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Abstract: In order to realize the synergistic optimization management of energy efficiency in the key
energy-intensive industries of the Beijing-Tianjin-Hebei (Jing-Jin-Ji) region, this paper calculates the
total factor energy efficiency (TFEE) of 27 industries in the Jing-Jin-Ji region. We discover that the
manufacturing of raw chemical materials and chemical products, the smelting and processing of
ferrous metals, and the production and supply of electric power and heat power are key industries,
considering their economic output ratio, energy consumption ratio, and energy efficiency. Then,
the Malmquist index is used to decompose the TFEE of key energy-intensive industries. The results
show that the TFEE changes in the three major industries in the Jing-Jin-Ji region are caused by
technological progress. Hebei has the highest total factor average energy efficiency in the production
and supply of electric power and heat power industry, the main reason for this being the spillover
effect from Beijing enterprises that have led to significant technological changes in Hebei. Due to
similar technological advancements, Tianjin has the highest total factor average energy efficiency in
the manufacturing of raw chemical materials and chemical products and the smelting and processing
of ferrous metals. Therefore, the Jing-Jin-Ji region should work to increase its technological innovation
and enhance its core competitiveness. We should optimize the allocation of resources in specific
industries to improve the scale efficiency.

Keywords: Beijing-Tianjin-Hebei region; industrial industries; TFP; DEA; Malmquist index

1. Introduction

The Jing-Jin-Ji region is part of China’s capital region and, as such, holds an important strategic
position. At the end of 2015, the total population of the region exceeded 100 million, accounting
for 8.11% of the total Chinese population. Total energy consumption reached 452.58 million tons
of standard coal, accounting for 10.95% of the national total energy consumption, and the regional
gross domestic product (GDP) reached 6935.889 billion Renminbi (RMB), accounting for 9.60% of
China’s GDP. Moreover, during the 12th Five Year Plan (FYP) period, the economy of the Jing-Jin-Ji
region was strong, with an average GDP growth rate of 7.4%, while total energy consumption growth
slowed down to an average growth rate of 0.68%. However, due to the large total consumption of
energy, there is still a significant impact on the ecological environment. In 2015, the Jing-Jin-Ji region
accounted for nine out of 10 of the cities with the most severe smog and haze occurrences in China.
While the environment is deteriorating, the energy shortage in the Jing-Jin-Ji region is still unresolved.
In 2015, primary energy production accounted for only 17.79% of total consumption. Faced with
the dual challenges of energy shortage and environmental pollution, energy efficiency management
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has become an important solution. At present, the Beijing, Tianjin, and Hebei provinces have great
differences in the effectiveness of their energy efficiency management. In 2015, the energy consumption
reduction rate per 10,000 RMB gross regional product in the Beijing, Tianjin, and Hebei provinces
was 6.17% (Beijing), 7.21% (Tianjin), and 6.14% (Hebei). The differences between the three industries’
reduction rates of 10,000-yuan industrial added value of energy consumption were even more striking,
with rates of 8.16%, 13.25%, and 6.02%, respectively. Therefore, identifying the differences in energy
efficiency between the three provinces and exchanging energy utilization experience will be conducive
to lessening the industry energy efficiency differences in the Jing-Jin-Ji region. This should improve the
overall energy efficiency of the Jing-Jin-Ji region and achieve coordinated development. Meanwhile,
there were some changes of industrial energy consumption proportion in Beijing, Tianjin, and Hebei
between 2005 and 2015. The detailed proportions are shown in Figure 1. The internal ring shows
the industrial energy consumption of 27 industries in the Beijing-Tianjin-Hebei (BTH) area in 2005,
while the outer ring shows the industrial energy consumption of 27 industries in the BTH area in
2015. Several signs indicate the trend of many Beijing factories being relocated to the city boundary,
especially to Hebei Province. For example, the proportion of energy consumption by the manufacture
of raw chemical materials and chemical products in Beijing declined from 7.81% in 2005 to 5.28%
in 2015. However, this proportion in Tianjin rose to 32.08% in 2015 from 23.63% in 2005, and the
proportion in Hebei reached 8.10% in 2015, an increase of 1.32% over 2005. We aim to analyze whether
this shift in industry location is beneficial to the industrial total factor energy efficiency. Thus, in this
paper we present a study of the total factor energy efficiency and its influencing factors in many key
energy-intensive industries in the Beijing-Tianjin-Hebei region.
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The second part of this paper serves as a literature review, summarizing existing research methods
and measurement indicators. The third part introduces the technical route and the total factor energy
efficiency indicators’ calculation methods and models. The fourth part measures the total factor energy
efficiency (TFEE) of 27 industries in the Jing-Jin-Ji region. In the fifth part, three key industries are
selected and the Malmquist index is used to decompose the energy efficiency of the Jing-Jin-Ji region.
Finally, the sixth part offers conclusions and policy suggestions.

2. Literature Review

Energy efficiency has been extensively researched by academics, both internationally and
domestically. Energy intensity is a single factor efficiency index, which has some apparent flaws.
TFEE appears more advantageous, particularly in certain circumstances such as revealing the impact
of regional resource endowments on energy efficiency. Accordingly, in recent years, scholars have
turned more towards energy efficiency research under a total factor framework. The most common
method of TFEE is data envelopment analysis. Specific examples in the literature are shown in Table 1.
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Table 1. Research on total factor energy efficiency.

