
Citation: Aldaoud, M.; Al-Abri, D.;

Awadalla, M.; Kausar, F. Data

Structure and Management Protocol

to Enhance Name Resolving in

Named Data Networking. Future

Internet 2024, 16, 118. https://

doi.org/10.3390/fi16040118

Academic Editor: Paolo Bellavista

Received: 28 February 2024

Revised: 18 March 2024

Accepted: 26 March 2024

Published: 30 March 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

future internet

Article

Data Structure and Management Protocol to Enhance Name
Resolving in Named Data Networking
Manar Aldaoud 1,* , Dawood Al-Abri 1,*, Medhat Awadalla 1,2 and Firdous Kausar 1,3

1 Department of Electrical and Computer Engineering, Al-Khoudh, Sultan Qaboos University,
Muscat P.O. Box 33, Oman; medhatha@squ.edu.om (M.A.); firdous@squ.edu.om (F.K.)

2 Department of Computers and Systems, Helwan University, Cairo 12612, Egypt
3 Computer Science Department, Fisk University, Nashville, TN 37208, USA
* Correspondence: s117905@student.squ.edu.om (M.A.); alabrid@squ.edu.om (D.A.-A.);

Tel.: +968-99565201 (M.A.)

Abstract: Named Data Networking (NDN) is a future Internet architecture that requires an Inter-
Domain Routing (IDR) to route its traffic globally. Address resolution is a vital component of any IDR
system that relies on a Domain Name System (DNS) resolver to translate domain names into their IP
addresses in TCP/IP networks. This paper presents a novel two-element solution to enhance name-
to-delivery location resolution in NDN networks, consisting of (1) a mapping table data structure and
a searching mechanism and (2) a management protocol to automatically populate and modify the
mapping table. The proposed solution is implemented and tested on the Peer Name Provider Server
(PNPS) mapping table, and its performance is compared with two other algorithms: component and
character tries. The findings show a notable enhancement in the operational speed of the mapping
table when utilizing the proposed data structure. For instance, the insertion process is 37 times faster
compared to previous algorithms.

Keywords: Named Data Networking; Named Data Border Gateway Protocol; Peer Name Provider
Server; component trie; NameComponent; hashing; Longest Prefix Match; Type-Length-Value

1. Introduction

Named Data Networking (NDN) architecture is one of the revolutionary projects of
the future Internet architectures, where data retrieval is based on the content name rather
than the destination IP address. Within NDN, there are two packet types: (1) Interest
packets, which convey the content name requested by the consumer, and (2) Data packets,
which transport the requested content and trace the path of the Interest packet back to
the consumer. The content contained in Data packets is copied and stored within the
in-network content routers. Each router consists of three main components: (1) network
interfaces, referred to as “Faces”, (2) three tables: Content Store, Pending Interest Table, and
Forwarding Information Base (FIB), and (3) a forwarder known as Named Data Networking
Forwarding Daemon. NDN has many characteristics, such as caching, mobility, hierarchical
names, multi-pathing, and security [1].

Named Data Border Gateway Protocol (N-BGP) is a BGP extension that is backward
compatible with the existing inter-domain routing protocol. N-BGP conveys, processes,
and stores IP-based and name-based routing information between the BGP domains via the
N-BGP hybrid speakers [2]. Peer Name Provider (PNP) [3] is a name directory that works
as a name resolver and works alongside N-BGP to provide global connectivity between
NDN consumers and producers. This name directory has two main components: Server
(PNPS) and Client (PNPC). PNP improves NBGP scalability by (1) saving the original
gigantic routing table as a mapping table in the PNPS instead of having it on the speaker’s
FIB table and (2) offloading the name lookup process from the routers to the consumers,
where the consumer will perform a lookup to locate the content directly. The proposed
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scheme in [3] has some shortcomings: (1) The scheme data structure was not taken into
consideration. However, the mapping table data structure must be optimized to speed up
the operations that occur on it such as searching, adding, and removing, and (2) the way
of filling, populating, and operating the mapping table was out of scope, which must be
automated to increase the simplicity and decrease the human mistakes when modifications
occur to the mapping table entries.

