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Abstract: Greenhouse gases (GHG) are the main reason for the global warming during the past
decades. On the other hand, establishing a well-structured transportation system will yield to create
least cost-pollution. This paper addresses a novel model for the multi-trip Green Capacitated Arc
Routing Problem (G-CARP) with the aim of minimizing total cost including the cost of generation
and emission of greenhouse gases, the cost of vehicle usage and routing cost. The cost of generation
and emission of greenhouse gases is based on the calculation of the amount of carbon dioxide emitted
from vehicles, which depends on such factors as the vehicle speed, weather conditions, load on the
vehicle and traveled distance. The main applications of this problem are in municipalities for urban
waste collection, road surface marking and so forth. Due to NP-hardness of the problem, a Hybrid
Genetic Algorithm (HGA) is developed, wherein a heuristic and simulated annealing algorithm are
applied to generate initial solutions and a Genetic Algorithm (GA) is then used to generate the best
possible solution. The obtained numerical results indicate that the proposed algorithm could present
desirable performance within a suitable computational run time. Finally, a sensitivity analysis is
implemented on the maximum available time of the vehicles in order to determine the optimal policy.

Keywords: green capacitated arc routing; hybrid genetic algorithm; greenhouse gases; sensitivity
analysis; multiple trips

1. Introduction

Nowadays, generating different types of waste and the outbreak of its social, economic and
environmental inconsistencies has caused many problems of collecting, transporting, processing and
disposing of such waste for urban service management. Since, the main cost of the waste management
is related to the transportation [1], evaluation and optimization of this system would play an important
role in reducing the imposed cost and solving the problems of urban service management.

Determining the optimal routes would lead to reduce transportation costs and improve service
quality as one of the vital operational decisions in urban services organization [2—4]. Transportation
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imposes some irreparable impacts on the environment. Consumption of resources, land use, toxic
effects on the ecosystem and human beings, noise pollution, emission of greenhouse gases and
contaminants are examples of the hazardous impacts. Besides the mentioned negative impacts,
emission of the greenhouse gases is directly related to people’s health and indirectly associated with
the destruction of the ozone layer. The necessity of paying attention to this topic comes from the fact
that, the greenhouse gases emitted by the transportation sector are the causes for a major portion of
pollution in different countries around the world [5]. In other words, climate change has attracted a lot
of attention around the world in recent years, particularly the global warming, which significantly
resulted by greenhouse gas (GHG). Carbon dioxide (CO,) is a major part of GHG. According to the
Baidu Index [6], CO; concentration has increased rapidly in recent years and this is going on. Therefore,
minimizing fossil fuel consumption and CO, emissions due to vehicles’ transportation by optimizing
transportation operations is a very helpful way for controlling the global warming [7].

As such, increased concerns about the reduction of such hazardous impacts indicates the necessity
of implementing a well-planned program for transportation sector, for which green routing models
based on consumed fuel and air pollution can be helpful.

There are two main categories presented in routing problems related to urban waste collection [8].
First, a set of given nodes are distributed throughout the urban graph network and the objective is to
find the best routes that traverse all the nodes. The best-known problem in this category is Vehicle
Routing Problem (VRP). Second, there are some predefined edges/arcs in the urban graph network
and the objective is to find the best routes that traverse all the edges/arcs with positive demand.
In fact, the edges/arcs denote the streets or alleys of the urban area in which the waste are distributed
along them. The most applicable problem in the second category is Capacitated Arc Routing Problem
(CARP).

In this research, the problem is modeled as a CARP on an undirected graph and solved accordingly.
The reported results in this area mentioned that several real world activities can be modeled as CARP,
headmost among them are waste collection, street sweeping, snow removal and mail collection or
delivery. Whereas the CARP is a robust problem model, which was first introduced by Golden and
Wong [9], have been studied by many researchers. Dror [10] presented the most applications of CARP
variants and of related solution methods. For a further survey, the reader can also see the research
done by Assad and Golden [11].

Even though CARP is a well-known concept in operational research but only limited research
and extensions have been studied in this respect. This important routing problem was first introduced
by Golden and Wong [9]. CARP refers to the set of problems wherein a fleet of vehicles originally
located in one or more depots delivering services on road networks; the main examples of these
services include municipal waste collection, snow removal, pouring salt on snows and road surveying.
The roads are represented by edges or arcs across these networks. Each edge contains two arcs with
different directions. The services should be delivered in such a way to minimize the associated cost.
By starting from the associated central depot, the vehicle delivers the planned service and then returns
back to the depot. Each vehicle has a certain capacity and all routes are both originated from and
terminated to the origin (central depot).

Most of the research works performed in this respect have attempted to achieve economic
objectives by focusing on minimization of traveled distance, required time, or the number of vehicles
required but failing to take environmental objectives and pollution reduction into consideration is so
remarkable. So, the crucial aspects of the research are listed as below:

- Environmental involvement

- Economic transportation system
- Real world assumptions

- Mathematical model limitations
- Efficient solution methods
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We survey the literature for three different parts of solution methods and possible extensions of the
problem, green aspects of the problem with different existed solution methods and some novel studies
in the vehicular technologies and related solution methodologies applicable to the routing problems.
In the first part, some important research is investigated in terms of different solution methods
and different applications of the CARP. Ghiani et al. [12] solved CARP with intermediate facilities
(CARP-IF) by considering capacity and distance constraints using a new Ant Colony Optimization
(ACO) that an auxiliary graph is used in it. Experimental results indicated that their proposed
algorithm was able to make substantial improvements over the known heuristics. Li et al. [13] solved
a waste collection problem in Porto Alegre, Brazil that has a population of over 1.3 million people
and consists of 150 districts. They made a truck scheduling operational plan with the objective of
minimizing operating costs and fixed costs of trucks. Furthermore, they proposed a heuristic approach
to balance number of travels between facilities. Computational results indicated that they could
reduce the average number of required vehicles and the average traveled distance of 27.21% and
25.24% respectively.