Authors Evaluation Object Indexes Method

Zhang et al.
(2011) [1] Yangtze River Delta Energy, Labor, Capital Stock, GDP,

Exhaust gas

Super Efficiency–Data Envelopment
Analysis (SE-DEA),
Malmquist-Luenberger (ML)
productivity index

Feng et al.
(2015) [2]

Beijing-Tianjin-Hebei
metropolitan region

Energy, Labor, Capital Stock, GDP, CO2,
SO2, Inhalable particles

Slack Based Model (SBM model),
Tobit model

Ma et al. (2011) [3] Yangtze River Delta, Peral River
Delta, Bohai Zone

Energy, Labor, Capital Stock, Number of
patent authorizations, GDP SE-DEA, ML productivity index

Zhao et al.
(2013) [4] 29 provinces in China Energy, Labor, Capital Stock, GDP Stochastic Frontier Analysis (SFA)

model

Wang et al.
(2014) [5]

Industrial sector of 30 Chinese
major cities

Energy, Labor, Capital Stock, Value-added
of industrial enterprises, CO2, SO2

Data Envelopment Analysis

Zhang and Choi
(2013) [6] 30 provinces in China Energy, Labor, Capital Stock, GDP, CO2,

SO2, COD SBM-DEA

Apergis et al.
(2015) [7]

20 Organization For Economic
Cooperation And Development
(OECD) countries

Productive capital stock, Labor, Renewable
and non-renewable energy SBM model

Wu et al. (2014) [8] China’s industry Fixed assets of industry, Electricity, GRP in
industry, NO2

Data Envelopment Analysis

Wang et al.
(2013) [9] 30 regions in China Energy, Labor, Capital Stock, GDP, CO2

Range Adjusted Measure–Data
Envelopment Analysis (RAM-DEA)

Long et al. (2013)
[10] 31 provinces in China Capital, Labor, Coal, GRP, SO2 Directional distance function

Wang and Chen
(2010) [11] 25 industries in China Energy, Labor, Capital Stock, Value-added

of industrial DEA, Tobit model

Chen(2014) [12] 30 industries in China Coal, Electricity, Oil, Labor, Capital Stock,
Value-added of industrial Stochastic frontier analysis (SFA)

Huang et al.
(2014) [13] 30 provinces in China Energy, Labor, Capital Stock, Land input,

GDP, Environment pollutants
Undesirable output, super efficiency
and SBM (US-SBM)

Fan et al. (2015)
[14]

32 industrial sub-sectors in
Shanghai

Energy consumption, Labor force, Capital
stock, Gross industrial output, CO2

Geography Markup Language
(GML) index

Rohdina et al.
(2007) [15] The Swedish foundry industry Capital, Technical risk, Long-term energy

strategy, People with real ambition et al. A case study, a questionnaire

Saygin et al.
(2012) [16]

The German basic chemical
industry

Energy coverage, Energy efficiency
improvements,

The Process Industries–Inventory
Energy Use Plus model (PIE-Plus)

Wu et al. (2007) [17] The steel industry of Taiwan

Process equipment, Operation method,
Energy category, Raw material, System
management, Energy saving activity,
Utilization of production capability

Taylor series expansion

Hassan et al.
(2017) [18]

Small and medium-sized
manufacturing enterprises in
Pakistan

Access to capital, Risk and hidden cost,
Government and state policies

Semi-structured questionnaires and
interviews

Honma et al.
(2014) [19]

The industries in Japan and 14
developed countries

Labor, Capital stock, Energy and
non-energy intermediate inputs

DEA methodology, Sensitivity
analyses

Zhou et al.
(2010) [20] 18 top CO2 emitters of the world Energy, Labor, Capital stock, GDP, CO2

Malmquist CO2 Emission
Performance Index (MCPI) index,
Bootstrapping MCPI index, DEA

Sueyoshi et al.
(2017) [21]

30 municipalities and provinces
in China

GRP, CO2, SO2, Dust, Waste water,
Ammonia nitrogen, Energy, Labor, Capital DEA ML Productivity index

Zhang et al.
(2015) [22]

CO2 emission in Chinese
transportation industry Energy, Labor, Capital Stock, GDP, CO2

Non-Radial Malmquist CO2
Emission Performance Index
(NMCPI) Bootstrapping approach

Zhou et al.
(2012) [23] OECD countries Capital stock, Labor force, Energy, GDP DEA, SFA

Sueyoshi et al.
(2017) [24] 30 industries in China

GRP, CO2, SO2, Smoke and Dust, Waste
Water, COD, Ammonia Nitrogen, Capital,
Labor, Energy

DEA, Radial approach non-radial
approach

Sueyoshi et al.
(2016) [25] 30 municipalities and provinces

GRP, Primary industry, Secondary industry,
Tertiary industry, PM10, SO2, NO2,
Investment, Coal, Oil, Natural gas,
Electricity

Radial model: Returns to Damage
(RTD) and Damages to Return
(DTR) under congestions
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3. Model and Estimation Methods

3.1. Research Route

The technical route is shown in Figure 2.
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3.2. Model Method

3.2.1. Total-Factor Energy Efficiency

Hu and Wang [26] defined total-factor energy efficiency (TFEE) since the index is established
based on the viewpoint of total factor productivity. Index TFEE is also employed to analyze energy
efficiency in an industry; Industry α’s TFEE at time t is:

TFEE(α) = ∑ Target Energy Input(t)
∑ Actual Energy Input(t)

(1)

Here, Equation (1) shows that the TFEE in an industry is calculated by dividing the summation of
target energy inputs by the total actual energy inputs of the industry.

