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Abstract: Subway station fires often have serious consequences because of the high density of
people and limited number of exits in a relatively enclosed space. In this study, a comprehensive
model based on Bayesian network (BN) and the Delphi method is established for the rapid and
dynamic assessment of the fire evolution process, and consequences, in underground subway stations.
Based on the case studies of typical subway station fire accidents, 28 BN nodes are proposed to
represent the evolution process of subway station fires, from causes to consequences. Based on expert
knowledge and consistency processing by the Delphi method, the conditional probabilities of child
BN nodes are determined. The BN model can quantitatively evaluate the factors influencing fire
causes, fire proof/intervention measures, and fire consequences. The results show that the framework,
combined with Bayesian network and the Delphi method, is a reliable tool for dynamic assessment
of subway station fires. This study could offer insights to a more realistic analysis for emergency
decision-making on fire disaster reduction, since the proposed approach could take into account
the conditional dependency in the fire propagation process and incorporate fire proof/intervention
measures, which is helpful for resilience and sustainability promotion of underground facilities.

Keywords: urbanization and sustainability; subway station fire; dynamic risk assessment;
Bayesian network

1. Introduction

The urgent demands for land resources in urban development, more and more underground
spaces, such as subway stations, underground malls, parking lots, and so on, are explored and
constructed. Due to the compact structure, high population density, limited number of exits, and other
factors, serious consequences can be induced by disasters in subway stations, which have become a
great public concern. According to the statistics, fire accidents rank at the top of the list for subway
station disasters, making up nearly 30% of the total accidents that occurred in subway stations around
the world. The subway system has been playing an extremely important role in urban transportation
development these years. Therefore, it is of great importance to carry out disaster prevention and
emergency response work in subway stations, especially on the risk assessment of fire disaster in the
subway stations, which is of great significance for urbanization and sustainability.

In the past ten years, a lot of scholars have been focusing on studying the problem of fires
in subway stations. As for the methods used to analyze subway station fires, experimental
approaches have been started earlier. According to similarity theory, the physical phenomenon
of subway station fires can be simulated in full-size or reduced-size experimental apparatuses
for subway stations. The fire characteristics, like heat release rate, temperature distribution,
smoke concentration, and radiation heat, are obtained [1–6]. For some subway station fire scenarios,
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the experimental technique could provide some valuable data to examine the fire combustion and
spreading process. However, for fires in some complex subway station layouts, experimental analysis
is risky, time-consuming, and costly. Recently, with the development of computer science and
technology, and numerical methodologies, numerical tools have been a popular way to investigate
subway station fires. Many computational fluid dynamic (CFD) models or software, such as FLUENT,
and FDS, among others, are widely used in analyzing fire smoke evolution in subway stations and
tunnels [7–13]. CFD-based simulations can reproduce well the evolution process of subway station fires
if appropriate initial and boundary conditions are implemented. At present, the CFD-based numerical
results on subway station fire characteristics and development process are of significance for making
“Preparedness” strategies for fire disaster, e.g., safety evacuation design and fire prevention measures
in subway stations. However, for the fire emergency decision, the existing fire simulation model based
on CFD is inefficient, because of the large amount of calculations. Consequently, some researchers
recently have been working on rapid risk assessment tool for subway station fires from qualitative
and quantitative perspectives, based on probabilistic methods and stochastic approaches, like event
tree analysis, fuzzy fault tree analysis, cluster analysis, failure modes and effects analysis, optimized
neural network, analytic hierarchy process, grey-analytic hierarchy process, etc. [14–20]. Fang et al.
established a fire risk assessment system of shopping malls by cluster analysis and Analytic Hierarchy
Process (AHP), and calculated the index weight value of the evaluation system [14]. Liu et al. proposed
the fault tree model of the main risk factors of subway fires by using fuzzy fault tree analysis, and sorted
the critical probability importance of the events at the bottom of the fault tree [15]. Nezhad et al. used
Failure Mode and Effects Analysis (FMEA) model and fuzzy theory to evaluate the Zagros subway,
and obtained two important fire risks in the Zagros subway line [16]. Roshan et al. employed an event
tree analysis method to construct an event tree for each fire event, and calculated the probabilities
of multiple scenes to evaluate the fire risk of the Tehran subway station [17]. Yu et al. concluded
21 subway fire risk factors, and then established the subway fire risk assessment model through neural
network [18]. Zheng et al. carried out fire risk assessment of a highway tunnel from three levels through
a grey-analytic hierarchy process [19]. However, these traditional risk analysis methods, like fuzzy fault
tree analysis and event tree analysis, can be very large for complex systems, which brings difficulties
to qualitative and quantitative analysis. Traditional risk analysis methods, like fuzzy fault tree analysis
and event tree analysis, can be very large for complex systems, which brings difficulties to qualitative
and quantitative analysis, and can only use discrete variables for static analysis. The estimated results
of optimized neural networks cannot reflect the importance of individual risk factors with poor
generalization, and it is not applicable to multi-objective evaluation processes. The grey-analytic
hierarchy process has less quantitative data, but more qualitative components, so is not convincing.
In addition, some researchers have achieved a lot on the risk analysis of other crowded places with
potential fire risk, e.g., finding out the types of bridges most susceptible to fire by statistical analysis of
a large number of historical data [21], and proposing a way of weighted factors to quantify bridge fire
risk [22].