Laporte et al. [14] presented a CARP problem considering stochastic demands which will cause
failure in paths because of exceeding from vehicle capacity. They solved the problem by a neighborhood
search heuristic algorithm. Khosravi et al. [15] presented a periodic CARP (PCARP) with mobile
disposal sites specific to the urban waste collection. They tested two versions of the Simulated
Annealing (SA) algorithm to solve the problem. Their proposed algorithm showed an appropriate
performance in comparison with CPLEX.

Babaee Tirkolaee et al. [16] investigated a novel mathematical model for the robust CARP.
The objective function of their proposed model aimed to minimize the traversed distance considering
the demand uncertainty of the edges. To solve the problem, they developed a hybrid metaheuristic
algorithm based on a SA algorithm and a heuristic algorithm.

Recently, Tirkolaee et al. [1] developed a Mixed-Integer Linear Programming (MILP) model for
the multi-trip CARP in order to minimize total cost in the scope of the urban waste collection. In the
proposed model, depots and disposal facilities were located in different places specific to the urban
waste collection. They proposed a hybrid algorithm using the Taguchi parameter design method based
on an Improved Max-Min Ant System (IMMAS) to solve well-known test problems and large-sized
instances. They could demonstrate the high efficiency of their proposed algorithm. Hannan et al. [17]
proposed a Particle Swarm Optimization (PSO) algorithm in order to solve a Capacitated VRP (CVRP)
with the aim of finding the best waste collection way and optimal routes. They could prove the
efficiency of their algorithm in different datasets.

Rey et al. [18] developed a hybrid solution method based on ACO heuristics, Route First-Cluster
Second methods and Local search improvements to obtain high quality solutions for VRP in comparison
with other metaheuristic solvers.

Tirkolaee et al. [19] proposed a novel mathematical model for the robust PCARP considering
working time of the vehicles. They developed a hybrid SA algorithm in order to solve the problem
approximately. The obtained results showed that their proposed algorithm could generate appropriate
robust solutions.

In the second part of the literature, Green VRP (G-VRP) and its different applications are
investigated which deal with the optimization of energy consumption of transportation. The G-VRP
was mainly studied since 2006 [19]. Lin et al. [20] presented a review research in the field of G-VRP
and its past and future trends. Miden et al. [21] investigated time window-constrained VRP wherein
speed was dependent on travel time. They further proposed a heuristic for solving the problem and
ended up with 7% saving in CO, emission in a case study in England.

Erdogan and Miller-Hooks [22] formulated a G-VRP and developed some solution methods
to consider fuel-powered vehicles to cope with the limited refueling infrastructure in the problem.
They could generate acceptable solutions using the modified Clarke and Wright Savings heuristic and
the Density-Based Clustering (DBC) algorithm.
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Kopfer et al. [23] did some research on the analysis of different costs incurred through pollution
and environmental impacts. They presented a mathematical model and evaluated it by CPLEX
solver. Tavares et al. [24] studied the effects of road slope and vehicle load on consumed fuel in
waste collection problem; however, they considered three levels of load only: half load (during waste
collection), full load (traveling to the disposal site) and no load (when returning to the depot). In their
research, the relationship between fuel consumption rate and load was not considered. In the meantime,
it is obvious that, when a vehicle serves a node, its losses some its load, which translates into lower
fuel consumption along the rest of the route. Therefore, it is necessary to consider load-dependent fuel
consumption for calculating total cost more accurately.

Mirmohammadi et al. [5] presented a multi-trip time-dependent periodic G-VRP considering
time windows for serving the customers with this assumption that urban traffic would disrupt timely
services. The objective function of the proposed problem was to minimize the total amount of carbon
dioxide emissions produced by the vehicle, earliness and lateness penalties costs and costs of used
vehicles. They used CPLEX solver to solve the problem exactly.

Stochastic G-VRP has been investigated in some research in which some parameters are considered
to be stochastic such as vehicle speed, breakdown rate of vehicles [25,26]. Recently, Poonthalir
and Nadarajan [27] presented a bi-objective G-VRP, considering various speeds and fuel efficiency.
They minimized the travelling cost and fuel consumption using goal programming and Particle
Swarm Optimization (PSO). As a recent applied high efficiency solution method in the field of study,
Kulkarni et al. [28] proposed a novel two-stage heuristic based on the inventory formulation for the
recreational Vehicle Scheduling Problem (VSP).

As the last part of the literature, Wang et al. [29-31] proposed some mobile sink based routing
methods to the routing process, which can largely improve network performance such as energy
consumption and network lifetime. On the other hand, there are some novel technologies that would
be applicable to the problem such as conversion of CO; into clean fuels, autonomous vehicle control
and so on [32-37].

Uebel et al. [35] conducted the study of a novel approach that combines discrete state-space
Dynamic Programming and Pontryagin’s Maximum Principle for online optimal control of hybrid
electric vehicles (HEV). They considered engine state and gear, kinetic energy and travel time are
considered states in this paper besides electric energy storage. They could demonstrate the high
quality of the generated solutions in comparison with a benchmark method. Wozniak and Polap [36]
developed a hybrid neuro-heuristic methodology for intelligent simulation and the control of dynamic
systems over time interval specific to the model of electric drive engine vehicle.

Alcala et al. [37] presented the control of an autonomous vehicle using a Lyapunov-based
technique with a LQR-LMI tuning. They could apply a non-linear control strategy based on Lyapunov
theory for solving the autonomous guidance control problem.

