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Abstract: With the innovation of wireless communication technology and the surge of data in
mobile networks, traditional routing strategies need to be improved. Given the shortcomings
of existing opportunistic routing strategies in transmission performance and security, this paper
proposes a community opportunistic routing decision-making method based on the trust model. This
algorithm calculates the node’s trust value through the node’s historical forwarding behavior and
then calculates the node’s trust value based on the trust model. Thresholds and trust attenuation
divide dynamic security communities. For message forwarding, nodes in the security community
are prioritized as next-hop relay nodes, thus ensuring that message delivery is always in a safe and
reliable environment. On this basis, better relay nodes are further selected for message forwarding
based on the node centrality, remaining cache space, and remaining energy, effectively improving
the message forwarding efficiency. Through node trust value and community cooperation, safe
and efficient data transmission is achieved, thereby improving the transmission performance and
security of the network. Through comparison of simulation and opportunistic network routing
algorithms, compared with traditional methods, this strategy has the highest transmission success
rate of 81% with slightly increased routing overhead, and this algorithm has the lowest average
transmission delay.

Keywords: trust model; community opportunity routing; historical information; security community

1. Introduction

With the advancement of 5G network communication technology, the widespread
adoption of mobile devices such as smartphones and tablets has become ubiquitous in daily
life [1]. Consequently, there has been a substantial surge in data generation. The escalating
volume of data coupled with the progressively intricate network landscape has imposed
heightened demands on both data transmission efficiency and security [2]. Traditional
mobile self-organizing networks typically necessitate the pre-confirmation of a complete
transmission link prior to communication. However, real-world scenarios often entail
frequent mobility and uneven distribution of mobile devices, leading to challenges such as
network communication disruptions [3]. Given the complexity of traditional mobile self-
organizing networks in adapting to the dynamic shifts in wireless networks, researchers
both domestically and internationally have shifted their focus towards the exploration of
opportunistic networks [4].

As a delay-tolerant network, opportunistic networks lack fixed communication lines
between nodes. Nodes within opportunistic networks employ a store-carry-forward mech-
anism for data forwarding, rendering the network mobile, open, and sparse [5]. Presently,
opportunistic networks find application in various domains such as wildlife research [6],
vehicle networking [7], and post-disaster communications [8]. Concurrently, within human
society, individuals utilizing mobile devices imbue these networks with social attributes,
thus forming social opportunistic networks [9].

Contemporary studies on opportunistic networks predominantly harness node con-
textual data, including geographical locations [10] and social networks [11], to earmark
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efficient next-hop relay nodes, thereby enhancing the network’s transmission capabilities.
However, these investigations tend to overlook the perilous influence of malicious and self-
ish nodes on the network’s integrity [12,13]. Given the reliance of opportunistic networks
on the proactive engagement of all nodes for data transmission [14], they are particularly
prone to security breaches. This underscores the necessity of not only choosing nodes based
on their transmission efficacy but also ensuring the security credentials of these next-hop
relay nodes.

Moreover, the prevailing approach within opportunistic network research is to priori-
tize nodes with the highest transmission efficiency for relay purposes to achieve optimal
local transmission outcomes [15]. This strategy neglects the potential strain on central
nodes, which, when overly relied upon for data forwarding, face considerable storage pres-
sure [16]. This, in turn, can lead to data congestion and the rapid depletion of node energy,
necessitating further exploration into opportunistic network data transmission strategies.
Opportunistic network forwarding requires nodes to cache data until an encounter with the
destination node occurs [17]. Nonetheless, the mobile devices comprising these networks
are typically constrained by limited computational power, storage capacity, and energy,
frequently resulting in buffer overflows and data loss [18]. Particularly, flooding-based
routing algorithms are prone to causing network congestion, node depletion, and delays in
data transmission [19]. Thus, identifying strategies to alleviate backbone network transmis-
sion pressures and prolong network longevity, while ensuring the selection of efficient and
secure relay nodes, presents a novel challenge in the realm of opportunistic networks.

In response to the aforementioned challenges, this paper proposes a secure community
algorithm based on the trust model. The algorithm computes node trust values based
on historical interaction records, reflecting node performance within the opportunistic
network. These records facilitate the prediction of subsequent node forwarding behavior.
Subsequently, dynamic security communities are delineated using trust thresholds and de-
cay. During message forwarding, nodes prioritize relay nodes within security communities,
considering node centrality, remaining cache space, and energy levels. This selection of
secure and efficient relay nodes alleviates network congestion, prolongs node lifespan, and
enhances data transmission efficiency within the opportunistic network, thereby improving
network service quality and user experience.

This study contributes as follows:

(1) This study introduces the notion of delineating secure communities grounded in
node trust, coupled with a delineated methodology for computing node trust derived
from historical interactions. It further advances the segmentation of dynamic secure
communities predicated on trust thresholds and trust decay, aiming to fortify the
efficacy of community segmentation and facilitate secure data transmissions.

(2) We propose a novel routing algorithm that determines next-hop relay nodes by leverag-
ing secure community divisions, node centrality, residual cache capacity, and remain-
ing energy levels. This algorithm enhances data transmission success rates, alleviates
network congestion, and prolongs network longevity.

(3) Simulation experiments substantiate that the secure community opportunistic routing
algorithm, underpinned by the trust model, surpasses conventional algorithms in
network data transmission, showcasing a superior transmission success rate and
diminished transmission delays.