3.2.2. DEA Model

Data envelopment analysis (DEA) was proposed by American operational researchers Charnes,
Cooper, and Rhodes in 1978; accordingly named the CCR model, it uses mathematical programming
and statistical data to identify the relatively efficient production frontier. The decision-making unit
is projected onto the production frontier and then their relative validity is evaluated by comparing
the extent to which decision-making units deviate from the production frontier. The DEA method
has its unique advantages. Firstly, it is suitable for evaluating the validity of multiple-input and
multiple-output. Secondly, there is no need for non-dimensional data processing when applying this
method. Finally, it eliminates many subjective factors without any weight assumption.

The CCR model is the most classic DEA model and is based on the assumption of constant returns
to scale, although this assumption does not match reality. To this end, Banker et al. (1984) added
variable returns to the scale based on the CCR model and proposed the Banker, Charnes, and Cooper
(BCC) model. Not only is this model more in line with the actual production experience, but it can
examine the technical efficiency and scale effectiveness of decision-making units. Its specific form is:

Minθ

s.t.
n
∑

j=1
λjxj ≤ θx0

n
∑

j=1
λjyj ≥ y0

∑ λj = 1; λj ≥ 0, j = 1, . . . , n

(2)
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where θ is the effective value of the evaluation unit, s+ and s− are the slack variables, λj is the
combination ratio of the original decision unit, and the corresponding reconstructed decision unit.

The efficiency value (TIE) calculated by the CCR model can be decomposed into the product
of the scale efficiency (SE) and pure technical efficiency (PTE), namely, technical efficiency = pure
technical efficiency × scale efficiency, and pure technical efficiency is the efficiency value required for
the BCC model. Then we can determine the returns to scale of decision-making units according to the
value of ∑ λj:∑ λj > 1, which indicates a diminishing returns to scale. ∑ λj = 1 means the returns to
scale reaches the best point of return, while ∑ λj < 1 indicates an increasing returns to scale.

3.2.3. Unified Efficiency DEA Model

To deal with the undesirable outputs in assessing the operational and environmental performance
of energy firms, Fare [27] proposed the following directional distance function:

Max
{

θ
∣∣(G + βζg, B− βζb

)
∈ P(X)

}
(3)

Here, P(X) = {(G, B): X can produce (G, B)}. The P(X) indicates a production possibility set, which
has a column vector of inputs (X) that can produce not only a column vector of desirable outputs (G)
but also a column vector of undesirable outputs (B). ζ =

(
ζg,−ζb

)
is suggested as (1, 1, . . . ., 1, −1, −1,

. . . , −1)T, which contains s + h components.
Mandal and Madheswaran [28] assumed that if the firm’s objective is to simultaneously expand

the desirable outputs and reduce the undesirable ones by the same proportion without increasing the
inputs, the directional technology distance function becomes:

→
DT(x, y, b; 0, y,−b) = sup[β : [(1 + β)y, (1− β)b] ∈ P(x)] (4)

The value β represents technical inefficiency. The direction vector g =
(

gx, gy,−gb
)
= (0, y,−b)

determines the direction in which efficiency is measured. Given the technology and direction vector,
the directional distance function measures the maximum feasible expansion of desirable output and
the directional distance function β is zero. The directional distance function β is obtained by solving
the maximization problem in Model (5).

Maxβ

s.t.
n
∑

j=1
xijλj ≤ xik (i = 1, . . . .)

n
∑

j=1
grjλj ≥ grk + βgrk (r = 1, . . . .)

n
∑

j=1
b f jλj ≤ b f k − βb f k ( f = 1, . . . .)

n
∑

j=1
λj = 1

β ≥ 0, λj ≥ 0 (j = 1, . . . .)

(5)

Here, the outputs regarding the jth decision making unit (DMU) are separated into desirable
outputs (grk) and undesirable outputs (bfk). This model can measure the efficiency by θ = 1− β, where
β is obtained from the optimality of Model (5).

In addition to Model (5), Zhou and Ang [29] proposed the following model to measure the unified
efficiency of the energy firms:
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Minθ

s.t.
n
∑

j=1
xijλj ≤ xik (i = 1, . . . .)

n
∑

j=1
eqjλj ≤ θeqk (q = 1, . . . .)

n
∑

j=1
grjλj ≥ grk (r = 1, . . . .)

n
∑

j=1
b f jλj = b f k ( f = 1, . . . .)

θ ≥ 0andλj ≥ 0 (j = 1, . . . .)