After reviewing the literature in different aspects, it is perceived that all of the research contains
different solution methods so that each has its own advantages. Therefore, in this research, the most
applied metaheuristic algorithms that is, SA and GA are combined together in order to keep the
advantageous of each one. On the other hand, the applied local search procedures are defined
innovatively in line with the problem solution space.

Accordingly, this research is aimed at presenting a novel model for the multi-trip CARP of urban
waste collection which not only brings about economic benefits (minimizing the fixed cost of used
vehicles) but also reduces adverse impacts of the CO, emission in air pollution considering advantages
for the environment and people’s health. Also, a Hybrid Genetic Algorithm (HGA) is developed to
solve the problem efficiently.

Therefore, the main novelties of the present paper are briefly as follows: (1) presentation of the
multi-trip Green Capacitated Arc Routing Problem (G-CARP) which has not been yet introduced in
the literature to the best of our knowledge; (2) since this paper is related to municipal solid waste
management, loading, unloading sites and vehicle depots are commonly located in different places so
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that two separate locations are considered for the depot and unloading site in the model to make it
closer to real world; and (3) developing a customized efficient solution method.

The remaining of the paper is organized as follows: Section 2 describes the distance-oriented
green capacitated arc routing problem studied in this paper. Section 3 presents the proposed algorithm.
Section 4 discusses the computational results. Finally, the concluding remarks and outlook of the
research are presented in Section 5.

2. Distance-Oriented Green Capacitated Arc Routing Problem

The assessment of fuel consumption and CO, emission for vehicles requires performing
complicated computations which only shows an estimation and approximation due to the difficulty
of determining some of the fundamental variables values such as road slope, driving mode, weather
conditions, accidents and so on [38].

The investigations performed on CO, emission are based on either fuel consumption or traveled
distance. Based on an initiative approach of greenhouse gases protocol [39], Table 1 lists the required
criteria for determining feasibility of each of these methods [39]. In one hand, in the fuel-oriented
method, the fuel consumption is multiplied by CO, emission factor for the fuel type. On the other
hand, in the distance-oriented method, CO, emission can be calculated using the distance-oriented
emission factors. A fuel-oriented emission factor is developed based on fuel heat values, the fraction
of fuel carbon which reacts with oxygen and carbon content coefficient. The distance-oriented method
can be used when the data related to the traveled distance by the vehicle is available. Making a decision
regarding which of these two methods is used, depends on the data accessibility.

Table 1. Fuel-oriented and distance-oriented methods.

Fuel-based vs. Distance-based Fuel-Oriented Method Distance-Oriented Method

Advantages More reliable Easy to provide data

Easy calculations only when fuel

consumption data are available High level of uncertainty

Disadvantages

- Distance traveled

Data based on vehicle type -

Fuel consumption factor
Heat values

Distance traveled
Fuel consumption

Data gathering sources -

Fuel receipts

Fuel’s cost background

Direct measurement background,
including official fuel consumption

Odometer records
Company backgrounds on fuel
economy data by a given vehicle

and tank gage records

- Data calculation based on distance
traveled by a given vehicle and
fuel type
Converting the distance traveled to
used fuel based on fuel economy data
- Converting the fuel estimations to
CO, emissions by multiplying the
used fuel by the fuel constant factors

- Data gathering based on distance
traveled by a given vehicle and
fuel type
Converting the distance estimations
to CO, emissions by multiplying the
distance traveled by the
distance-based emission factors

Emissions calculation

It is clear that trying to obtain a theoretical formulation of this problem, the distance-oriented
method (wherein CO, emission is calculated based on traveled distance and distance-based emission
factors) is easier to apply. This requires taking two main steps: (1) collecting data on traveled distance
by a given vehicle and fuel type (e.g., km or ton-km); and (2) converting the distance estimations to
CO; emissions by multiplying the obtained results from step 1 by the distance-based emission factors.

In addition, the CO, emission calculations are based on the assumption that all of this computation
depends mainly on two factors: type of the vehicle and type and quantity of the consumed fuel.
Furthermore, this means that the emission is a function of two factors: transportation types (the vehicle
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and its load) and traveled distance [40]. Therefore, CO, emission estimations differ depending on the
vehicle mass and transported load, which is an important parameter [41].

Asitis presented in Table 2, emission estimation factor goes through the two main steps mentioned
earlier. The first step includes estimating a fuel conversion factor using chemical reaction of fuel
combustion (Ci3Hyg + 20 O, — 13 CO, + 14 H,O) [42]. Given the molecular mass of diesel (C13H»g)
and CO; (184 and 24, respectively) and knowing that there are 13 CO, molecules for each diesel
molecule, one can simply find that for each kg of diesel, 13 x 44/184 = 3.11 kg of CO; is produced.
Then, using diesel density (0.84 kg /L), one can calculate the produced CO; per liter of consumed diesel
(3.11 x 0.84 = 2.61 kg). It is observed that this estimated theoretical conversion factor is well close to
that experimentally obtained by Defra (2.63 kg) [43], providing conversion factors for greenhouse gases,
so as to use existing data resources and convert them to equivalent CO, emission data. Subsequently,
having the fuel conversion factor (2.61 kg of CO, /L of diesel), the second step is to estimate emission
factor (¢). In this step, a function incorporating the data on average consumption depending on load is
defined. Table 2 shows estimated value of this factor for several different capacity scenarios for a truck
of 10 tons in capacity [39].

Table 2. Estimated emission factor for a 10-ton truck [39].