BN has some attractive advantages over conventional risk assessment methods. Bayesian node
variables can be classified with multiple states, which could facilitate various kinds of influential
factors. Furthermore, BN can achieve dynamic probability updating with newly emerged evidence [23].
Therefore, Bayesian network has been widely used in process safety and natural hazard assessment.
Recently, in fire disaster analysis, like office building fire spread modeling, dwelling fire development,
and occupancy escape, safety barrier for fire, ship fire, fire protection systems, subway station
evacuation, etc. [24–29]. For subway station fires that refer to many dynamic influencing factors,
the risk assessment of fire using Bayesian network is rare.

In order to comprehensively represent and assess the fire risk in subway stations, this study
proposes an integrated risk assessment framework for rapid and dynamic modeling of subway station
fire using a combination of Bayesian network and the Delphi method. The proposed BN-based
framework can not only represent static influential factors, like subway station type, platform type,
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fire source position, fire alarm system, ventilation systems, sprinkler system, etc., but also incorporate
dynamic fire development information and mitigation measures, such as fire impacts, emergency
rescue or intervention measures in the process of fire evolution, and so on. This BN-based framework
accomplishes an effective and dynamic “Scenario Response”-based risk and possible “resilience”
assessment of subway fire evolution process, which is of great importance to the prevention, evaluation,
and control of subway station fires, and is helpful for the resilience and sustainability promotion of
underground facilities.

2. Methodology

2.1. Bayesian Network

Bayesian network (BN) is a directed acyclic graph (DNG) containing a set of nodes, arcs,
and conditional probability tables (CPTs) to reflect the joint probability distributions between node
variables. The nodes in BN can be divided into two types: the parent node and the child node,
as shown in Figure 1. The nodes in BN can also be divided into three types: root node, intermediate
node, and leaf node. The root node has no parent node. The leaf node has no child node. The other
nodes are generally called intermediate nodes. BN has been applied to many areas, like chemical
accidents, farmland protection, dust explosion, wildfire, water quality, gas pipeline, metro construction,
and project risk management, and has been proven to be an effective method because of its flexibility,
convenience, and high efficiency [30–39].
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Figure 1. A simple example of Bayesian network (BN).

One of BN’s advantages is that the joint probability distributions can be simply calculated.
When analyzing a BN, if the probability of the variable Xi’s parent nodes is defined as Pa(Xi), the joint
probability distributions P(X), X = (X1, X2, X3, . . . , Xn) can be expressed as:

P(X) = P(X1, X2, X3, . . . , Xn) =
n

∏
i=1

P(Xi|Pa(Xi)) (i = 1, 2, . . . , n) (1)

where, X = (X1, X2, X3, . . . , Xn) represent various BN variables, n is the number of BN variables.
Another advantage of BN is that the probability can be updated dynamically when there is new

evidence available. If given a new evidence (event Y) to BN, the posterior probability of event X
(P(X|Y)) is calculated as:

P(X|Y ) =
P(X)P(Y|X)

P(Y)
=

P(X)P(Y|X)
n
∑

i=1
P(Y|Xi)

(i = 1, 2, . . . , n) (2)

where, P(Y) represents the marginal probability of event Y, P(X) is the prior probability of the event X.

2.2. Delphi Method

The Delphi method is a kind of technique with structured communication. It can enhance expert
experience through an anonymous evaluation of reincarnation by expert groups. It is widely used in
forecasting, information emerging, and policy-making [40]. Firstly, a leadership team is formed to form
the questionnaire of expertise needed, and to organize the whole process. Next, the experts complete
the questionnaire by anonymous evaluation under the organization. Experts anonymously share
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opinions and reconsider new information when answering the questionnaire again. Then, effective
expert experience could be obtained through a series of repetition. In addition, the coefficient of
variation and Cronbach’s coefficient alpha are added, to conduct a consistency test for the obtained
data, because the Delphi method has no evaluation criteria for the collected data. Finally, the required
empirical data can be obtained by averaging the eventual-round collected data. The coefficient of
variation V refers to the coordination degrees between experts. The Cronbach’s coefficient alpha
represents the consistency of the results [41]. Cronbach’s coefficient alpha was calculated for each node
in the BN, so as to test the data consistency. It is acceptable when α > 0.8.