2. Related Works

The inception of opportunistic networks can be traced back to early delay-tolerant
networks [20], first conceptualized at EXOR in 2005 [21]. Presently, both domestic and
international academic research endeavors pertaining to opportunistic networks primarily
delve into their social characteristics [22]. The proposed algorithm significantly enhances
the data transmission performance within opportunistic networks. Subsequently, the
following section will delve into various existing opportunistic routing algorithms.
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In opportunistic networks, routing algorithms are commonly categorized into non-
context-aware and context-aware routing algorithms [23]. Non-context-aware routing
algorithms often resort to flooding for data transmission, resulting in the proliferation of
redundant message copies within the network, consequently leading to elevated message
forwarding delays and increased energy consumption [24]. The Epidemic [25] algorithm
stands as a classic non-context-aware routing algorithm, modeled after the spread of infec-
tious diseases. Although effective in reducing network transmission delay under optimal
resource conditions, the Epidemic algorithm struggles to deliver favorable outcomes in
natural environments due to network congestion with increasing node density.

To address the limitations of the Epidemic algorithm, the Spray and Wait algorithm
was introduced, fixing the number of message copies N at the outset [26]. This algorithm
comprises two stages: the spray stage, where the source node broadcasts N copies of the
message, and the wait stage, where nodes carrying message copies wait in the network.
However, the challenge lies in setting the optimal number of message copies, as too few
copies may hinder message delivery, while an excessive number may exacerbate forwarding
delays and energy consumption.

Context-aware routing algorithms select the next-hop relay node based on user contex-
tual information, such as geographical location, historical data, and social relationships [27].
Nonetheless, these algorithms often necessitate extensive information and intricate com-
putations, contributing to additional transmission delays and energy consumption. In
BubbleRap [28], nodes are segregated into different communities, with preference given to
nodes within the same community as the destination node when selecting the next-hop
relay node. However, over time, this algorithm may witness the formation of large, encom-
passing communities, diminishing the significance of community division. Furthermore,
prioritizing nodes with high centrality for data forwarding may lead to node congestion
and rapid energy depletion.

Wu et al. [29] proposed the Edge Collaborative Cache Trust Community (ECTC)
routing algorithm, which employs comprehensive trust indicators to partition trust commu-
nities. This algorithm utilizes explicit labels for direct trust and calculates node similarities
through inter-node paths for indirect trust. Trusted relay nodes assist in cache cooperative
transmission by trusting neighbor nodes (edge nodes) with surplus cache space within the
community. Simulation experiments validate the efficacy of the Edge Collaborative Cache
Trust Community (ECTC) routing algorithm in improving message transmission success
rates and reducing network overhead.

Table 1 provides a comprehensive analysis of existing relevant research. Building
upon the exploration of the aforementioned methodologies, this paper introduces a more
effective approach to achieve secure and efficient data transmission within opportunistic
networks.

Table 1. Summary of related work.

Classification Non-Context-Aware Routing Algorithms Context-Aware Routing Algorithms

Algorithm Epidemic Spray and Wait BubbleRap ECTC

Strategy

Employing the data flooding
forwarding approach,
whenever any two nodes
intersect, they engage in the
exchange of data packets that
aremutually lacking.

Message spread depends on
the number of copies. When
there is only one copy left,
the node sends it only to the
intended recipient.

Nodes that meet more often
are grouped together and
preferred for relaying
messages.

The security community is
defined by trust values from
labels and node paths.
Nodes with extra cache space
within this community help
share data.

Advantage

Under conditions of ample
resources, this approach
facilitates a commendable
transmission success rate
alongside minimized
transmission delays.

Multi-copy forwarding
enhances the transmission
success rate, while restricting
the quantity of message
copies curtails redundant
data, thereby preventing
network congestion.

Community segmentation
enables nodes to select more
efficientrelay nodes, thereby
diminishing the average
transmission delay
of messages.

In the edge node system,
trusted nodes are recognized
within the community. They
work together to distribute
data, reducing congestion in
the main network.

Insufficiencies

As the network grows and
more nodes are added, too
many redundant data cause
congestion and increase
transmission delays.

Finding the right number of
message copies is hard as it
depends on the network
environment. Too many
copies can cause congestion,
while too few may lower
success rates.

Over time, nodes form large
communities, making
divisions less effective.
Flooding and forwarding
strategies also cause data
buildup, leading to network
congestion.

Node explicit labels fail to
dynamically update in
response to a node’s
behavior within the network,
challenging the accurate
reflection of the node’s
credibility.
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3. Trust Community Routing Algorithm

In this section, we present a detailed exposition of the Secure Community Opportunis-
tic Network algorithm based on the trust model. This algorithm primarily encompasses
three pivotal steps: (1) calculation of node trust degree; (2) construction of the security
community; (3) selection of forwarding nodes. Initially, nodes involved in this study locally
store historical interaction records, enabling prediction of subsequent node forwarding
behavior and computation of the node’s direct trust value. The node’s indirect trust value is
then determined by assessing the identical nodes within the node community, culminating
in the derivation of the node’s comprehensive trust value. Subsequently, a trusted com-
munity is established based on the cumulative trust value, with the maintenance of trust
communities facilitated through periodic updates employing trust value decay. Finally,
leveraging the concepts of local and global centrality in conjunction with the node’s residual
energy and cache space, relay nodes are meticulously selected from neighboring nodes,
facilitating sequential data transmission in accordance with message priority.

The calculation of node trust value forms the foundational underpinning for construct-
ing a secure community, ensuring message transmission predominantly occurs within
safe communities. Moreover, the selection of relay nodes within the security community
based on high centrality, residual energy, and cache space expedites data transmission
while mitigating network congestion. The iterative coordination of the three algorithms
encompassing node trust value calculation, trust community division, and relay node
selection collectively contribute to achieving efficient data transmission.