Vehicle Status Vehicle Load Consumption Fuel Conversion Emission Factor
Percentage (%)  (Liter/100 km) Factor (kg CO,/L) (kg CO,/km)
Not loaded 0 29.6 0.733
Light loaded 25 32 0.831
Half loaded 50 344 2.61 0.9
Heavy loaded 75 36.7 0.958
Full loaded 100 39 1.018

Accordingly, the presented information is generalized to our problem by considering the impact
of CO, emission and conversion factors.

2.1. Mathematical Model of G-CARP in the Scope of Municipal Services

As the main difference between VRP and CARP, CARP consists of determining optimal routes
that traverse all the edges with positive demands (required edges), however, VRP consists of finding
optimal routes that traverse all the nodes defined in a graph network [1].

Consider a graph of G = (V, E) including the set of V for all the nodes constituting the edges and
the set of E for all the edges defined in the network. The proposed G-CARP involves determining
the optimal number of vehicles and optimal routes for each vehicle to minimize an overall objective
function involving the cost of using the vehicles and the cost of total CO, emission throughout the
network which has a direct relation with total traveled distance. The vehicles are originally located in
depot; then start traveling (their first trip) to serve the required arcs and once their capacity limitation
is reached, proceed to the unloading site to empty their loads. If possible, they continue traveling
(their second trip) from the unloading site to the operational area. Having more than one trip for
each vehicle directly depends on the capacity constraint and the maximum available time of vehicles.
When the remaining time for a vehicle becomes zero, it shall return to the unloading site where it is
unloaded before returning back to the depot.

Node 1 denotes the depot and node # denotes the unloading site in the network graph.

The main steps of the research and modeling the problem are described in Figure 1 before the
model being presented.
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Sets
1% The set of the network nodes
K The set of the available vehicles
Dy The set containing pt! trip by the k™ vehicle
E The set of all edge defined across the network
Er The set of all required edge defined in the network
S An optional set of all edges defined in the network
VIS] The set of nodes defined in the set S

Parameters
tij The time it takes to traverse the edge (i, j), where (i, j) € E
djj Demand of the edge (i, j), where (i, j) € E
cij Distance (length) of the edge (i, ), where (i, j) € E
ejj CO; emission along the edge (i, j), where (i, j) € E
b4 Cost conversion factor per CO, emission unit
vk Cost of activating kth vehicle

Tmax Maximum time available for each vehicle
Wi Capacity of kth vehicle
G A very large number

Decision variables

u If the edge (i, j) € E is traveled by k' vehicle in the P trip for y times (u € Z)

Xijpe =
0 Otherwise
11f the edge (i, j) € E is served by k' vehicle in the P trip
Yijpe =
0 Otherwise
1 If k™ vehicle is used, wherek = 1, ..., K
Uy =

0 Otherwise

Mathematical model
Minimize Z1 =Y Y Y ¥ ejXijp,
(i,j)€E pr€P keK
Minimize Z2 = Y couy
keK
Minimize Zyq = Z1 + Z2

s.t.
n n
Z xi]‘ = Z x]'ipk Vi e V\{l,]’l}, Vk € K,Vpk € Px,
(i,j)€eE (ji)eE
Y ) (%’j Pr +yjipk) =1 V(i j)or(ji) € Eg,
pr€P keK

Z d,]]/l] Pi < Wi Vk € K, Vpk € Py,
(ij)€ER

Yijpe < Xij py V(l,]) € Eg, Vk € K, Vpk € P,

Z Z xijkaGuk Vk € K,
PkGPk (i,j)EE
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Z Z tijxij Pk < Tmax Vk € K, (10)
pkEPk (i,j)EE
) X1jp = VKkEKVp =1, (11)
(1,j) € E
jeVv\{l,n}
Y. Xinp =Ux VkEKVp=1, (12)
(j,n) € E
jeV\{l,n}
) Xinp Stk VkEKVpre{2... P}, (13)
(j,n) € E
jeV\{ln}
) Xipp Sk VkEKVpre{2... P}, (14)
(j,n) € E
jeV\{1,n}
Y, Xup <G Y xij, VSCE, 1¢V[S],VkeKVp € Pk, (15)
(jh)es i¢N[S], jeNIS]
xij Pk S Z+/yi]’pk S {0/ 1} S U € {0/ 1} V(l,]) €E , Vk € K, Vpk S PK. (16)

The objective function consists of two parts. The first part includes minimization of total CO,
emission cost while the second part attempts to minimize the cost of using (renting) the k™ vehicle.
Constraints (5) denote the flow balance for each vehicle, that is, it controls input to output from each
intermediate node constituting two arcs. Constraint (6) ensures that each required edge is served
by one of its two constituting arcs. Constraint (7) indicates the capacity constraint of the k' vehicle.
Constraint (8) expresses that the required edge is served by the vehicle traveling through it (or there
are chances that a vehicle travels through an edge without having the edge served). Constraint (9)
stipulates that the k' vehicle will be used when the associated cost is paid. Constraint (10) represents
the maximum time limitation considered for each vehicle. Constraints (11) and (12) ensure that the
first trip of the vehicle starts from the depot and ends at unloading site. Constraints (13) and (14)
make sure that from the second trip to the next (if any), the trips start and end at the unloading site.
Constraint (15) ensures that no sub-tour will be constructed.

Total CO, emission is based on the environmental matrix (e) which is calculated by considering
the matrix containing distances between each pair of nodes constituting edge (i, j) and respective
emission factor (g).