Vj =
σj

xj
, (3)

where σj are variances of the components and xj is the average of the components.

α =
K

K− 1

1−

K
∑

i=1
σ2

Y

σ2
X

, (4)

where σ2
X is variances of the total scores, σ2

Y is variance of the components, and K is the number of
components, respectively.

The whole process of building the Bayesian network with treatments by the Delphi method is
shown in Figure 2.
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3. Bayesian Network Building

3.1. Determining BN Nodes

In this study, the fire evolution process of subway stations is divided into three stages, based on
the case studies of many typical fire accidents in subway stations, and a further evaluation is made
on the judgment of experts. Based on the three stages, we propose 28 nodes that have dependency
relationships for representing the subway station fires, from causes to consequences. The proposed
Bayesian nodes are divided into three types, and their state classifications are described below.

3.1.1. Root Nodes

(1) Fire source material (state: Circuit; Luggage; Commodity)
Different to public places on the ground, the types of combustible materials in subway station

are relatively specific, which could lead to a variety of consequences. Fires in subway stations are
mainly caused by combustible substances carried by passengers or man-made attacks. From the
previous statistics, the fire combustibles in subway stations can be divided into three major categories,
which include circuit, luggage, and commodity.

(2) Fire alarm system (state: Normal; Malfunction)
This node represents the presence of fire alarm systems. According to the national criteria in

China, the fire alarm system must be equipped in subway stations. The state “Normal” refers to
that the fire alarm system has been equipped and is in a normal working condition, while the state
“Malfunction” means that the fire alarm system might be a substandard product or aging, and might
not function in case of fire.

(3) Sprinkler system (state: Normal; Malfunction)
This root node represents the presence of an automatic response sprinkler system in subway

stations. The state “Normal” refers to that a standard sprinkler system has been installed, and it can
work well in case of fire, while the state “Malfunction” means the sprinkler system is a substandard
product, aging, or faces accidental blockages that could be useless in case of fire.

(4) Extinguisher (state: Normal; Malfunction)
This root node presents the performance of extinguishers in subway stations. The state “Normal”

indicates that extinguishers are in a normal working state, while the state “Malfunction” means they
might be substandard, out-of-date, used before, and may not work in case of fire.

(5) Fire time (state: Peak period; Other time)
Different subway stations generally have different passenger flow densities at distinct time

periods. In this study, we just classify the time into two periods: “Peak period”, i.e., at the rush hours
to or off work, and “Other time” when there are not many passengers.

(6) Fire source position (state: Inside train; On platform)
According to previous statistical data, the main fire locations are in the train and on the station

platform, and quite a few of the fire source positions are in the subway tunnel [42]. Herein, we do not
pay more attention to the subway tunnel and other locations, and simply classify fire source positions
according to two states: Inside train and On platform, and the probabilities are distributed to this node
according to the statistical results.

(7) Subway station type (state: Single floor; Double floor; Complex)
The vertical structure of subway stations is divided into three levels, according to the actual

practice in Chinese subway stations. The subway station of single layer is only one floor underground.
The underground part of the double floor subway station consists of two floors. For example, the station
hall is located on the first underground floor, while the platform, the trains, and the tunnel are located
on the second underground floor. Another kind of vertical subway structure is called complex,
whose vertical structure is more complex, which is more common in interchange stations [43].

(8) Platform type (state: Island type platform; Side type platform; Combined type platform)
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There are generally three types of subway station platforms: island type, where the platform is
designed between two tracks; side type, where the platforms are located on two sides of the track;
combined type, that integrated the island type and the side type. Each kind of platform type has its
advantages. The subway station area and changes of the passenger flow are different for these three
platform types, which have a great influence on economic loss and casualties in case of subway station
fire [44].

(9) Fire brigade location (state: Within 3 min distance; Over 3 min distance)
This root node is set up to examine the significance of firefighters for firefighting and rescue.

The distance from the subway station to the fire brigade has a significant impact on the rescue
effectiveness organized by firefighters. Previous studies show that the best escape time is 300 s
during fire development in an underground subway station. According to experts’ experience,
the proper duration for firefighters’ arrival is three minutes. Therefore, the states of this node are set as
“Within three minutes” and “Over three minutes”. The former represents that the firefighters could
arrive at the subway station within three minutes, and the latter one represents that the firefighters
take more than three minutes to reach the subway station.