3.1. Node Trust Degree Measurement

In an opportunistic network, message transmission relies on the store-carry-forward
mechanism, necessitating active participation and collaboration among network nodes.
However, ensuring the absence of malicious nodes among these entities is imperative to
avert the risks of network attacks. Thus, the assessment of node trustworthiness and the
selection of trusted nodes form the cornerstone of secure message transmission. To this end,
this paper advocates leveraging the historical forwarding behavior of nodes to quantify
node trust, thereby identifying reliable relay nodes conducive to safe transmission. The
calculation of node trust entails a comprehensive consideration of both direct and indirect
trust. Direct trust is evaluated based on the node’s historical interaction records, while
indirect trust pertains to those of other nodes within the local community.

Definition 1. Node trust.

This parameter indicates the potential for neighboring nodes to assist in the successful
forwarding of messages by the focal node. For any pair of nodes, A and B, within the op-
portunistic network, the trust value between nodes is computed as depicted in Formula (1):

Trust(A,B) = αdTrust(A,B) + (1 − α)iTrust(A,B) (1)

among them, Trust(A,B) represents the comprehensive trust degree of node A towards node
B, dTrust(A,B) denotes the direct trust, iTrust(A,B) signifies the indirect trust, and α serves
as the weight factor.

Definition 2. Direct Trust.

This paper employs the Bayesian trust model to forecast the subsequent forwarding
behavior of nodes. The Bayesian trust model conceptualizes trust as a random variable
following the β distribution, leveraging the node’s historical interaction records as the
prior distribution, and computing the posterior distribution to predict the node’s future
forwarding behavior. The parameter α in the β distribution is determined by the number
of successful historical node interactions, while the parameter β is influenced by the
number of failed interactions. The expectation of this β distribution is then utilized to
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depict the Bayesian trust of the node. Bayesian trust offers an intuitive representation of a
node’s message forwarding success rate and future forwarding tendencies. A higher value
indicates a node’s greater capability in forwarding messages. The calculation formula is
articulated as follows:

Trustbey =
α

α + β
=

messagesuc

message f al
(2)

where messagesuc represents the number of successful node interactions, and message f al
represents the number of failed node interactions. By utilizing Formula (2), this study
thoroughly examines the node’s three historical interaction records to compute the node’s
direct trust degree. The calculation formula for direct trust is expressed as follows:

dTrust(A,B) = w1 × AllTrust(A,B) + w2 × RecTrust(A,B) + w3 × TraTrust(A,B) (3)

where AllTrust(A,B) is calculated by incorporating the historical interaction records between
node B and all other nodes in the network into Formula (2). This value can effectively
depict the overall forwarding behavior of node B within the social opportunistic network.
RecTrust(A,B) is computed by integrating the historical interaction record of node B re-
ceiving messages sent by node A into Formula (2), thus reflecting node B’s proficiency
in receiving messages from node A. Similarly, TraTrust(A,B) is derived from the historical
interaction records of node B forwarding messages received from node A, illustrating node
B’s capability in successfully forwarding messages from node A. The coefficients w1 , w2,
and w3 represent different weight coefficients, whose values can be adjusted according
to various network environments. For instance, in a network that prioritizes the overall
behavior of nodes, the value of w1 can be elevated. The direct trust degree comprehensively
evaluates the historical forwarding behavior of the relay node towards other nodes in the
network, its reception behavior of messages from the designated node, and its transmission
behavior of messages provided by the designated node. Such a comprehensive evalua-
tion enables a more accurate prediction of subsequent forwarding behavior within social
opportunistic networks.

Definition 3. Indirect trust.

In social opportunistic networks, aside from evaluating the node’s own trustworthi-
ness towards neighboring nodes, it is imperative to also account for the trustworthiness of
nodes within the node’s local community towards neighboring nodes. This study proposes
utilizing the average trust value of the same node within the node’s local community as
the node’s indirect trust value. The calculation formula is delineated as follows:

iTrust(A,B) =
1
n ∑i∈{A.local}∩{B.local} Trust(A,i) (4)

where n represents the count of identical nodes in the local community of both node A
and node B, while Trust(A,i) signifies the comprehensive trust value of node A towards the
identical node jwithin the local community.

3.2. Node Community Division

Partitioning security communities according to node trust values enables nodes to
prioritize selecting trusted nodes within these communities as next-hop relay nodes during
information transmission, thereby enhancing the security of message delivery. Given the
inability of nodes within opportunistic networks to ascertain the global network status and
to mitigate the storage burden arising from excessive community information retention,
this study advocates for nodes to solely maintain a local community table locally. Further-
more, dynamic trust thresholds are employed for community organization, calculated by
averaging the trust values of all neighboring nodes. The calculation formula is articulated
as follows:
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Threshold =
1
m ∑

j∈{A.connections}
Trust(A,j) (5)

where m represents the number of links established by node A, and Trust(A,j) denotes the
comprehensive trust value of node A towards the neighbor node i at the opposite end of
the link.

Additionally, as time progresses, nodes persist in adding other network nodes to their
local communities. With the expansion of a node’s local community table, the significance
of community division decreases. When a node’s local community encompasses most of
the network nodes, community division becomes irrelevant. To tackle this issue, this paper
adopts a decay function to update the trust values of nodes in the local table and eliminates
nodes below the trust threshold to mitigate community redundancy. The decay function
for node trust value is detailed as follows:

Trust(A,B) = Trust(A,B)old × (1 − Timen − Timel
Timen

)γ (6)

where Trust(A,B)old denotes the most recent comprehensive trust value of node A concerning
node B, Timen signifies the current system time, and Timel denotes the time of the last trust
value update. γ denotes the decay function.