€jj = Cjj X S(di]'), V(l, ]) €E (17)

In order to gain a better understanding, an example with four required edges and two available
vehicles is demonstrated in Figure 2. Nodes 1 and 8 represent the depot and unloading site, respectively.
In this figure, the numbers indicated on each edge refer to the demand and length of the edge. It is
assumed that the lengths of the edges are equal to their traversing time. The required edges are marked
by solid lines (e.g., the edge (2, 3)). Vehicle 1 has the capacity of 40 units and the usage cost of 40003.
Vehicle 2 has the capacity of 50 units and the usage cost of 5000$. Maximum available time for each
vehicle is equal to 200 units. In this example, vehicle 1 is used and constructs two trips in order to
serve all the required edges.
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|| Defining the assumptions of the model based onreal
world application

Validating the model using several instances and the

GAMS softwre

Developing a solution method to solve thelarge-sized
problem

Implementing a sensitivity analysis on the maximum
available time of vehicles

Providing concluding remarks and research outlook

Figure 1. The main steps of the research.

A" Unloading site (8)

o

-
—
—

Required Edge 14,15

Solution: ( X1{1}, X1{2})
Tours:

X1{1}: 1-2-3-4-6-7-8
X1{2}: 8-2-3-5-6-7-8-1
Distance Traveled=135 km
Vehicle Usage Cost=4000$
Total Emission Cost=125%
Total Cost=40125%

Figure 2. A schematic example and solution generation flow.
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By solving the final proposed model considering appropriate input parameter value and
considering time periods, the obtained results will be reliable and applicable in an urban area and
would definitely lead to huge cost savings as a real time application.

2.2. Limitations of the Adopted Model

The applicable limitations of the proposed adopted model are listed as below:

(1) Itisjust applicable for a specific time period and it cannot include a planning horizon. As it is
obvious the demand of different periods may be different and it would change the obtained results.

(2) The exact fuel consumption rate is not accessible due to the hardness of computing the exact
effects of the road slope, temperature conditions, load volume and so forth.

3. Hybrid Genetic Algorithm (HGA)

Since the CARP is an NP-Hard problem [9] and due to the high complexity of our proposed
problem as an extended CARP, the exact methods are capable to solve the problem only in small
sizes. Therefore, an HGA is proposed to solve the problem approximately in medium and large sizes.
The proposed HGA is based on SA algorithm and Genetic Algorithm (GA).

The structure of the proposed HGA is depicted in Figure 3.

Generate initial solutions using the proposed
constructive heuristicalgorithm
-
Improvetheinitial solutions by applying the
proposed SA

Run the proposed GA algorithm to make the HGA

Report the best obtained solution

Figure 3. The structure of the proposed hybrid genetic algorithm (HGA).

As it was mentioned, there are many applied metaheuristics presented in order to solve the
optimization problems similar to the research problem [44-49]. Since the applicability and the
robustness of the GA algorithms have been proved and it has generated appropriate solutions for
CARPs in the literature [50-54], GA is proposed as the main algorithm for the current research.

In the following, the mechanism of the proposed algorithm is described.

In order to generate initial solutions for HGA, a heuristic initial solution generator algorithm is
implemented. HGA is composed of three stages. In the first stage, a random solution is generated.
The second stage involves improving the obtained solution by SA algorithm. In the third stage, GA is
run with the output of the SA. In the HGA, the solution is represented by a chromosome as shown in
Table 3.

Table 3. The solution representation chromosome of the proposed HGA.

Description Vehicle Number  Separator  Trip Number Separator Constructed Routes
First trip of the first vehicle 1 0 1 0 1-2-4-5-6-7-1
Second trip of the first vehicle 1 0 2 0 1-3-2-4-5-7-1

First trip of the second vehicle 2 0 1 0 1-5-3-6-4-7-1
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3.1. Solution Representation

In the proposed algorithm, a matrix is used to represent the traversing sequence of the arcs,
the related vehicle numbers and trip numbers in which there are two separators of number zero
between vehicle number and trip number and between the trip number and constructed routes.
According to the example presented in Table 3, we have two activated vehicles so that the first vehicle
has two trips and the second one has only one trip that covers all the arcs with demands.

3.2. Initial Solution Heuristic Algorithm

In order to generate initial solutions, a constructive heuristic algorithm is employed. The steps
taken in this algorithm are as follows:

1. Select a vehicle randomly. The first trip starts at the depot.

Among all of the edges starting at the depot, consider  edges with the shortest distance to the
depot and select one of them randomly. Go to Step 3.

3. Once arrived at the new vertex at the end of the selected edge, go to Step 4 if there exists any
required edge; otherwise, go to Step 5.

4. Among all of the required edges, consider B edges with the highest demands that can be selected
considering vehicle capacity and maximum available time constraints. Select one of the 8 edges
and go to Step 3. If there exists no required edge meeting both of the mentioned constraints, go to
Step 5 (for an edge to meet the maximum available time constraint, there shall be a vehicle that
can travel through the edge and then proceed to the unloading site within the specified time
interval for the considered vehicle).

5. Among the entire set of non-required edges at the considered vertex, select  edges meeting the
time constraint with the smallest lengths and then select one of them randomly. If such conditions
are not satisfied, go to the unloading site and then proceed to Step 6.

6. If all of the required edges are served, go to Step 7, otherwise update the vehicle capacity
constraint. If vehicle maximum available time constraint is at least enough to go from the
unloading site through the shortest edge and then return to the unloading site, go to Step 3;
otherwise, select the next vehicle and go to Step 2.

7. Terminate the algorithm.

3.3. Improving the Solution Using SA Algorithm

SA algorithm is applied to improve the solutions and all of the initial solutions are separately
improved using this algorithm. This algorithm has a great efficiency to solve the problems in
non-convex or discrete solution space [55]. Initial parameters of the algorithm include the number of
iterations at each temperature (M), initial temperature (TEy), temperature reduction rate («), ultimate
temperature (TE,,;) and Boltzmann’s constant (Kc), which are initialized before starting to search.
Then, a neighborhood of the initial solution is considered. If the value of the objective function within
the generated neighborhood is better than the value of the objective function for the respective initial
solution, the neighborhood replaced the initial solution; otherwise, a random number between zero
and one was generated and compared to the algorithm defined equation [45]. If the random number is
smaller than the value of the algorithm equation, the worse solution is accepted. A number of iterations
were performed at each temperature before going to a lower temperature. Stopping criterion is set for
achieving the ultimate temperature. In the present paper, the values of the algorithm parameters are
set as follows using trial-and-error method wherein three example problems are solved under different
scenarios to find the best values of the algorithm parameters.

