by [31] (i.e., 91.9% and 87.5% in producer’s accuracy in Table 1). Because the
pixel-based accuracy assessment conducted by [31] included all types of disturbances, the accuracy of
detecting shifting cultivation, which occupies only 10.5% of the total areas of disturbance in the study area,
might not be reflected in Table 1 (note that their user’s accuracy—i.e., 35.8% and 100%—cannot be compared
with the result of this study because false detection was eliminated in the attribution process). To precisely
show the accuracy of each disturbance agent, future studies should identify existing disturbance types
and include sufficient samples in the accuracy assessment because different disturbance types can show
different levels of accuracies in the trajectory-based analysis.

The producer’s and user’s accuracies of detected patches in each year showed different levels
of accuracy in the patch-based accuracy assessment (Figure 4). Several studies have pointed out that
trajectory-based change detection for the first and last period is generally unreliable because there are
no images before or after the Landsat images bounded by the time series [37]. The accuracies in the
last two years of the period in this study coincided with past studies. The reason for a sudden decrease
for producer’s accuracy in 2011 was not known; however, based on visual assessment, the signs of
shifting cultivation were not clear in 2011 and this might lead to a large omission error.

The factors affecting the probability of shifting cultivation were shown in the logistic regression
model. Not surprisingly, the practice of shifting cultivation was more frequently conducted near the
villages, especially for distance from 1000 to 2000 m, due to the ease of accessibility from residences.
There were few disturbances caused by shifting cultivation in the area very close to the villages
(e.g., ~500 m from the villages), because these areas are occupied by residences and protected forests.
The areas near the villages are also located at relatively low elevations, and this might be a reason
for the higher probability of shifting cultivation at higher elevations. The distance to the nearest
shifting cultivation in the same year and preceding year also significantly affected the probability of
shifting cultivation. This indicates that shifting cultivation was conducted in a concentrated rather
than in a random manner. Considering the difference of odds ratio (i.e., 0.200 and 0.613 for distance
to the nearest shifting cultivation in the same year and preceding year, respectively), the distance to
the nearest shifting cultivation in the same year was more influential for the probability of shifting
cultivation. Lower TCW values in the preceding year increased the probability of shifting cultivation,
indicating that lower vegetation cover was more prone to be disturbed by shifting cultivation. This is
supported by the practice of shifting cultivation, which is conducted at intervals of 9 to 12 years [28]
and thus leads to low aboveground biomass accumulation. Due to the existence of protected forests
which have relatively high aboveground biomass, as indicated in the previous study [26], shifting
cultivation was likely to occur in areas of low vegetation.

The spatial and temporal patterns of shifting cultivation are usually not random but consequences
of site selection by villagers. Villagers tend to open the forests in easily accessible locations [27].
In addition, they do not select mountain ridges for shifting cultivation since a water condition in those
places are not suitable for cultivation [26,28]. This selectivity would result in the increased probability
of shifting cultivation in the locations near villages and shifting cultivation in the logistic regression
model. Because there are limited sites with good accessibility for shifting cultivation, these spatial
patterns might also cause shorter fallow periods in these locations. Actually, shorter fallow periods
near village locations was observed by interview survey in this region [29]. The impacts of shorter
fallow periods on biodiversity and site condition need to be further investigated in terms of sustainable
land use in this region.

The size and number of patches in the study area showed the temporal and spatial dynamics
of shifting cultivation in the study area. The mean patch size in the study area was 1.13 ha with no
significant temporal trend (Figure 5b). Takeda et al. [26] measured the size of cleared area using handy
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GPS in the field and reported that the mean size ranged from 1.72 ha to 2.70 ha year by year in this
region. In comparison with the result by [26], the patch size of detected shifting cultivation in this study
was underestimated. This is reasonable since the area-based and patch-based accuracy assessments
also indicated sufficient accuracy for the detected number of patches but insufficient overlap with
the reference patches. In terms of the number of detected patches, there was a clear decreasing trend
(Figure 5a). Based on the temporal change in the size and number of patches detected in this study
region, areas affected by shifting cultivation were assumed to be decreasing, which is similar to the
country-scale situation in Myanmar in the last few decades [38]. This finding suggests that the decline
of the area affected by shifting cultivation in Myanmar is due to a decrease in the number of cleared
areas rather than a decrease in the size of cleared areas. The number of shifting cultivation fields is
largely affected by the number of households in villages [38]. Recent out-migration to urban area
in this region [39] is a possible reason for decreasing number of households and shifting cultivation.
In this context, some parts of forests, such as in the location far from villages, will be less cleared by
shifting cultivation and have longer recovery period, and this affects the sustainability of the mosaic
patterns of landscape in this region.

5. Conclusions

In this study, we investigated the characteristics of patch-based disturbances caused by
shifting cultivation detected in the trajectory-based analysis using annual Landsat time series
images in Myanmar. The area-based and patch-based accuracy assessments in the selected area
showed satisfactory accuracy in terms of the number of detected patches in this area; however,
an underestimation of the area detected by the trajectory-based analysis was observed. For the
temporal accuracy, the producer’s and user’s accuracies varied year by year, presenting low accuracies
in the last periods of time series images. Using the location and timing of shifting cultivation over the
whole study area as a response variable, several factors affecting the probability of shifting cultivation
were specified in the logistic regression model, which included distance to the nearest villages, distance
to the nearest shifting cultivation conducted in the same year and the preceding year, and the TCW
value in the preceding year. The temporal dynamics of shifting cultivation over the whole study
area showed a declining trend in the number of detected patches although patch size was relatively
consistent. The decreasing number of shifting cultivation will cause less disturbance caused by shifting
cultivation and longer fallow period in some parts of forests, such as in the location far from villages.
These dynamics have the potential to affect the patterns of mosaic landscape caused by shifting
cultivation and maintained biodiversity in the mosaic landscape in this region. We showed the utility
of patch-based information derived from annual Landsat time series images to assess the dynamics
of shifting cultivation. As the pattern of disturbance caused by shifting cultivation varies year by
year, using Landsat time series images to detect patch-based shifting cultivation and understand
temporal and spatial dynamics is a viable option. This analysis can aid better understanding of shifting
cultivation in this region and possibly in other regions where large area ground survey is difficult to
be conducted.
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