(10) Smoke extraction system (state: Normal; Malfunction)
Smoke is a critical factor affecting casualties in case of fire. A subway station can be regarded as

a closed or semi-closed underground space, so the ventilation system is crucial for the diffusion of
fire smoke. The states of this node are set as “Normal” and “Malfunction”, to represent if the smoke
extraction system could work well.

3.1.2. Intermediate Nodes

(11) Fire detection by human (state: Yes; No)
Whether the fire can be detected by field staff or passengers in time has great impact on the

probability of successful evacuation and dialing the fire alarm phone, which will significantly influence
the casualties. The states of this node are set to “Yes” and “No”. “Yes” means that field person could
detect the fire in time, and vice versa.

(12) Safe evacuation (state: Yes; No)
As we know, evacuation will directly affect the number of casualties. Since underground subway

stations are relatively closed spaces, safe evacuation is more difficult than other places. In the early
stage of fire development and expansion, hot and hazardous smoke flow is the primary influencing
factor to escape routes and trappers’ safe evacuation.

(13) Fire call (state: Yes; No)
When a fire occurs, if field staff or passengers do not discover it at the initial stage of the fire,

the fire call will be delayed, which may cause more serious fire loss.
(14) Firefighters’ arrival time (state: Before flashover; After flashover)
Firefighters play a major role in personnel rescue, fire control, and fire extinguishment. Therefore,

it is important to discuss firefighters’ arrival time, and the states of this node are divided into
“Before flashover” and “After flashover”. Flashover is a critical stage in fire evolution.

(15) Fire alarm system response (state: In time; Not in time)
A fire alarm system is a crucial factor in the detection of fire, and the response time is associated

with the time when people detect the fire. The states of this node are classified into “In time” and
“Not in time”. To specifically reflect the response of a fire alarm system, “In time” represents that the
fire alarm system responds within 30 s after it detects a fire (China, GB50166-2007).

(16) Initial stage of fire (Stage 1) (state: Smolder; Fire)
In the initial stage of fire, also called Stage 1 of fire development, there are two different combustion

modes: smolder and fire. If smolder occurs in the initial stage, it is very hard for the alarm system to
detect the fire, and the sprinkler system to conduct a prompt response.

(17) Sprinkler system response (Stage 1) (state: In time; Not in time)



Sustainability 2018, 10, 3810 7 of 21

Sprinkler systems can effectively control the spread of fire. If the sprinkler system responds in
time, especial in Stage 1 of fire development, there may be a higher probability that the fire can be
put out or well controlled. The states of this node can be set to “In time” and “Not in time”, whereby
“In time” means that the sprinkler system responds within 30 s in the initial stage of fire development.

(18) Put out early (Stage 1) (state: Yes; No)
This node is set to reflect extinguishment effectiveness during the fire development. At the initial

stage of fire, i.e., Stage 1 of fire development, it is possible to put out the fire by the field people.
(19) Growth stage of fire (Stage 2) (state: None; Slow development; Flashover)
If the fire is not put out in Stage 1, it will develop further to flashover or slow development,

which is called Stage 2 of fire development in this study. If the fire is put out in stage 1, it will not
develop into Stage 2.

(20) Sprinkler system response (Stage 2) (state: In time; Not in time)
According to the response effectiveness of automatic fire extinguishing system in Stage 2, this node

was divided into two states: “In time” and “Not in time”. Different from the sprinkler system response
in Stage 1, it is more difficult to extinguish the fire in Stage 2, but it is likely to mitigate the spread
of fire.

(21) Put out late (Stage 2) (state: Yes; No)
Depending on fire development situation in Stage 2, and the working effectiveness of automatic

fire extinguishing systems and firefighters, the fire in Stage 2 could be extinguished, or not
be extinguished.

(22) Fully developed to quenched (Stage 3) (state: Yes; No)
This node is to represent the final stage of a fire, i.e., Stage 3: the fully-developed fire to quenched

(going out) at last. If the fire develops to this stage, it indicates that the fire is not effectively controlled.
(23) Severity of fire development (state: Slight; Moderate; Serious)
The burning proportions of main fire body parts are generally divided into local burning (<30%),

major burning (30–70%) and total burning (≥70%). According to this, the node is classified into three
states to represent the severity of fire: Slight, Moderate, and Serious.

(24) Smoke extraction system response (state: In time; Not in time)
The response of the smoke extraction system determines whether the smoke generated by fires

can be discharged in time, which is of great significance for the safe evacuation of trapped people in
the subway station.

(25) Concentration of hazardous gas (state: Less than critical value; More than critical value)
The concentration of hazardous gases, such as CO, HCl, H2S, and others, will increase faster

in fire, and the toxic and harmful gases in the fire are often the main cause of casualties. Hence,
the states of this node were divided into “Less than critical value” and “More than critical value”.
The accumulated critical values for 5 min causing death of CO, HCl, and H2S, are 5000 ppm, 3000 ppm,
and 800 ppm, respectively.