M=5,a=098 TEy =200, TEsug = 1, Kc = 0.8 (18)

Local search methods applied in this algorithm are as follows:
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1. Swap a trip of one vehicle with a trip of another vehicle at random. A solution can be a candidate
for selection only if it is viable.

2. Two trips are selected at random. If there exists common edge/edges in the two selected trips,
one of the edges is selected randomly and both of the trips are divided into two parts considering
the selected edge. The first part of the first trip is combined with the second part of the second
trip and the first part of the second trip is combined with the second part of the first trip to form
two new trips.

3.  Two trips are selected at random. If there exists common edge/edges in the two selected trips,
the sequence between common edges of the two trips is changed.

4. One edge along one trip is selected randomly and its direction is reversed.

5. Part of a trip is selected at random and its direction is reversed.

3.4. Genetic Algorithm

This algorithm is based on producing new generations and selecting the best solutions for
producing the next generation [56]. The heuristic approach explained earlier is used to generate initial
solutions and to be improved by SA for the proposed GA. For this purpose, the heuristic algorithm
generates a specified number of initial solutions (200 solutions). Among the generated solutions,
a sample of the size equal to that of the initial population of the GA is taken following the initial
solution selection approach explained in the next sub-section. In the next stage, the required number
of solutions is selected using two-parent tournament selection method and the proposed crossover
method explained in the following is employed to generate two solutions. This process is repeated until
the required number of solutions is achieved, followed by applying mutation operator at a particular
rate following the method proposed in the following. Finally, among all of the solutions, a specified
number of solutions are selected via the initial solution method and transferred to the next generation,
eliminating all other solutions.

3.4.1. Initial Solution Selection

Two things must be considered when selecting initial solutions. The first thing to consider is the
quality of solutions and the second thing is the scattering of the solutions. If one focuses on selecting
the best solutions only, the search space will be reduced and there are chances of trapping in local
minima. In order to address this problem, the present paper proposes an initial solution selection
approach which goes through the following steps:

1.  Define two sets Q and S, which are initially empty.

2. Assign the initially generated solutions to the Set Q and sort them by the value of the objective
function (ascending).

3. Divide the interval between the best and worst values of the objective function into num intervals
of the same length (where num is the number of solutions to be selected).

4. Select isolated solutions in each interval and transfer them to the set S before having them
eliminated from the set Q. If the number of selected solutions is equal to 7, terminate the
algorithm; otherwise, proceed to Step 5.

5. Assign a value to the solutions remaining in set Q. The value is equal to the inverse of the number
of the solutions within the respective interval of solutions.

6.  Sort the solutions by value (descending) and assign to each solution a cumulative score obtained
by summing up scores of previous solutions and that of the current solution. Each time, generate
a random number between zero and the sum of scores, select the solution which falls within the
considered interval and transfers it to the set S.

7. If the set S contains enough number of initial solutions, terminate the algorithm; otherwise, go to
Step 6.
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3.4.2. GA Operators

The most important operator in the scope of a GA is crossover operator. The proposed crossover
operation is as follows:

1. Two parents are selected via tournament method. For this purpose, a particular number of
solutions are selected randomly and the two ones for which the best values of the objective
function is obtained are selected. Two trips are selected at random and swapped between the
two parents.

2. Two parents are selected via tournament method, from whom two trips are selected randomly.
If there exists common edge/edges in the two selected trips, one of the edges is selected randomly
and both of the trips are divided into two parts considering the selected edge. The first part of the
first trip is combined with the second part of the second trip and the first part of the second trip is
combined with the second part of the first trip to form two new trips to replace the previous trips.

On the other hand, the mutation operator is applied at the fixed rate of Pm to mutate the child
produced via the crossover operation.

The local search methods used to improve initial solutions is further used as mutation operators.

After applying the operators, the feasibility of the solutions are evaluated by the existence check
of the arcs in the graph network, vehicle capacity constraint of each trip, vehicle maximum available
time in each tour.

3.4.3. Parameter Tuning of the HGA

In order to adjust the parameters of the proposed HGA, a trial-and-error approach is followed,
wherein three example problems are solved under different scenarios to find the best values of
the algorithm parameters. Considering what has mentioned above, the number of initial solutions
generated by the proposed heuristic algorithm is set to 200 (i.e., initial population size), the number of
solutions obtained from the crossover operator is set to 150 and mutation rate is set to 0.1. Figure 4
demonstrates pseudo-code of the proposed GA.

Begin
//nitial population
Generate initial population by the proposed heuristic algorithm (Pop)
Improve the population by Local search defined in SA algorithm
Output: Report N of the best solutions
//Main Iteration

Counter=1

While (Counter<=Max)

Select Parent Pair (Pop) — (Soll, Sol2)
Crossover (Soll, Sol2) — (S)
If random number<PB,, then
Mutation (S) — (S)
Update Population
Counter= Counter + 1
}
Until stopping condition are met
Output: The best solution
End

Figure 4. The proposed HGA pseudo-code.
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4. Numerical Results

In this section, in order to validate the proposed mathematical model and to evaluate the
performance of the proposed algorithm, 15 random instances of various sizes are generated.
After solving instances with the exact method and analyzing the obtained results, it has been revealed
that the proposed model has passed its validity test.