(6)

Here, inputs regarding the jth DMU are separated into non-energy (xij: i = 1) and energy-related
inputs (eij: q = 1, . . . ). Model (6) can be considered as an extension of CCR (Charnes-Cooper-Rhods)
and the production possibility set of Model (6) is shaped by constant RTS (returns to scale).

3.2.4. Clustering Analysis

Clustering analysis is a kind of statistical method used to classify the research objects
corresponding to the data. Through clustering analysis, we can measure the distance between different
combinations, adopt different measuring distance methods, combine the two closest combinations
in all combinations into one, and repeat the operation. Therefore, the final result will show the most
similar samples gathered together; this plays an important role in statistical analysis.

3.2.5. Principal Component Analysis

Principal component analysis is a statistical analysis method that simplifies multiple indicators
into a small number of comprehensive indicators, using a small number of variables to reflect as much
of the original variable’s information as possible while ensuring that the original information loss
is small. Suppose X = (X1, X2, . . . , XP)’ is a p-dimensional random vector whose linear variation is
as follows:

PC1 = α′1X = α11X1 + α21X2 + . . . + αp1Xp

PC2 = α′2X = α12X1 + α22X2 + . . . + αp2Xp

. . . . . . . . .
PCp = α′pX = α1pX1 + α2pXp + . . . + αppXp

Using the new variable PC1 to replace the original p variables, X1, X2, . . . , XP, PC1 should reflect
the original variable information as much as possible. If the first principal component is not enough to
represent most of the information of the original variable, consider introducing the second principal
component PC2, and so on. The main purpose of principal component analysis is to simplify the data.
Therefore, in practical application we will not take p main components; rather, we will usually use m
(m < p) principal components. Number m of the principal component is finally determined according
to the cumulative variance contribution rate of each principal component.

Cumulative variance contribution rate =
m

∑
k=1

λk/
p

∑
i=1

λi

where λ is the corresponding eigenvalue of each principal component; k is the selected principal
component fraction; and i is number of the total principal components.

3.2.6. Malmquist Index

The Malmquist productivity index, originally proposed by Sten Malmquist, constructs the total
factor productivity (TFP) index from period t to t + 1. In 1992, Fare combined the DEA model
solution with the Malmquist index calculation. The Malmquist productivity index (TFPCH) can
be decomposed into the technical efficiency change index (EFFCH) and the technical change index
(TECHCH). The transformation of the Malmquist index is as follows:
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M(xt+1, yt+1, xt, yt) =
Dt+1(xt+1, yt+1)

Dt(xt, yt)
×
[

Dt(xt+1, yt+1)
Dt+1(xt+1, yt+1)

×
Dt(xt, yt)

Dt+1(xt, yt)

]
= EFFCH× TECHCH (7)

When the returns to scale change, the technical efficiency change index can be further decomposed
into pure technical efficiency change (PECH) and scale efficiency change (SECH).

Dt+1(xt+1, yt+1)
Dt(xt, yt)

=
Dt+1(xt+1, yt+1/V

)
Dt(xt, yt/V)

×
St+1(xt+1, yt+1)

St(xt, yt)
= PECH× SECH (8)

The final transformation of the Malmquist index is as follows:

M(xt+1, yt+1, xt, yt) = EFFCH× TECHCH = PECH× SECH× TECHCH (9)

M(xt+1, yt+1, xt, yt) represents the variation of the TFP level. If EFFCH > 1, it indicates that the
relative technical efficiency of t and t + 1 period is increased, whereas, in the contrary, it is the reverse.
If TECHCH > 1, it indicates that t + 1 period has technological progress compared to t period, whereas,
in the contrary, it is the reverse. PECH indicates whether the technology is fully utilized; if it is larger
than 1, it indicates that the resource allocation is reasonable, whereas, in the contrary, it is the reverse.
SECH expresses the index of the change of scale efficiency in two periods; if it is larger than 1, it means
that the scale efficiency is optimized, whereas, in the contrary, it is the reverse.

4. Jing-Jin-Ji Region Key Energy-Intensive Industries Analysis

4.1. Jing-Jin-Ji Region Industrial Industries TFP Measurement

This paper selects the industrial energy input and output indicators of the 27 industries above
designated size in the Jing-Jin-Ji region from 2005 to 2015. The indicators are defined as follows:

Capital investment. Capital investment is expressed as the “total fixed investment” of the
industries above the designated size in the Jing-Jin-Ji region, and the actual value of the corresponding
year is reduced by the fixed-asset investment price index (2005 = 100).

Labor input. Select the Jing-Jin-Ji region above the designated size industrial “average number of
years of employment” as a labor input index.

Energy input. Select the Jing-Jin-Ji region above the designated size industrial energy total
consumption as the energy input.

Desirable output. Select the Jing-Jin-Ji region above the designated size total industrial output
as the desirable output, and the actual value of the corresponding year is reduced by the industrial
production price index (2005 = 100).

Undesirable output. Calculate the CO2 emissions of 27 industries in 2005–2015 according to
the 2006 Intergovernmental Panel on Climate Change (IPCC) Guidelines for National Greenhouse
Gas Inventories. The above data is sourced from the Beijing Statistical Yearbook, Tianjin Statistical
Yearbook, Hebei Economic Yearbook, China Industrial Economy Yearbook, and China Population and
Employment Statistics Yearbook from 2006 to 2016 calendar years.