(26) Temperature (state: Less than 100 ◦C; More than 100 ◦C)
According to the statistics of related medical and physiological experiments, high temperature

smoke in fires will cause a certain degree of harm to the human body. To judge whether the smoke
temperature is dangerous or not, the smoke temperature nearby human eyes is usually used as the
critical temperature. Herein, this node is divided into “Less than 100 ◦C” and “More than 100 ◦C”.
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3.1.3. Leaf Nodes

(27) Economic loss (state: Less than 50 million; 50 to 100 million; More than 100 million)
Economic loss is a quantitative assessment of consequences in metro station fire accidents. In this

study, it is classified into three states: “Less than 50 million”, “50 to 100 million”, and “More than
100 million” [42].

(28) Casualties (state: Less than 3 persons; 3 to 10 persons; More than 10 persons)
Casualties are the most commonly used evaluation index of consequence severity in subway

station fires. In this study, this node is classified into three states: “Less than 3 persons”, that the
accident resulted in deaths of less than 3 people or serious injuries of less than 10 people; “3 to
10 persons”, that the accident resulted in deaths of more than 3 to 10 persons or serious injuries of less
than 10 to 50 persons; and “More than 10 persons”, that the accident resulted in more than 30 deaths
or more than 100 serious injuries [45].

All the BN nodes and their classifications are listed in Table 1. Based on the case analysis of
typical subway station fire disasters and further expert evaluation to determine the dependencies
between each node, the structure of Bayesian network for representing subway station fire evolution is
established as shown in Figure 3.

Table 1. Classified states of BN nodes.

Nodes State of Nodes

Fire source material 1©Circuit fault 2©Luggage 3©Commodity
Fire alarm system 1©Normal 2©Malfunction
Sprinkler system 1©Normal 2©Malfunction
Extinguisher 1©Normal 2©Malfunction
Fire time 1©Peak period 2©Other time
Fire source position 1©Inside train 2©On platform
Subway station type 1©Single floor 2©Double floor 3©Complex
Platform type 1©Side type platform 2©Combined type platform 3©Island type platform
Fire brigade location 1©Within 3 min distance 2©Over 3 min distance
Smoke extraction system 1©Normal 2©Malfunction
Fire detection by human 1©Yes 2©No
Safe evacuation 1©Yes 2©No
Fire call 1©Yes 2©No
Firefighters arrival time 1©Before flashover 2©After flashover
Fire alarm system response 1©In time 2©Not in time
Sprinkler system response 1©In time 2©Not in time
Initial stage of fire (Stage 1) 1©Smolder 2©Fire
Put out early (Stage 1) 1©Yes 2©No
Growth stage of fire (Stage 2) 1©None 2©Slow development 3©Flashover
Sprinkler system response (Stage 2) 1©In time 2©Not in time
Put out late (Stage 2) 1©Yes 2©No
Fully developed to quenched (Stage 3) 1©Yes 2©No
Severity of fire development 1©Slight 2©Moderate 3©Serious
Smoke extraction system response 1©In time 2©Not in time
Concentration of hazardous gas 1©Less than critical value 2©More than critical value
Temperature 1©Less than 100 ◦C 2©More than 100 ◦C
Economic loss 1©Less than 50 million 2©50 to 100 million 3©More than 100 million
Casualties 1©Less than 3 persons 2©3 to 10 persons 3©More than 10 persons
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3.2. Determining Conditional Probability Tables

To analyze the evolution of subway station fire, we need to get the dependency intensity between
some nodes in BN. The dependency intensity is reflected by a conditional probability table (CPT).
The conditional probabilities of each node with the joint distribution of its parent nodes are recorded
in CPT. Conditional probabilities can be obtained by parameter learning or expert scoring. However,
in the case of subway fires, there is little historical data for reference, so it is difficult to determine the
CPTs by parameter learning.

In the Bayesian network of this paper, unconditional probabilities (priori probabilities) of the
root nodes (nodes without parent) are mainly determined based on statistical fire data. For other
nodes, we invite five experts with rich experience in underground subway station fire to fill out CPT
questionnaires of the proposed BN. The CPT of each node is obtained according to expert experience,
with consistent processing using the Delphi method. For determining the CPTs of Bayesian nodes,
we developed software for applying the Delphi method for expert data processing and analysis
(Delphi_data analysis V1.0.0) by MATLAB. This software can read the questionnaire and verify the
consistency of the expert data, such as data table import, Cronbach’s coefficient alpha calculation, data
table output, and taking the mean value of reliable data, finally outputs CPT.