For all of the instances, two types of vehicle (types 1 and 2) with capacities and activation costs of
5 and 7 tons and 400% and 500%, respectively, were considered. Supporting information and network
structure are demonstrated in Table 4. The input parameters values are generated randomly with a
uniform distribution.

In Table 4, column 1 denotes the instance number, column 2 defines the total number of edges,
column 3 gives the number of required edges and columns 4 and 5 show numbers of available vehicles
of types 1 and 2, respectively, for each instance. The emission factors of the vehicles are described in
Table 5. Also, ¥ is equal to 10 in all instances.

The 15 instances are then solved using CPLEX solver of GAMS Software, the proposed SA and
HGA separately for the applied run time constraint of 3600 s. The aim of investigating SA and HGA
separately is to make the impact of applying GA on SA more obvious. In fact, HGA is the result of
applying GA on SA.

Table 4. Input information of the instances.

Instances TE RE AV1 AV2
P1 8 6 1 1
P2 20 16 2 1
P3 35 28 2 2
P4 50 33 4 3
P5 70 49 4 4
P6 90 52 6 5
P7 100 62 7 6
P8 120 78 8 7
P9 140 85 9 7

P10 150 96 10 8
P11 190 123 10 9
P12 200 129 11 9
P13 230 153 12 10
P14 250 197 12 11
P15 280 214 13 11
P16 310 246 15 13
P17 330 265 16 15
P18 400 320 18 16

TE: total edges; RE: total required edges; AV1: total available vehicles type 1; AV2: total available vehicles type 2.

Table 5. Estimated emission factor for the 5-ton and 7-ton trucks.

Vehicle Status ¢ of a 5-ton Vehicle € of a 7-ton Vehicle
Not loaded 0.535 0.638
Light loaded 0.607 0.723
Half loaded 0.657 0.783
Heavy loaded 0.699 0.833
Full loaded 0.743 0.886

The obtained results are shown in Table 5. The solution methods are executed on a Laptop
equipped with Core i7 CPU @ 2.60 GHz processor and 12.00 GB of RAM.

As it is obvious in Table 6, CPLEX is not capable of finding a solution for some problems by
applying the 3600 s run time limitation. Results have shown that the proposed HGA has appropriate
efficiency in comparison with SA and CPLEX. However, SA could solve the problems at a lower run
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time against HGA, however, this difference is negligible due to the significant better Gap percentage
(Figure 5). The average gaps obtained by SA and HGA are 2.66% and 1.64%, respectively. On the
other hand, the capability of the proposed solution methods is evaluated through solving P15-P18.
As it is obvious, CPLEX could report the best found solution up to the first 15 problems. For P16-P17,
there is a significant increase in run time of SA and HGA and for P18, none of the algorithms are able
to find any solution within 3600 run time limitation. It shows that some additional modification may
be needed to be applied to improve the efficiency of for solving very large sized problems. The number
of used vehicles in each instance problems is presented in Table 7 for different solution methods. As it
is obvious, there are no significant differences between the number of used vehicle types 1 and 2.

Table 6. The obtained computational results.

Instances CPLEX SA HGA CPLEXRun  SA Run HGARun  SA Gap HGA
Objective Objective  Objective Time (s) Time (s) Time (s) (%) Gap (%)
P1 1122.17 1130.47 1129.13 3.5 2.18 4.49 0.74 0.62
P2 1542.23 1557.34 1556.11 9.32 4.83 6.4 0.98 0.9
P3 1624.24 1653.8 1651.85 21.12 8.97 11.12 1.82 1.7
P4 3285.49 3364.34 3338.06 90.33 16.1 22.17 2.4 1.6
P5 3780.57 3878.11 3857.32 221.58 19.84 25.05 2.58 2.03
P6 4891.73 5071.26 5008.64 584.23 29.55 38.78 3.67 2.39
P7 5875.88 6076.25 6003.97 887.82 36.04 45.24 3.41 2.18
P8 6720.01 6917.58 6853.07 1030.68 54.65 68.02 2.94 1.98
P9 7057.06 7342.87 7198.91 1765.14 57.23 75.09 4.05 2.01
P10 7537.13 7829.57 7728.57 2620.02 65.17 87.84 3.88 2.54
P11 8004.2 8305.16 8163.48 3315.32 74.26 98.23 3.76 1.99
P12 8734.31 9135.21 8967.52 3492.1 89.1 101.3 4.59 2.67
P13 8985.35 9360.94 9176.74 3600 101.21 121.36 4.18 2.13
P14 9350.4 9651.48 9485.98 3600 128.06 142.02 3.62 1.45
P15 10,044.5 10,024.51 9842.16 3600 143.84 163.19 0 0
P16 - 14,680.5 14,459.78 3600 268.11 354.85 0 0
P17 - 18,526.22 18,268.38 3600 642.58 923.07 - -
P18 - -* - 3600 3600 3600 - -
Average - - - 1980.06 296.76 327.12 2.66 1.64
* No solution found.
Table 7. The number of used vehicles obtained by different solution methods.
Solution by CPLEX Solution by SA Solution by HGA
Instances
Uv1* Uv2 ** UVvi uv2 UVv1 uv2
P1 1 1 1 1 1 1
P2 2 1 2 1 2 1
P3 2 1 2 1 2 1
P4 3 3 3 3 3 3
P5 4 3 4 3 4 3
P6 6 4 5 5 6 4
P7 6 6 6 6 6 6
P8 8 5 7 6 7 6
P9 8 6 7 7 8 6
P10 8 7 8 7 9 6
P11 9 7 8 8 8 8
P12 9 8 8 9 8 9
P13 10 8 9 9 10 8
P14 11 8 10 9 10 9
P15 10 10 12 8 11 9
P16 - - 13 13 14 12
P17 - - 14 14 14 14
Average of P1-P15 6.47 5.2 6.13 5.53 6.33 5.33

* The number of used vehicle type 1; ** The number of used vehicle type 2.
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Figure 5. A comparison of computational times between CPLEX solver, SA and HGA.