By employing dynamic trust thresholds and trust value attenuation, we can establish
robust security communities, mitigating the formation of overly expansive communities
within social opportunistic networks and guaranteeing the efficacy of community segmen-
tation. The steps for dividing the security community are outlined as follows:

Step 1: The node maintains two sets locally: the acquaintance set and the local community.
Upon encountering other nodes in the network, it initiates the calculation of the
node’s trust value and determines the corresponding trust threshold.

Step 2: Nodes exceeding the trust threshold are incorporated into the node’s acquaintance
set and local community.

Step 3: The node traverses its acquaintance set, computes the trust value for each neigh-
boring node within this set using the transitive trust formula, and includes nodes
surpassing the trust threshold into its local community.

Trust(A,C) = Trust(A,B) × Trust(B,C) (7)

Step 4: The trust value gradually diminishes over time. Prior to data transmission, the
node updates the trust value of nodes within both the acquaintance set and the
local community. Nodes falling below the threshold are subsequently removed
from both sets.

3.3. Routing and forwarding Strategy

Nodes within the security community exhibit a high level of trust. To enhance the
efficiency of message transmission while ensuring the security of node communication,
it becomes imperative to designate nodes with stronger forwarding capabilities from the
security community as the subsequent relay nodes. This study opts for nodes with elevated
centrality, determined through both global and local centrality concepts, as the subsequent
relay nodes.

Definition 4. Node centrality.

This paper utilizes the node’s neighbor count to compute its global centrality (Algorithm 1).
A higher global centrality implies increased likelihood of interaction with other nodes, thereby
providing more opportunities for message forwarding. Local centrality, on the other hand, is
determined by the number of neighbor nodes belonging to the local community. Greater local
centrality indicates a heightened chance of encountering nodes within the local community,
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facilitating easier message forwarding to the destination node within that community. The
calculation formula for node centrality is articulated as follows:{

GloCenterA = ∑ Nodenei
∑ Nodeall

LocCenterA = ∑ Nodeloc
∑ Nodenei

(8)

where GloCenterA represents the global centrality of node A, LocCenterA denotes the local
centrality of node A, Nodenei signifies the neighboring node of node A, Nodeall encom-
passes all nodes in the social opportunistic network, and Nodenei denotes the neighboring
nodes belonging to the local community of node A.

Algorithm 1: Community division

1 Input: Source_node S, Neighbor_node list V
2 Output: S.local
3 foreach Node N ∈ V do
4 Trust(S,N) = αdTrust(S,N) + (1 − α)iTrust(S,N)

5 end
6 Compute Trust_Threshold as Threshold = 1

m ∑j∈{S.connections} Trust(S,j)

7 for all LN ∈ S.local do
8 Trust(S,LN) = Trust(S,LN)old × (1 − Timen−Timel

Timen
)γ

9 if Trust(S,LN) < Trust_Threshold then
10 S.local removes LN ;
11 end
12 end
13 for all FN ∈ S. f amiliar do
14 Trust(S,FN) = Trust(S,FN)old × (1 − Timen−Timel

Timen
)γ

15 if Trust(S,FN) < Trust_Threshold then
16 S.familiar removes FN ;
17 end
18 end
19 foreach Node N ∈ V do
20 if Trust(S,N) >= Trust_Threshold then
21 S.familiar addes N ;
22 for all NL ∈ N.local do
23 Compute Trust(S,NL) as Trust(S,NL) = Trust(S,N) × Trust(N,NL)
24 if Trust(S,NL) >= Trust_Threshold then
25 S.local addes NL ;
26 end
27 end
28 end
29 end
30 Output: S.local

However, over-reliance on high-centrality nodes for message transmission may lead
to node buffer overflow and message transmission failure. Simultaneously, due to the small
size and low-energy characteristics of wireless devices, depending excessively on high-
centrality nodes for message transmission may rapidly deplete node energy, eventually
resulting in node failure and network collapse. Therefore, in addition to considering node
centrality, this paper comprehensively incorporates node residual energy and node residual
cache to select the next hop relay node. The selection formula for the next hop relay node is
as follows:
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Scorerel = αGloCenterA + β
Noderesb
Nodebu f

+ γ
Noderesn

Nodeene
, Messagedes /∈ Relaylocal (9)

Scorerel = αLocCenterA + β
Noderesb
Nodebu f

+ γ
Noderesn

Nodeene
, Messagedes ∈ Relaylocal (10)

where Scorerel represents the score of the relay node. A higher score indicates a greater
likelihood for the node to be selected as the next-hop relay node. GloCenterA denotes the
global centrality, while LocCenterA signifies the local centrality of node A. Noderesb denotes
the remaining cache of the node, whereas Nodebu f represents the maximum cache capacity
of the node. Noderesn represents the remaining energy of the node, and Nodeene indicates
the maximum energy of the node. Messagedes designates the message’s destination node,
and Relaylocalcharacterizes the local community of the relay node. The coefficients α, β,
and γ are weight factors adjustable to meet the requirements of the network environment.