Herein, take determining the CPT of “Temperature” node as an example. The results of the
scores of five experts are listed in Table 2. In the “Expert opinion” column, the probability values
corresponding to E1-E5 are the results of five experts’ rating of “Temperature” node. When the
“Severity of fire development ” state is “Slight” and “Smoke extraction system response” is “In time”,
the probability of the expert E1 in the “TL” column (“TL” means “Temperature” is “less than 100 ◦C”
and “TM” means “Temperature” is “more than 100 ◦C”) is 0.74, which represents that expert E1 thinks
that if the severity of fire development is slight, and the smoke extraction system response is in time,
the probability of fire temperatures less than 100 ◦C is 0.74.

Table 2. Experts’ conditional probability table (CPT) score of “Temperature”.

Node Expert Opinion

Severity of Fire
Development

Smoke Extraction
System Response

E1 E2 E3 E4 E5 E

TL TM TL TM TL TM TL TM TL TM TL TM

Slight In time 0.74 0.26 0.84 0.16 0.91 0.09 0.88 0.12 0.68 0.32 0.81 0.19
Slight Not in time 0.2 0.8 0.45 0.55 0.26 0.74 0.32 0.68 0.57 0.43 0.36 0.64

Moderate In time 0.3 0.7 0.19 0.81 0.11 0.89 0.06 0.94 0.09 0.91 0.15 0.85
Moderate Not in time 0.52 0.48 0.58 0.42 0.85 0.15 0.64 0.36 0.86 0.14 0.69 0.31

Serious In time 0.31 0.69 0.35 0.65 0.27 0.73 0.16 0.84 0.11 0.89 0.24 0.76
Serious Not in time 0.96 0.04 0.83 0.17 0.96 0.04 0.83 0.17 0.92 0.08 0.90 0.91

After two rounds of checking with experts through the Delphi method, the final opinion of five
experts can be obtained. Then, Cronbach’s coefficient alpha is used to verify the consistency of the data
collected from the five experts, and the calculated alpha is 0.968 based on Equation (4), which signifies
that the data has been reliable. Finally, the average results of the five experts are listed in column E.
In this paper, the probabilities of column m are the priori probabilities that are input to each node of
the Bayesian network.

Through this method, the initial BN with CPTs can be obtained as Figure 4 shows and, next,
the proposed Bayesian network can be used to analyze the evolution of subway station fires. In this
study, the probabilistic inference was performed using Netica (Netica 4.16, Norsys Software Corp.,
Vancouver, BC, Canada), which has been widely used to deal with belief networks and influence
diagrams in BN analysis, such as predicting the probabilistic evaluation of pipelines and flood [46–48].
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4. Results and Discussion

4.1. Sensitivity Analysis

Sensitivity analysis refers to an uncertainty analysis technology which finds sensitive factors that
have an important impact on the subject from several influential factors, and further discusses the
influence of related factors changing on a certain or set of key indicators from quantitative analysis.
To make the calculated results more reliable when using the proposed Bayesian network, it is necessary
to identify the nodes that have a greater impact on object nodes.

In this study, we use the sensitivity analysis function of Netica software to determine the
nodes which have a greater impact on “Casualties” and “Economic loss”. In Netica, click the Node
“Casualties” and select “Network → Sensitivity to findings”, and then a detailed report will be
generated in the “Message” window. The sensitivity analysis results of “Casualties” and “Economic
loss” to other nodes are listed in Tables 3 and 4.

Table 3. Sensitivity analysis of “Casualties”.

Node Mutual Info Percent Variance of Beliefs

Casualties 1.57591 100.00 0.4402759
Safety evacuation 0.10084 6.40 0.0159131

Concentration of hazardous gas 0.07877 5.00 0.0125456
Severity of fire development 0.06511 4.13 0.0106778

Temperature 0.06021 3.82 0.0098250

Table 4. Sensitivity analysis of “Economic loss”.

Node Mutual info Percent Variance of Beliefs

Economic loss 1.57037 100.00 0.4377345
Severity of fire development 0.52865 33.70 0.1312365

Put out early (Stage 1) 0.25688 16.40 0.0366417
Growth stage of fire (Stage 2) 0.25522 16.30 0.0385723

Put out late (Stage 2) 0.23290 14.80 0.0293658

From the data in Table 3, it can be seen that the node “Casualties” is mainly affected by
“Safe evacuation” and “Concentration of hazardous gas”, which conforms to an actual situation,
since according to statistics, toxic and harmful gases are the main cause of casualties in the fire [49].
According to the data in Table 4, the node “Economic loss” is mainly impacted by “Severity of fire
development”. This is also consistent with reality. The greater the fire severity and damage to the
equipment, the larger the fire-impacted area and economic loss will be.