Descriptive statistics of TFEE measurement indicators are shown in Table 2.

Table 2. Descriptive statistics of TFEE measurement indicators of the Jing-Jin-Ji region.

Variables Unit Quantity Expected Value Variance Maximum Value Minimum Value

Capital 10,000 yuan Renminbi (RMB) 891 1,925,008.5 1006.227 48,598,069 719.7662
Labor 10,000 people 891 4.27 5.12 42.8 0.25

Energy 10,000 tons of standard coal 891 251.4162 1003.602 10,765.11 0.32
Desirable output 10,000 yuan RMB 891 5,135,763.6 9,995,731.7 119,232,787 17,693.821

Undesirable output 10,000 tons 891 648.7856 2474.223 26,446.65 0.029884
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4.2. TFEE Measurement Results

The DEA model is used to calculate the TFEE results of the Jing-Jin-Ji region in 27 industries in
Beijing, Tianjin, and Hebei from 2005 to 2015. The descriptive statistics of the TFEE results are shown
in Table 3.

Table 3. TFEE measurement results of the Jing-Jin-Ji region.

Number Industrial Industries
Beijing Tianjin Hebei

Average Median Average Median Average Median

1 Processing of Food from Agricultural Products 0.526 0.244 0.449 0.119 0.381 1.000

2 Manufacture of Foods 0.291 0.149 0.310 0.074 0.298 0.064

3 Manufacture of Beverages 0.270 0.188 0.203 0.035 0.247 0.047

4 Manufacture of Textile 0.343 0.110 0.168 0.023 0.310 0.985

5 Manufacture of Textile Wearing Apparel and
Accessories 0.410 0.103 0.651 0.207 0.729 0.100

6 Manufacture of Leather, Fur, Feathers, and
Related Products 0.713 0.151 0.379 0.136 0.763 0.198

7 Manufacture of Timber, Manufacture of Wood,
Bamboo, Rattan, Palm, and Straw Products 0.226 0.151 0.325 0.083 0.319 0.065

8 Manufacture of Furniture 0.338 0.121 0.325 0.064 0.371 0.061

9 Manufacture of Paper and Paper Products 0.340 0.233 0.166 0.039 0.212 0.059

10 Printing and Reproduction of Recording Media 0.189 0.115 0.251 0.040 0.425 0.064

11 Manufacture of Articles for Culture, Education, Arts
and Crafts, Sport and Entertainment activities 0.357 0.066 0.551 0.088 0.627 0.084

12 Processing of Petroleum, Coking and Processing of
Nuclear Fuel 0.908 0.841 0.307 1.000 0.203 0.525

13 Manufacture of Raw Chemical Materials and
Chemical Products 0.338 0.279 0.170 1.000 0.181 1.000

14 Manufacture of Medicines 0.348 0.242 0.263 0.040 0.206 0.064

15 Manufacture of Rubber and Plastic Products 0.268 0.141 0.264 0.043 0.285 0.130

16 Manufacture of Non-Metallic Mineral Products 0.281 0.214 0.181 0.043 0.173 1.000

17 Smelting and Pressing of Ferrous Products 0.473 0.400 0.280 1.000 0.265 1.000

18 Smelting and Pressing of Non-Ferrous Products 0.591 0.344 0.713 0.170 0.422 0.058

19 Manufacture of Metal Products 0.368 0.203 0.389 0.295 0.470 0.696

20 Manufacture of General Purpose Machinery 0.424 0.247 0.398 0.122 0.378 0.690

21 Manufacture of Special Purpose Machinery 0.435 0.226 0.377 0.080 0.389 0.058

22 Manufacture of Railway, Ship, Aerospace, and Other
Transport Equipment 0.593 0.554 0.522 1.000 0.526 1.000

23 Manufacture of Electrical Machinery and Apparatus 0.656 0.403 0.564 0.138 0.606 0.550

24 Manufacture of Computers, Communication, and
Other Electronic Equipment 0.835 0.745 0.975 0.569 0.519 0.071

25 Production and Supply of Electric Power and
Heat Power 0.830 0.780 0.230 1.000 0.068 1.000

26 Production and Supply of Gas 0.359 0.412 0.597 0.274 0.389 0.061

27 Production and Supply of Water 0.210 0.095 0.154 0.049 0.142 0.015

The definition and information of these 27 industries can be found in national bureau of statistics
of China.

4.3. TFEE Measurement Results and Information Statistics

The DEA model, data of TFEE, average TFEE, variance, proportion of energy consumption in
various industrial industries, and economy output ratio in 27 industries in Beijing, Tianjin, and Hebei
from 2005 to 2015 are used. The descriptive statistics of upper indicators are shown in Table 4.
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Table 4. Descriptive statistics of industry data in the Jing-Jin-Ji region.