To further mitigate the risk of buffer overflow and potential message loss during
message forwarding, this paper introduces additional adjustments to the message queue
order based on priority. Messages are then forwarded according to their assigned priority
levels. The calculation formula for determining message priority is provided below:

Prioritymes = α
Timeno − Timecre

MessageTTL
+ β

Messagepri

Messagesiz
(11)

where Prioritymes represents the priority of message forwarding, Timeno denotes the current
simulation time, Timecre indicates the message creation time, and MessageTTL represents
the message’s life cycle. A larger value of Timeno−Timecre

MessageTTL
indicates a longer forwarding

time in the network, approaching the message’s expiration time, thereby necessitating
prioritized delivery. Messagepri denotes the priority label of the message itself, while

Messagesiz indicates the message size. A higher value of
Messagepri
Messagesiz

corresponds to a higher
priority for messages with a unit size. The weight coefficients α and β are utilized in the
algorithm.

The message-forwarding process of the routing algorithm proceeds as follows:

Step 1: If the neighbor node’s local community does not include the message’s destination
node, and this node’s local community contains the message’s destination node,
the message will not be forwarded.

Step 2: If the neighbor node’s local community contains the message’s destination node,
while this node’s local community does not, all messages will be transmitted to
the neighbor node.

Step 3: If neither the neighbor node’s local community nor this node’s local community
includes the message’s destination node, compare the Scorerel of the neighbor
node and this node using Formula (9). If the neighbor node’s Scorerel is higher,
half of the messages will be transmitted; otherwise, one will be subtracted.

Step 4: If both the neighbor node’s local community and this node’s local community
contain the message’s destination node, compare the Scorerel of the neighbor node
and this node using Formula (10). If the neighbor node’s Scorerel is higher, half of
the messages will be transmitted; otherwise, one will be subtracted.

Step 5: During message transmission, prioritize messages in the message queue based on
their Prioritymes, with higher priority messages being forwarded first.

Figure 1 delineates the operational workflow of the Secure Community Trust Model
(SCTM) routing algorithm. Initially, the algorithm deduces the trust values of neighboring
nodes by examining historical interaction records and interactions with identical nodes
within the local community. Subsequently, it computes the trust threshold for the security
community and purges nodes from the local community that fall below this trust threshold
following an update of the community nodes’ trust values. After the inclusion of nodes
surpassing the trust threshold into the local community, the Algorithm 2 proceeds to select
relay nodes and allocate message copies, taking into consideration the node’s community
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affiliation, centrality, remaining cache, and residual energy. The process culminates with
the initiation of message transmission, preceded by the organization of the message queue.

Algorithm 2: Forwarding strategy

1 Input: Source_node S, Neighbor_node list V, Message_forwarded list ML
2 Output: Forward_list FL
3 initialization FL;
4 foreach Message m ∈ ML do
5 if m.TTL = 0 then
6 delete m;
7 else
8 if the destination node of m is in the V then
9 start transfer;

10 end
11 end
12 end
13 for all Msg ∈ ML do
14 foreach node N ∈ V do
15 if the destination node of Msg is in the N.local & not in the S.local then
16 S will give all copies of Msg to N
17 end
18 if the destination node of Msg is in the N.local & in the S.local then
19 if N.score_local > S.score_local then
20 S divides the number of copies of Msg by half to N
21 else
22 S will give N 1 copy of Msg
23 end
24 end
25 if the destination node of Msg is not in the N.local & not in the S.local then
26 if N.score_global > S.score_global then
27 S divides the number of copies of Msg by half to N
28 else
29 S will give N 1 copy of Msg
30 end
31 end
32 FL add (N, Msg)
33 end
34 end
35 Sort FL with message.priority
36 Output: FL

During the preparation of this work the author used GPT−4 in order to polish the
language of the paper. After using this tool/service, the author reviewed and edited the
content as needed and takes full responsibility for the content of the publication.
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Figure 1. Algorithm flowchart.
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4. Performance Evaluation

This study employs THE ONE simulator to conduct experiments on the Secure Com-
munity Opportunistic Network (SCTM) routing algorithm based on the trust model. THE
ONE simulator, written in Java, is specifically designed for simulating opportunistic net-
works. The TCR algorithm is evaluated based on three key indicators: network transmission
success rate, average transmission delay, and routing overhead. Additionally, traditional
routing algorithms, including Direct (direct transmission algorithm), Epdic (Epidemic
algorithm), Spray (Spray and Wait algorithm), and the community routing algorithm
BubbleRap, were selected for comparative analysis.

The experimental setup includes an AMD Ryzen 7 5800H CPU, NVIDIA GeForce
RTX 3060 GPU, 16 GB × 4 DDR4 memory, and Windows 10 Home Basic 64 bit operating
system. Table 2 illustrates the simulation parameters configured by THE ONE simulator
for the experiment. The simulated map used in this study is derived from the actual map
of Helsinki within THE ONE simulator. The simulation duration is set to 6 h, covering an
area of 4500 m × 3400 m. A total of 1000 nodes are involved in the simulation, utilizing the
SHORTESTPATHMAPBASEDMOVEMENT node motion model with movement speeds
ranging from 0.8 m/s to 1.8 m/s, and a maximum transmission range of 10 m for each
node. The message size varies from 500 Kb to 1 Mb, with a data packet sending interval of
25S to 35S. The Time To Live is set to 300 M, and each message is replicated 10 times.

Table 2. Simulation parameters.