According to the results of sensitivity analysis, as “Safe evacuation” has the greatest impact on
“Casualties”, and the nodes that affect “Safe evacuation” are “Fire time”, “Subway station type”,
and “Platform type”, then, the influence of “Fire time”, “Subway station type”, and “Platform
type” on “Safe evacuation” should be primarily taken into account in the assessment of casualties.
In the assessment of economic losses, the main considerations should be the effects of “Fire alarm
system”, “Sprinkler system”, and “Extinguisher”, on “Severity of fire development” by transmission
of “Fire severity”.

4.2. Impact of Fire Time, Subway Station Type, and Platform Type

According to the experience of experts, fire time has a significant impact on the number of
casualties. In this part, we select two typical fire times to be executed in the Bayesian network, namely,
“Peak period” and “Other time”. In order to mainly discuss the impact of fire time on casualties,
the parent nodes “Subway station type”, “Platform type”, and “Fire brigade location” are given as
listed in Table 5.
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In the proposed BN model, the estimated probability of casualty is shown in Figure 5.
When “Fire time” transfers from “Other time” to “Peak period”, the probability that the “Casualties”
is in the state “More than 3 persons” increases from 0.602 to 0.692, and when the fire happens at
“Peak period”, the probability of “More than 10 persons” of “Casualties” goes up to 0.37. The results
show that the fire protection management should be strengthened during the peak period of
subway operation.

Table 5. Initial setup of some BN nodes for assessment of “Fire time”.

Bayesian Nodes
Setup of Bayesian Nodes

Scenario 1 Scenario 2

Subway station type Double floor Double floor
Platform type Island type platform Island type platform

Fire brigade location Within 3 min distance Within 3 min distance
Fire time Peak period Other time
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Figure 5. Inference results of “Casualties” on the condition of different fire times.

Obviously, the type of subway station impact also has great impact on fire consequences.
Herein, the state combinations of some BN nodes are given as follows: (a) the states of “Fire time”,
“Platform type”, and “Fire brigade location” are set to be “Peak period”, “Island type platform”,
and “Within 3 min’ distance” respectively; (b) the parent node “Subway station type” is set to three
states, as shown in Table 6. The inference results for these scenarios are illustrated in Figure 6. It shows
that the degree of casualties of “Double floor” or “Complex” is higher than that of “Single floor”.
This may be because “Double floor” and “Complex” are much farther away from the ground compared
with a single floor type subway station, and their structures are more complicated; on the other hand,
fire smoke accumulates more easily inside the subway station, which brings about great difficulty for
the crowd evacuation, escape, and rescue.

Table 6. Given state evidences of some BN nodes for assessment of “Subway station type”.

Bayesian Nodes
Setup of Bayesian Nodes

Scenario 1 Scenario 2 Scenario 3

Fire time Peak period Peak period Peak period
Platform type Island type platform Island type platform Island type platform

Fire brigade location Within 3 min distance Within 3 min distance Within 3 min distance
Subway station type Single floor Double floor Complex
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According to the experience of experts, the platform type also has an impact on the number of
casualties. In this section, we select three main types of platform to be implemented in the Bayesian
network: “Island type”, “Side type”, and “Combined type”. The states combination of BN nodes for
this analysis are given in Table 7. From the results shown in Figure 7, it is found that the degree of
casualties of the island type platform, or combined type platform, is higher than that of the side type
platform. This is perhaps because two trains share one platform in island type platforms, which results
in a situation where the crowd is likely increasing, while the available escape exits greatly decreases.
It is extremely easy for a stampede to occur during evacuation of the crowds.

Table 7. Given state evidences of some BN nodes for assessment of “Platform type”.

Bayesian Nodes
Setup of Bayesian Nodes

Scenario 1 Scenario 2 Scenario 3

Fire time Peak period Peak period Peak period
Subway station type Double floor Double floor Double floor
Fire brigade location Within 3 min distance Within 3 min distance Within 3 min distance

Platform type Side type platform Combined type platform Island type platformSustainability 2018, 10, x FOR PEER REVIEW  16 of 21 
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Figure 7. Inference results of “Casualties” on condition of different platform type.
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4.3. Impact of Fire Source Position

Take fire source materials from passengers’ luggage as an example, meanwhile, the sprinkler
system and fire extinguisher are both in “Normal” condition, and we analyze the influence of fire
source position on fire severity and economic loss. The inference results are listed in Table 8.

Table 8. Estimated probabilities for assessment of fire source position.