In this paper, we propose a two-element solution that is suitable for any two-column
mapping and resolving tables in NDN networks to populate and keep the global database
of producers’ names and their delivery locations up to date rapidly and automatically.

The two elements in the proposed solution are (1) a mapping table data structure that
combines the trie data structure and hashing mechanism to build the PNP mapping table
where the name is split into components, and each component is encoded, hereafter referred
to as Encoded Component Hash Trie (ECHT), and (2) a PNP protocol that manipulates
the pairs of producer and delivery locations in the mapping table via four messages (add,
remove, get, and getbcm). This aims to automate population and operations within the
mapping table, enhancing efficiency by simplifying processes and reducing human errors
during modifications to mapping table entries.

Moreover, we propose a new search mechanism that is based on the Best Component
Match (BCM) instead of using the Longest Prefix Match (LPM) mechanism. Utilizing BCM
as a lookup mechanism ensures accuracy by components-based matching and helps avoid
incorrect replies due to partial component matching errors. Additionally, employing BCM
enables faster iteration over components compared to iterating over individual characters,
enhancing the efficiency of the operations. Finally, the test results show that the lookup
process is 98.47% faster when ECHT is used in comparison with normal string component
trie. Accordingly, the topological-locator resolution shortcoming, mentioned in [4], is
overcome with an optimal solution.

The remainder of this paper is structured as follows: Section 2 provides a review of
related works. Section 3 includes the proposed data structure and search mechanism and
then presents our proposed PNP protocol. Section 4 describes the lab setup and presents
the performance evaluation of the proposed mechanism and a use case scenario. Section 5
includes the conclusion and future work.

2. Related Work

Several research papers have focused on implementing NDN tables using trie-based
solutions. The majority of works related to name lookup in NDN networks are summarized
in two surveys cited in [4,5]. However, we are going to focus on component-based and
encoded component-based tries, since our work is based on this trie type. In [6], Wang
et al. proposed the Name Prefix Trie (NPT), which is the first NDN component trie that
represents the name components in edges and the lookup states in nodes. Since NPT is a
component trie, the memory consumption is less than in the character trie. However, the
depth of NPT can be considered unbounded, and accordingly, the name lookup speed is
relatively high.

Seo and Lim introduced a priority NPT (p-NPT) in [7], which separates on-chip
processing from off-chip processing so that most of the Longest Prefix Matches (LPMs) are
executed with on-chip memories, and accordingly, the off-chip memory access is reduced.
The essential difference between p-NPT and normal NPT is that the empty nodes in NPT
are replaced with leaf nodes. Consequently, it has less memory consumption and less
lookup time.

Lee and Lim [8] utilize Patricia Trie to propose a path-compressed NPT (PC-NPT) to
resolve issues in NPT. This was achieved by eliminating empty nodes and consolidating
any single child with its parent, thereby decreasing the trie’s depth. According to their
findings, PC-NPT decreases the number of accessed nodes by 21% compared to NPT,
thereby improving lookup and search speed.
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In [9], Wang et al. tried to improve NPT by proposing a Name Component Encoding
(NCE) that implements an Encoded Name Prefix Trie (ENPT) for the FIB table. They also
proposed a State Transition Array (STA) to maintain the state and transition of the ENPT. It
has been noticed that NCE reduces the size of the FIB table. However, the NCE complexity
is increased by using STA, and the mapping between codes and components reduces the
lookup speed.

Feng et al. [10] proposed a Component Hash Encoding (CHE), which uses recursive
hashing to hash all children belonging to the same parent, i.e., the hash code of the fourth
child is related to the third one, the hash code of the third child is related to the second
child, and so on. After encoding the components, the lookup process is performed by
an STA. According to their results, the CHE consumes less memory compared to Name
Character Tries (NCT). However, the recursive hashing of related children increases the
encoding complexity.