Simulation Parameters Parameter Range

Simulation time 6 h
Simulation area 4500 m × 3400 m
Nodes numbers 1000

Node motion model SHORTESTPATHMAPBASEDMOVEMENT
Movement speed 0.8 m/s–1.8 m/s

Packet sending speed 250 Kb/s
Maximum transmission range 10 m

Message size 500 Kb–1 Mb
Packet sending interval 25 s–35 s

Time To Live 300 m
Number of message copies 10

To compare and analyze the performance of five routing algorithms—SCTM, Direct,
Epdic, Spray, and BubbleRap—in opportunistic networks, this study will evaluate them
based on three key indicators: transmission success rate, average transmission delay, and
routing overhead.

Transmission success rate (deliveryratio): This parameter denotes the ratio of success-
fully delivered messages during transmission to the total number of messages generated
by the source node within the network.

deliveryratio =
messagedel
messagecre

× 100% (12)

Transmission delay (latency_avg): This parameter represents the average transmis-
sion time needed for messages to traverse from the source node to the destination node
within the network. A smaller value indicates a more robust transmission capability of the
routing algorithm.

latency_avg =
1
n

n

∑
i=1

deliveredt (13)

Routing overhead (overhead): This parameter denotes the ratio of messages forwarded
by nodes in the network to the total number of successfully transmitted messages. A higher
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routing overhead implies increased costs for nodes in accomplishing message forwarding
and greater resource utilization.

overhead =
messagerel − messagedel

messagedel
(14)

Figure 2 illustrates the correlation between transmission success rate and simulation
time for the Direct, Epdic, Spray, BubbleRap, and SCTM routing algorithms. The SCTM
algorithm, employing community division and selection of nodes with superior forwarding
behavior and higher centrality as next-hop relay nodes, achieves the highest transmission
success rate, peaking at approximately 81%. Conversely, the Epdic and BubbleRap algo-
rithms, employing flooding forwarding strategies, experience a decline in transmission
success rate over time due to the accumulation of redundant messages in the network,
resulting in increased message losses. The Spray algorithm, employing a limited copy
forwarding strategy, outperforms the Epdic and BubbleRap algorithms in transmission
success rate. Meanwhile, the Direct algorithm, solely delivering messages to the destination
node, exhibits a low and gradually increasing forwarding success rate over time.

Figure 2. Deliveryratio and simulation time.

Figure 3 illustrates the average transmission delay observed with the Direct, Epdic,
Spray, BubbleRap, and SCTM routing algorithms. Initially, the forwarding of data packets
in the network is random, leading to varied delays. However, as time progresses, the
average transmission delay gradually stabilizes. Notably, the Direct algorithm exhibits the
highest transmission delay due to its inherent characteristic of exclusively routing data to
the destination node. In contrast, algorithms such as Epdic and BubbleRap, characterized
by flooding forwarding strategies, demonstrate relatively lower average delays in success-
fully transmitted data packets. Moreover, owing to community division, the BubbleRap
algorithm outperforms the Epdic algorithm in terms of transmission delay. Nonetheless,
with the increasing number of data packets circulating in the network, the forwarding
delay of these algorithms gradually escalates. On the other hand, the Spray and SCTM
algorithms employ copy forwarding limitations, resulting in consistently stable average
transmission delays. Particularly, the SCTM algorithm leverages historical interaction
records to establish trust-based communities, ensuring efficient selection of next-hop relay
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nodes while considering node centrality. Consequently, the SCTM algorithm achieves
the lowest average transmission delay, affirming the efficacy of community division in
optimizing network performance.

Figure 3. Latency_avg and simulation time.

As depicted in Figure 4, the Direct algorithm exclusively routes data directly to the
destination node, resulting in a routing overhead of 0. Conversely, the Spray algorithm’s
forwarding behavior is determined by the number of message copies held by each node.
When a node holds only one message copy, it ceases forwarding before reaching the
destination node. Meanwhile, the Epdic and BubbleRap algorithms consistently exhibit
high routing overheads owing to their flooding forwarding strategies. In contrast, the
SCTM algorithm employs a community-based approach to limit copy forwarding. Despite
also restricting the number of message copies, the SCTM algorithm stands apart from the
Spray algorithm by considering additional factors such as node community, centrality,
remaining cache, and energy levels. Consequently, the SCTM algorithm selects more
optimal relay nodes for message forwarding.

Figure 4. Overhead and simulation time.
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In social opportunistic networks, the cache size of nodes significantly influences
routing algorithm performance. Hence, this study conducts a comparative experimental
analysis by adjusting node cache sizes to explore their impact.

Figure 5 illustrates the relationship between transmission success rate and node cache
for the Direct, Epdic, Spray, BubbleRap, and SCTM routing algorithms. As depicted, with
an increase in node cache size, the forwarding success rate of SCTM, Epdic, and BubbleRap
algorithms experiences a significant rise, while that of the Direct and Spray algorithms
remains relatively unchanged. This divergence arises because the Direct and Spray algo-
rithms do not generate redundant message copies during message forwarding. Instead,
the Spray algorithm implements limited copy forwarding by attributing messages with
representations, thereby minimizing the number of message copies transmitted across the
network and alleviating caching pressure on nodes. Conversely, the Epdic and BubbleRap
algorithms produce numerous message copies during transmission, leading to cache pres-
sure and subsequent message loss, thus reducing transmission success rates. Increasing
node cache size effectively mitigates this issue, improving the forwarding success rate
of these algorithms. Although the SCTM algorithm employs restricted copy forwarding,
it selects relay nodes with higher centrality, thus enhancing forwarding efficiency. Aug-
menting node cache size alleviates caching pressure on the backbone network and further
improves forwarding success rates. Notably, when node cache size reaches 30MB, the
SCTM algorithm achieves a transmission success rate of approximately 90%, demonstrating
its lower dependency on node cache size.