Number Industrial Industries TFEE Variance Energy
Consumption Ratio

Economy
Output Ratio

1 Processing of Food from Agricultural Products 0.219 0.012 0.041

2 Manufacture of Foods 0.162 0.009 0.031

3 Manufacture of Beverages 0.072 0.003 0.010

4 Manufacture of Textile 0.261 0.005 0.022

5 Manufacture of Textile Wearing Apparel and Accessories 0.014 0.001 0.011

6 Manufacture of Leather, Fur, Feathers, and Related Products 0.092 0.001 0.017

7 Manufacture of Timber, Manufacture of Wood, Bamboo, Rattan,
Palm, and Straw Products 0.046 0.002 0.004

8 Manufacture of Furniture 0.044 0.001 0.006

9 Manufacture of Paper and Paper Products 0.090 0.006 0.009

10 Printing and Reproduction of Recording Media 0.033 0.002 0.006

11 Manufacture of Articles for Culture, Education, Arts and Crafts,
Sport and Entertainment activities 0.027 0.001 0.012

12 Processing of Petroleum, Coking and Processing of Nuclear Fuel 0.200 0.060 0.042

13 Manufacture of Raw Chemical Materials and Chemical Products 0.328 0.107 0.051

14 Manufacture of Medicines 0.148 0.007 0.026

15 Manufacture of Rubber and Plastic Products 0.100 0.006 0.024

16 Manufacture of Non-Metallic Mineral Products 0.262 0.050 0.033

17 Smelting and Pressing of Ferrous Products 0.147 0.493 0.174

18 Smelting and Pressing of Non-Ferrous Products 0.096 0.003 0.018

19 Manufacture of Metal Products 0.114 0.012 0.052

20 Manufacture of General Purpose Machinery 0.123 0.005 0.036

21 Manufacture of Special Purpose Machinery 0.048 0.007 0.036

22 Manufacture of Railway, Ship, Aerospace, and Other Transport
Equipment 0.175 0.013 0.133

23 Manufacture of Electrical Machinery and Apparatus 0.198 0.007 0.045

24 Manufacture of Computers, Communication, and Other
Electronic Equipment 0.288 0.003 0.061

25 Production and Supply of Electric Power and Heat Power 0.109 0.177 0.091

26 Production and Supply of Gas 0.093 0.005 0.008

27 Production and Supply of Water 0.070 0.002 0.002

4.4. Analysis of Key Energy-Intensive Industry in the Jing-Jin-Ji Region

4.4.1. Clustering Analysis Result

The clustering analysis of 27 industrial industries in Beijing, Tianjin, and Hebei is conducted by
using the method of system clustering analysis, according to the three indicators of energy consumption
ratio, economy output ratio, and energy efficiency fluctuation. The calculation results are shown in
Figure 3.

Through Figure 3, we find that the 27 industries are divided into three categories. The first
category is the production and supply of electric power and heat power, raw chemical materials
and chemical products, the smelting and processing of ferrous metals, and the oil and gas mining
industry. The second category is petroleum processing, the coking and nuclear fuel processing
industry, the manufacturing of computers, communication, and other electronic equipment, and the
manufacturing of railways, ships, aerospace equipment, and other transport equipment. Finally,
the third category is comprised of the remaining industries.
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4.4.2. Principal Component Analysis Result

Through principal component analysis, we reduce the number of variables, while minimizing
the original information loss, to make the research clearer and the categorization more intuitive.
The specific results are shown in Figure 4.
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Two principal components are selected. The first principal component predominately reflects
the energy consumption information, while the second principal component mainly reflects the
output value information. The cumulative variance contribution rate is 97.7%, which is greater than
the threshold value of 85%. We find that the production and supply of electric power and heat
power, raw chemical materials and chemical products, smelting, and the processing of ferrous metals
fall in the positive direction of the first principal component and the second principal component.
This indicates that the three industries account for a large proportion of the energy consumption
ratio and economic output ratio. The petroleum processing, coking and nuclear fuel processing
industry, the manufacturing of computers, communication, and other electronic equipment, and the
manufacturing of railways, ships, aerospace equipment, and other transport equipment fall in the
second quadrant of the first principal component and the second principal component. This indicates
that the three industries account for a larger proportion of output, but a smaller proportion of energy
consumption. The remaining industries in the third quadrant indicate low energy consumption and
low output.

4.4.3. The Results of Analysis of Key Energy-Intensive Industries in the Jing-Jin-Ji Region

Based on the two methods above, we conduct the following classification system. The specific
results are shown in Table 5.

Table 5. Industry classification table.

Classification Industrial Industries

The first category Raw Chemical Materials and Chemical Products, Smelting and Processing of
Ferrous Metals, Production and Supply of Electric Power and Heat Power

The second category
Petroleum Processing, Coking and Nuclear Fuel Processing Industry,
Manufacturing of Computers, Communication, and Other Electronic Equipment,
Manufacturing of Railway, Ship, Aerospace, and Other Transport Equipment

The third category The rest of the department

The above categorization is useful according to clustering analysis and principal component
analysis. The industries are classified into three types. The first type has a high GDP, a large amount
of energy consumption, and a large difference in energy efficiency between the three provinces.
The second type has a relatively high GDP, relatively low energy consumption, and a relatively large
difference in energy efficiency between the three provinces. The third type has a small GDP and
energy consumption, with energy efficiency differences between the three provinces also proving
small. We select the first type of industries as the focus of this study.