As another advantage of the proposed algorithm, it can solve the large sized problems with a
reasonable low run time in comparison with the algorithms proposed in the literature like Improved
Max-Min Ant System (IMMAS) [1].

Sensitivity Analysis

In order to investigate the effects of changing some parameters on the value of the objective
function, a sensitivity analysis is performed on these parameters of the first fifteen problems by HGA.
In fact, the behavior of the objective is studied in front of the uncertain environment if the considered
value of a parameter changed. On the other hand, managers are willing to know how much benefits
would be gained if they assign more resources. In fact, they want to know about the relation defined
between objective function and the value of the assigned resources. In this research, the effects of
the maximum available time of each vehicle on the objective are analyzed. Four different executive
values (i.e., 360, 480, 550 and 600 min) are considered for the parameter while the other parameters
are constant.

Results of the sensitivity analysis on Tmax are given in Table 8. The most important conclusion
drawn from the analysis is that the higher the Tmax is, the lower objective function and the lower
number of the used vehicles are.

Table 8. Computational results obtained for different values of Tmax.

Tmax
Instances
360 480 550 600
P1 1559.26 1129.13 715.54 715.54
P2 2013.64 1556.11 1110.09 1067.3
P3 2442 .06 1651.85 1617.46 1221.36
P4 3865.33 3338.06 2881.21 2817.07
P5 4358.89 3857.32 3798.14 3362.25
P6 5830.27 5008.64 4214.08 4137.92
P7 6600.23 6003.97 5544.95 5466.78
P8 7424 6853.07 6459.62 6392.9
P9 8029.31 7198.91 6787.7 6682.46
P10 8673.69 7728.57 7182.48 7182.48
P11 9015.43 8163.48 7687.57 7651.06
P12 9605.97 8967.52 8552.43 8234.75
P13 10,036.13 9176.74 8727.81 8719.29
P14 10,479.59 9485.98 9418.3 9077.57
P15 10,965.77 9842.16 9654.11 9615.73

Average 6712.133 6010.06 5636.13 5477.86
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As it is clear in Figure 6, the objective value will increase significantly by changing Tmax to
360 min. In other words, the worst case is obtained by Tmax of 360. The difference between the
objective values obtained by Tmax of 550 and 600 is proportionally the lowest. Table 9 shows the cost
savings obtained by different Tmax value.

Sensitivity Analysisof Tmax
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Objective Value
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P1L P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15
Instance No.

Tmax=360 === Tmax=480 Tmax=550 Tmax=600

Figure 6. A comparison between mean values of the objective function for different values of Tmax.

Table 9. Cost savings obtained for different values of Tmax.

Tmax
Instances
360 550 600

P1 —430.13 413.59 413.59
P2 —457.53 446.02 488.81

P3 —790.21 34.39 430.49

P4 —527.27 456.85 520.99

P5 —501.57 59.18 495.07

Pé6 —821.63 794.56 870.72

P7 —596.26 459.02 537.19

P8 —570.93 393.45 460.17

P9 —830.4 411.21 516.45
P10 —945.12 546.09 546.09
P11 —851.95 47591 512.42
P12 —638.45 415.09 732.77
P13 —859.39 448.93 457.45
P14 —993.61 67.68 408.41
P15 —1123.61 188.05 226.43
Average cost saving —729.2 374 507.8

In order to optimize associated costs, managers should consider the impact of these maximum
vehicle usage times and set an appropriate upper limit to gain maximum cost saving. As it is presented
in Table 9, the average cost saving for Tmax of 360 is not a positive value that is, it causes the loss for all
instances. The average cost savings for Tmax of 550 and 600 are equal to 374.00 and 507.80, respectively.
Finally, the performed sensitivity analysis can be used as a managerial tool to be applicable in decision
making processes.
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5. Conclusions

Considering economic and environmental aspects of the urban services are two inseparable parts
of decision making in the organizations such as municipalities. Usually, these two important factors
are investigated separately in applied research. This has been while, in many cases, finding the shortest
routes could not result in optimal solution when CO, emission and air pollution minimization is taken
as the objective function, because fuel consumption depends on many factors including the vehicle
load, speed, road conditions and so forth. In this paper, a multi-trip Green Capacitated Arc Routing
Problem is proposed to find the shortest routes serving to minimize total cost and total emission of
greenhouse gases considering various types of real world constraints, such as capacity constraint,
maximum available time for vehicles and so forth. In other words, the aim is to reduce adverse impacts
of greenhouse gases and air pollution besides further consideration of cost minimization in terms of
the minimal activation of vehicle fleet for serving waste and the optimal routing. In order to solve the
proposed model, a hybrid genetic algorithm is developed based on a simulated annealing algorithm
and genetic algorithm. The results indicated the high efficiency of the proposed algorithm so that it
could yield solutions with the average gap of 1.64% for the instances. On the other hand, the proposed
HGA solve large sized problems in an appropriate run time in comparison with the other algorithms
proposed in the literature. Finally, a sensitivity analysis is implemented on the problem to study the
impact of different maximum available time of vehicles and propose the optimal policies. For future
studies, it is proposed to develop the robust optimization approaches for the problem in order to
evaluate the effect of uncertainty. On the other hand, proposing another novel algorithm such as
polar bear optimization and moth-flame optimization would be effective in order to test the proposed
algorithm in large sized problems.
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