Figure 5. Deliveryratio and node buffer.

Figure 6 depicts the relationship between average transmission delay and node cache.
Notably, the Direct and Spray algorithms exhibit minimal dependency on node cache,
with average transmission delay maintaining stability. Contrarily, while the Epdic and
BubbleRap algorithms alleviate network congestion with increasing node cache, nodes
storing more messages prolong the survival time of messages that should otherwise be
discarded due to tardiness, resulting in a slight reduction in algorithmic average delay. The
SCTM algorithm selects next-hop relay nodes based on considerations of node centrality
and remaining cache. Although increasing node cache mitigates cache pressure on highly
central nodes, these nodes typically maintain low residual cache levels after receiving
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numerous messages. Consequently, the SCTM algorithm may opt for nodes with lower
centrality but higher residual cache when selecting next-hop relay nodes, leading to a
modest increase in average forwarding delay, albeit remaining at a low level.

Figure 6. Latency_avg and node buffer.

As illustrated in Figure 7, the increased node cache of the Epdic and BubbleRap al-
gorithms results in fewer messages being discarded due to buffer overflow, leading to a
reduction in the number of forwarding instances required for successful message trans-
mission and a significant decrease in routing overhead. Conversely, the SCTM algorithm’s
strategy of selecting nodes with low centrality but ample remaining cache space as next-
hop relay nodes leads to messages traversing more nodes and being forwarded more
frequently, resulting in a slight increase in routing overhead. Meanwhile, the Direct and
Spray algorithms exhibit minimal changes.

Figure 7. Overhead and node buffer.
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Furthermore, this study investigates both node-sparse and node-dense networks in
real-world scenarios. Comparative experiments were conducted by adjusting the number
of nodes in the network during simulation.

Figure 8 illustrates the relationship between the transmission success rate and the
number of nodes for the Direct, Epdic, Spray, BubbleRap, and SCTM routing algorithms.
With an increase in the number of nodes, the transmission success rate of the SCTM
algorithm exhibits a gradual rise. This phenomenon arises from the heightened frequency
of node interactions as the network expands. Consequently, the SCTM algorithm adeptly
identifies superior forwarding nodes, leading to a sustained enhancement in transmission
success rate throughout the network. Notably, when the network comprises 1000 nodes,
the transmission success rate surpasses that of the Spray algorithm. Conversely, the
Epdic and BubbleRap algorithms, utilizing flooding forwarding strategies, witness an
escalation in redundant message copies within the network due to increased message
forwarding, thereby diminishing the transmission success rate. As for the Direct and Spray
algorithms, their average transmission delay hinges on the encounter probability between
the message-carrying node and the destination node, with minimal influence from the
network size. Moreover, the transmission success rate of these algorithms stabilizes over
time, largely dictated by the encounter probability between the message-carrying node and
the destination node.

Figure 8. Deliveryratio and node numbers.

Figure 9 depicts the relationship between the average transmission delay and the
number of nodes. As the network expands, node interactions become more frequent,
thereby increasing opportunities for message forwarding. Consequently, the average
transmission delays witnessed substantial reductions in the Epdic, BubbleRap, and SCTM
algorithms. Notably, owing to community division, the average transmission delays in
the BubbleRap and SCTM algorithms exhibit further decline, showcasing a clear and
continuous descent. Conversely, in the Epdic algorithm, the surge in network message
forwarding leads to a proliferation of message copies, consequently resulting in an initial
decline followed by an eventual increase in transmission delay. Meanwhile, the average
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transmission delay observed in the Direct and Spray algorithms is contingent upon the
encounter probability between the message-carrying node and the destination node, with
minimal impact from the network size.

Figure 9. Latency_avg and node numbers.

As depicted in Figure 10, the Direct and Spray algorithms maintain a fixed number of
message copies, with the Spray algorithm halting message forwarding upon generating
a single copy. Consequently, the number of nodes in the network profoundly impacts
these algorithms, albeit with minimal effect. In contrast, the flooding forwarding approach
adopted by the Epdic and BubbleRap algorithms leads to an upsurge in message forward-
ing with increasing node count, resulting in network congestion and elevated routing
overhead. Conversely, the SCTM algorithm demonstrates a proportional increase in mes-
sage forwarding as the number of nodes rises. However, owing to community division
and meticulous selection of next-hop relay nodes, the SCTM algorithm experiences only
marginal increments in routing overhead.

Figure 10. Overhead and node numbers.

To evaluate the resilience of opportunistic routing algorithms against malicious node
attacks, this study introduces a subset of specialized nodes within the simulation frame-
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work, designed to mimic a black hole attack by solely accepting messages without further
dissemination. A comparative analysis was undertaken by establishing a baseline of 500 op-
erational nodes within the opportunistic network, followed by a systematic variation in
the quantity of malicious nodes introduced. This approach facilitates a comprehensive
understanding of the algorithm’s performance under the duress of adversarial conditions.