5. Analysis of Influencing Factors of the TFEE in Key Energy-Intensive Industries

5.1. Production and Supply of Electric Power and Heat Power

From the overall integrated efficiency change, the average value of the production and supply
of electric power and heat power in the Jing-Jin-Ji region is 1.065, of which the average of technical
progress changes is 1.090, while the average of comprehensive technical efficiency changes is 1.038.
Judging from its decomposition, the pure technical efficiency change index average value is 1.083, and
the scale efficiency change index is 0.985. This shows that the Jing-Jin-Ji region has made remarkable
achievements in technological innovation. The reason for the low efficiency of integrated technology is
the change in scale efficiency, indicating that the optimal industrial scale has not yet been reached.

In terms of differences, Beijing’s TFP has been on a downward trend since 2009 and is much
lower than that of Tianjin and Hebei in 2015. By contrast, the TFP of industry in Hebei Province is
greater than 1 each year, indicating that the industry in Hebei Province has been showing a positive
progressive change. At 9%, it has the highest average annual rate of change among the three provinces.
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In Tianjin, the average annual rate of change is 6.7% in the industry, but in a few years the TFP changes
predict negative growth. The change curves of TFP in the production and supply of electric power and
heat power in the Jing-Jin-Ji region are shown in Figure 5.

The average scale efficiency of the industry in Beijing is 0.839, which is lower than the values of
1.005 in Tianjin and 0.965 in Hebei. This is the predominate reason why the TFP of the industry in
Beijing is low. The technological progress of the industry in Hebei is 1.1078, higher than the values of
1.0914 in Beijing and 1.0703 in Hebei, which is the primary reason why the TFP of this industry in Hebei
Province is the highest among the three provinces. The detailed data of average Malmquist index in
the production and supply of electric power and heat power in the Jing-Jin-Ji region, 2005–2015 are
shown in Table 6.

In Beijing, in order to realize its overall planning, much of the industry’s enterprise had to relocate.
Since 2010, Beijing has shut down its original coal-fired thermal power plant represented by the four
coal-fired cogeneration plants. Although the city has reduced its consumption of coal by 9.2 million
tons, the scale efficiency of the industry in Beijing remains low. Hebei Province, in part, accepts the
relocation of Beijing’s enterprises from the city. The spillover effect from Beijing enterprises has led to
significant technological change in industries in the Hebei Province. At the same time, the efficiency of
scale change in the Hebei Province is 0.965, which is not optimal. If the scale benefits are increased and
industrial structure changed, the overall technical efficiency of the province can be improved.
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Table 6. The average Malmquist index in the production and supply of electric power and heat power
in the Jing-Jin-Ji region, 2005–2015.

Beijing Tianjin Hebei

TFPCH 1.036696 1.0673 1.0897
SECH 0.83945 1.0052 0.9649
PECH 1.110767 1.0419 1.1458

TECHCH 1.0914 1.0703 1.1078
EFFCH 0.969428 1.0675 1.0767

5.2. Smelting and Processing of Ferrous Metals

From the overall integrated efficiency change, the average value of ferrous metal smelting and
rolling processing industry in the Jing-Jin-Ji region is 1.103, showing progress with the average technical
progress changes at 1.144, while the average comprehensive technical efficiency changes are at 0.993.
Judging from its decomposition, the pure technical efficiency change index average value is 1.058, while
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the scale efficiency change index is 0.949. This shows that the Jing-Jin-Ji region has made remarkable
progress in technological innovation. The reason for the low efficiency of integrated technology is
the change in scale efficiency, indicating that the optimal industrial scale has not yet been reached.
The change curves of TFP in the smelting and processing of ferrous metals in the Jing-Jin-Ji region are
shown in Figure 6.

In terms of differences, Beijing’s TFP presents a sharp decline, followed by a trend of ascending
and descending since 2008. In Tianjin, the TFP of the industry shows an upward trend in 2008 or so,
followed by a decline and then an increase. Meanwhile, Hebei Province has seen a sharp rise in the
industry in 2008, since followed by a declining trend.

In Hebei Province, the average scale efficiency change is rather low at 0.848, compared with
1.054 in Beijing and 0.944 in Tianjin, leading to the conclusion that Hebei’s TFP for the industry is
low. The average pure technical efficiency change in Tianjin is 1.114, higher than the values of 0.983
in Beijing and 1.077 in Hebei. This is the primary reason why the TFP of the industry in Tianjin is
the highest of the three regions. The detailed data of average Malmquist index in the smelting and
processing of ferrous metals in the Jing-Jin-Ji region, 2005–2015 are shown in Table 7.

In Beijing, in order to realize its overall planning and undertake the Green Olympics, a number of
large-scale enterprises headed by the Beijing ShouGang Group moved out of Beijing in 2008, causing
the TFP of the industry in Beijing to plunge. At this time, the surrounding areas of Tianjin and Hebei
accepted these enterprises, making the TFP of the surrounding areas rise. As a port city, Tianjin’s
economy is vulnerable to international trade. In 2011, the impact of the global financial crisis on Tianjin
caused the industry to show a downward trend; however, it then rebounded rapidly. Beijing and Hebei
provinces should actively study Tianjin’s advanced management methods and technical experience in
the industry.
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Table 7. The average Malmquist index in the smelting and processing of ferrous metals in the Jing-Jin-Ji
region, 2005–2015.