Bayesian Nodes State of Bayesian Nodes

Estimated Probabilities

Luggage Luggage

Normal Fire Alarm System) Normal (Fire Alarm System)

Normal (Sprinkler System) Normal (Sprinkler System)

Inside Train On Platform

Growth stage of fire (Stage 2)
1©None 0.504 0.601
2©Slow development 0.088 0.279
3©Flashover 0.408 0.12

Severity of fire development
1©Slight 0.523 0.625
2©Moderate 0.246 0.246
3©Serious 0.231 0.129

Economic loss
1©Less than 50 million 0.393 0.432
2©50 to 100 million 0.31 0.383
3©More than 100 million 0.297 0.185

Casualties
1©Less than 3 persons 0.369 0.442
2©3 to 10 persons 0.338 0.308
3©More than 10 persons 0.263 0.25

The results show that, if fire position is on a platform, the possibility that the fire severity is slight
is 0.625; the sum possibility of the fire turning into moderate and serious is 0.375. If the fire source
position is inside the train, the sum possibility of the fire becoming moderate and serious increases to
0.477. In the meantime, the degree of economic loss located on the platform correspondingly increases
compared with that of inside train. It is observed that the possibility of “Growth stage of fire (Stage 2)”
is “Flashover”, and that fire occurs on the platform, is 0.12. However, the “Flashover” possibility,
when fire is located inside the train, goes up to 0.408. We can find that the change of “Growth stage of
fire (Stage 2)” state leads to greater fire severity and economic loss.

4.4. Impact of Fire Prevention and Extinguishing Facilities

According to previous statistical results, the possibility of fire source position inside the train is
0.77, of which, 50% of incidents are caused by electrical circuit faults. When “Fire source position” is
selected as “Inside train” and “Fire source material” is “Circuit fault” and, meanwhile, fire prevention
and control response changes from effective (i.e., the automatic fire extinguishing system, alarm system,
and fire extinguisher are in a “Normal” condition) to poor (i.e., the automatic fire extinguishing system,
alarm system, and fire extinguisher are all in an “Abnormal condition”), the estimated probability of
fire “Economic loss” to be “More than 100 million” turns from 0.283 to 0.439 as shown in Figures 8
and 9. Thus, ensuring the automatic alarm system and sprinkler system in normal working conditions
and keeping the effectiveness of fire extinguishers are extremely important for the control of subway
station fire.
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5. Conclusions

In order to comprehensively represent and assess the fire risk in subway stations, this study
proposes an integrated risk assessment framework for rapid and dynamic modeling subway station
fire combined Bayesian network and the Delphi method. The proposed BN-based framework can
represent both static and dynamic information on fire causes, fire proof/intervention, emergency
rescue, and fire consequences. The main conclusions are

(a) Subway station type and platform type significantly affect fire evolution process and final
casualties. Particularly, complex subway stations (more common in interchange station) and
combined type platform have the greatest impact on fire severity because of the complex structure
and large passenger flow.

(b) Fire in peak periods will likely result in serious casualties than the other fire times, which indicates
that the operation management of subway station in peak periods should be strictly instructed.

(c) Fire source position has a greater influence on fire development and consequences. If the fire
location is in the train, the probability of flashover would still reach 0.386, even though the
working condition of alarm system, sprinkler system, and fire extinguisher are all “Normal”.
In this case, the fire will likely result in a serious economic loss and casualties.

(d) It is quantitatively demonstrated that the normal working condition of the alarm system, sprinkler
system, and fire extinguisher play an important role in the fire control of in subway station.

(e) The proposed dynamic and integrated BN framework is demonstrated to be of great significance
to the prevention, evaluation, and control of subway station fire and, thus, helpful to perform
“Scenario Response”-based fire disaster response and reduction, which can be used as a reference
for risk assessment and emergency response of other disasters or accidents.

At present, due to the scarcity of detailed records of subway station fire cases (especially specific
fire evolution processes and fire consequences), it is difficult to comprehensively validate the proposed
BN model against past fire incidents. However, the applicability of this proposed Bayesian framework
to real life situation could be improved and optimized with many emerging underground subway
station fire cases in the future. Although the present version of the proposed Bayesian framework
may not provide very accurate results, it could present comparatively quantitative risk distribution
for reference, that could benefit the emergency response to an underground subway station fire.
In addition, a resilience assessment can be achieved dynamically in the pre-event, during-event,
and post-event phases of subway station fire with BN-based model. In this study, “resilience” was
mainly to represent and incorporate fire prevention/intervention to minimize damage and functional
interruption during an event. Resilience strength can resist extreme events in the pre-event phase,
minimize the damage and function interruption during the event, and can facilitate recovery in the
post-event phases. “Resilience assessment” to subway station fire could be extended more specifically
in the pre-and post-event phase of subway station fires in future work.
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