As can be seen from Figure 11, the Direct algorithm, which exclusively delivers mes-
sages to the intended destination node, exhibits minimal susceptibility to the influence of
malicious nodes. In contrast, the Epdic and BubbleRap algorithms, employing a flooding
forwarding strategy, experience a nuanced impact from malicious activities. While the
deliberate loss of packets by malicious nodes can inadvertently reduce network congestion
by diminishing the volume of redundant messages, it concurrently risks the malicious
discarding of messages destined for successful delivery, resulting in negligible fluctuations
in the transmission success rate. The Spray algorithm, predicated on the random selection
of next-hop relay nodes, encounters a marked decrease in the transmission success rate
when malicious nodes intercept and halt the propagation of message copies within the
opportunistic network. Conversely, the SCTM algorithm, by prioritizing nodes within a
secure community for next-hop selection, effectively insulates against malicious nodes,
which are precluded from the secure community due to their detrimental behaviors, thereby
maintaining a stable transmission success rate. Simulation outcomes reveal that the SCTM
algorithm possesses the capability to detect and exclude malicious nodes from the oppor-
tunistic network, offering robust defense against malevolent attacks. Notably, even with
the presence of 150 malicious nodes, the SCTM algorithm achieves the highest transmission
success rate of 73%, underscoring its effectiveness in safeguarding communication integrity
within opportunistic networks.

Figure 11. Deliveryratio and malicious nodes.

As illustrated in Figure 12, the average transmission delay for the Epdic and Bub-
bleRap algorithms initially decreases and subsequently increases with the rising number of
malicious nodes. This trend is attributable to the flooding forwarding strategy employed
by both algorithms, which engenders significant network redundancy. Such redundancy
congests the network, whereas a judicious amount of malicious packet loss can alleviate
transmission pressure, thus reducing the average transmission delay. However, an exces-
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sive presence of malicious nodes leads to the potential discard of messages en route to the
destination node, resulting in an augmented average transmission delay. Conversely, as the
prevalence of malicious nodes escalates, the Spray algorithm experiences a notable increase
in delay due to malicious message dropping. Meanwhile, the SCTM algorithm maintains
the lowest average transmission delay, benefitting from the division of secure communi-
ties. The transmission efficiency of the Direct algorithm, predicated on the probabilistic
encounters of nodes, exhibits minimal susceptibility to malicious nodes.

Figure 12. Latency_avg and malicious nodes.

Figure 13 delineates that the Direct and Spray algorithms, which adopt a restricted
copy forwarding strategy, show negligible impact on routing overhead from the presence
of malicious nodes. In contrast, due to malicious packet loss, the Epdic and BubbleRap
algorithms necessitate the successful transmission of over 100 messages to the destination
node, causing routing overhead to escalate with an increase in malicious nodes. The
SCTM algorithm, which segments communities based on dynamic security thresholds,
experiences a lowering of trust thresholds and an expansion of the node’s local community
in the presence of malicious nodes. Nonetheless, by considering node centrality in the
selection of the next hop relay node, the SCTM algorithm manages to ensure message
delivery to the destination with fewer transmissions, thereby maintaining low routing
overhead despite the challenges posed by malicious nodes.

Discussion: Table 3 presents a performance evaluation of various algorithms following
a six-hour simulation in a scenario with 1000 nodes within the opportunistic network
and a node cache size of 30 MB. The Secure Community Trust Model (SCTM) algorithm
outperforms others in terms of both transmission success rate and average transmission
delay. This superiority is attributed to its strategy of limiting message copies and its
preference for selecting nodes with closer connections to the destination node for message
forwarding, which leads to a marginally higher routing overhead compared to the Direct
and Spray algorithms. Notably, the SCTM algorithm enhances the transmission success rate
by 125% over the Epdic algorithm, while cutting routing overhead by 77%. In comparison
with the Spray algorithm, it also reduces the average transmission delay by 37%, marking a
substantial improvement over its counterparts. Moreover, the SCTM algorithm orchestrates
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secure community divisions, prioritizing nodes within the security community for relay
node selection and taking into account factors such as node centrality, remaining cache,
and energy levels. This approach ensures the selection of safer and more efficient nodes
for relay purposes. Simulation findings corroborate the SCTM algorithm’s capability to
adeptly identify and exclude malicious nodes from the network, effectively counteracting
malicious threats and sustaining algorithmic stability.

Figure 13. Overhead and malicious nodes.

Table 3. Comparison table between SCTM algorithm and existing algorithms.

Algorithm Direct Epdic Spray BubbleRap SCTM

deliveryratio (%) 28% 40% 80% 32% 90%

latency_avg (s) 6339 3080 3245 2559 2032

overhead 0 2966 11 3243 669

5. Conclusions

This study introduces a robust Secure Community Trust Model (SCTM) algorithm for
opportunistic network routing, premised on a trust-based framework. The foundation of
this model lies in the premise that nodes exhibiting commendable forwarding behavior
in historical interactions are likely to maintain similar efficacy in future communications.
To counteract malicious activities within opportunistic networks, the SCTM algorithm
leverages the historical interaction records between nodes and their counterparts within
the same local community to compute a trust score. This score facilitates the dynamic
segmentation of secure communities via adaptable trust thresholds and decay functions,
ensuring message propagation remains within a safeguarded network milieu. To augment
message forwarding efficiency, mitigate the transmission load on the network backbone,
and prevent network congestion and node failure, the SCTM algorithm employs a con-
strained replica forwarding tactic. This approach strategically segments message replicas
by evaluating node centrality, residual cache capacity, and remaining energy levels, thus
optimizing the routing and forwarding process. Simulation outcomes underscore the
SCTM algorithm’s superiority over comparative algorithms, demonstrating an unmatched
transmission success rate of 81% and minimal transmission delays, all while maintaining
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low network overhead. Notably, the SCTM algorithm exhibits proficiency in detecting and
isolating malicious nodes, thereby safeguarding against hostile intrusions and preserving
algorithmic stability. Future investigations will delve into more sophisticated trust models
to bolster data transmission security, scrutinize social affiliations among nodes, and develop
routing strategies that are simultaneously low latency, energy-efficient, and highly effective.
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