Beijing Tianjin Hebei

TFPCH 1.100 1.138 1.098
SECH 1.054 0.944 0.868
PECH 0.983 1.114 1.077

TECHCH 1.091 1.103 1.188
EFFCH 1.015 1.053 0.935
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5.3. Manufacture of Raw Chemical Materials and Chemical Products

From the overall integrated efficiency change, the average value of raw chemical materials and
chemical products manufactured in the Jing-Jin-Ji region is 1.096, of which the average technical
progress changes are 1.062, while the average comprehensive technical efficiency changes are 1.048.
Judging from its decomposition, the pure technical efficiency change index average value is 1.060,
while the scale efficiency change index is 0.994. This shows that the Jing-Jin-Ji region has made notable
achievements in technological innovation. The reason for the low efficiency of integrated technology is
the change in scale efficiency, indicating that the optimal industrial scale has not yet been reached.

In terms of differences, the growth of Beijing’s industry in 2005–2011 is relatively slow compared
with that of Tianjin and Hebei. By 2010, the industry in Beijing dropped sharply, while the industry in
Tianjin and Hebei increased during the same period. In Tianjin, in addition to the TFP being less than 1
from 2009–2011, significant progress has also been made in subsequent years. Since 2009, Hebei has
shown significant and progressive changes. The change curves of TFP in the manufacturing of raw
chemical materials and chemical products in the Jing-Jin-Ji region are shown in Figure 7.

The average TFP of Tianjin in this industry is 1.140, which is considerably higher than the values
of 1.062 in Beijing and 1.085 in Hebei. The predominant reason for this is that the technical progress
of Tianjin in this industry is 1.132, a figure that is significantly higher than the equivalent 1.023 in
Beijing and 1.030 in Hebei. The detailed data of average Malmquist index in the manufacturing of raw
chemical materials and chemical products in the Jing-Jin-Ji region, 2005–2015 are shown in Table 8.

In 2005, a fire broke out in Beijing Chemical Plant No. 2, causing an explosion. After the accident,
the Beijing government decided to relocate all polluting enterprises, including chemical plants and
coking plants, beyond the Fifth Ring Road, while Beijing Chemical Plant No. 2 immediately stopped
production. Additionally, 22 enterprises in this industry relocated out of Beijing around 2010, causing
the TFP of the industry to decline. At this time, Tianjin and Hebei’s peripheral regions accepted these
enterprises, resulting in an increase in the TFP in the surrounding areas. Tianjin, as a city with frequent
international trade, was hit by the financial crisis in 2008, causing its growth to slow down.
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Table 8. The average Malmquist index in the manufacturing of raw chemical materials and chemical
products in the Jing-Jin-Ji region, 2005–2015.

Beijing Tianjin Hebei

TFPCH 1.062 1.140 1.086
SECH 0.990 1.004 0.989
PECH 1.066 1.031 1.084

TECHCH 1.023 1.132 1.030
EFFCH 1.060 1.020 1.063
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6. Conclusions

This paper first uses the DEA model to compare the average efficiency of the 27 industrial
industries in Beijing, Tianjin, and Hebei from 2005 to 2015, and highlights three industries with
considerable differences in their efficiency and energy consumption. Subsequently, we employ the
Malmquist index analysis, which shows that the manufacturing of raw chemical materials and chemical
products, the smelting and processing of ferrous metals, and the production and supply of electric
power and heat power are rising steadily. However, the efficiency of technological changes in these
three major industries is generally low, so the Jing-Jin-Ji region should improve its technological
innovation and enhance its core competitiveness. At the same time, the scale efficiency is insufficient,
which is reflected in the inefficiency of the allocation of resources. We should optimize the allocation
of these resources in specific industries to improve the scale efficiency.

The average value of the overall efficiency change of the three key industries in Beijing, Tianjin,
and Hebei is 1.09, which, on the whole, shows a progressive change. The primary reason for this is that
the technical changes in the three industries are 1.10, and this is because the three industries themselves
have considerable economic strength and a strong ability to import and develop technologies.

We also find that Beijing industries have a tendency to relocate towards the region’s peripheries,
especially to Hebei Province. By 2015, Beijing had transferred more than 80 industrial projects to Hebei,
with a total investment exceeding 120 billion yuan RMB and generating a capacity of 250 billion yuan
RMB. Beijing can make use of this opportunity to ease its non-capital function, adjust its economic
structure and spatial structure, explore a model for optimizing the intensive development of a densely
populated area, and promote harmonious regional development. Hebei Province can take advantage of
this opportunity to accelerate the optimization and adjustment of its economic structure and industrial
institutions by promoting the upgrade of industrial enterprises equipment and forming a large-scale
industry, thereby enhancing industrial energy efficiency.

Thus far, Tianjin is the only free trade zone in the north and has the opportunity of building the
“Belt and Road”. Tianjin should focus on promoting the international nature of its industries and work
to constantly improve its international competitiveness. At the same time, it must also make good
use of the opportunity of building a “national advanced manufacturing research and development
base” and strive to enhance research and development capability so as to create a well-structured and
distinctive industrial system, improve industrial clusters, and build a gathering place with high-end
industry, advanced technology, and innovation elements.
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