Saxena et al. [11] proposed RaCE, which uses both component encoding and Patricia
Radix path compression trie where nodes with one child are merged. Accordingly, the
depth of the trie decreases, and the lookup speed increases. Nevertheless, lookup time in
RaCE is affected by the component-to-code mapping process.

In our proposed data structure, ECHT, we combine multiple specifications to speed
up the main operations that may occur in the PNPS mapping table, such as utilizing
(1) NameComponent encoded in Type-Length-Value (TLV) format, (2) component trie-
based data structure, and (3) a hash mechanism.

NDNS is the main work that discusses global name resolution. Afanasyev et al. [12]
proposed a DNS-like zone-based name service for NDN to fulfill the demand for a name
look-up service in the NDN network. Although NDNS considers multiple aspects and
mimics the Domain Name System (DNS), which is the main mapping system in the current
Internet, it has a centralized issue, and the name registry is controlled by the Internet
Corporation for Assigned Names and Numbers. However, we offer a new mapping
management protocol that has the capability to update and modify PNPSes mapping and
resolve tables. Our proposed protocol helps in solving the global inter-domain scalability
issue. Moreover, our protocol gives the producer the liberty to choose its consumers at their
corresponding Autonomous System (AS) domain level.

3. Proposed Solution

Our proposed two-element solution is shown in Figure 1. The first element of the
solution involves improving a two-column mapping table data structure and streamlining
insertions, deletions, and lookups through the introduction of the Enhanced Coding Hash
Trie (ECHT) data structure. The second element of the solution entails the implementation
of the PNP management protocol, aimed at automating and enhancing the efficiency of the
population and operations within the mapping table.
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3.1. Proposed Encoded Component Hash Trie (ECHT) Data Structure

The main goal of proposing Encoded Component Hash Trie (ECHT) is to have a data
structure that stores and organizes entries in the PNPS mapping table in order to access and
process them efficiently. An entry is a pair made up of the domain name, which is the entry
key, and the delivery location AS number, which is the entry value, i.e., (“/om/edu/squ”,
“/AS2, /AS3, /AS4”). In ECHT, we focused on speeding up lookup operations (get, getbcm)
over modification operations (add, remove). The main characteristics that distinguished
our proposed data structure include (1) combining component trie with hashing to rapidly
retrieve the delivery location of the requested NDN name, (2) encoding each component
as a NameComponent in Type-Length-Value (TLV) format [13], (3) hashing the encoded
component with a SipHash proposed in [14] and using the Open Addressing Collision
Resolution technique to resolve the hashing collision problem, and finally, (4) proposing a
Best Component Match (BCM) mechanism, where the matching is done per component to
retrieve the corresponding delivery location instead of using the LPM mechanism.

3.1.1. ECHT Design Overview

Trie is a tree data structure that is comprised of nodes and edges. It starts with an
empty node called the “root node”, which forks into several child nodes using edges. Both
nodes and edges are associated with values. The ordered concatenation of the traversed
nodes and edges while walking a path represents a tree key.

In our work, a component trie represents a traditional trie in which each node value
is associated with an NDN NameComponent in a human-readable string format. Edges,
on the other hand, are associated with the NDN name delimiter ‘/’. Consequently, an
encoded component trie is a component trie where the NDN NameComponent is encoded
as a pure byte string encapsulated in a TLV-style header [15], e.g., the TLV format of the
NameComponent ‘squ’ is b’\x08\x03squ’, where ‘b’ stands for byte, ‘\x08’ represents the
type of the name, which is a GenericNameComponent [16], ‘\x03’ represents the length of
the NameComponent, which is 3 bytes, and ‘squ’ is the value of the NameComponent. We
use this type of encoding to match the NDN wire format for encoded name components,
thus reducing the data type conversion when processing NDN messages and replies.
Figure 2 represents both component and encoded component tries.Future Internet 2024, 16, x FOR PEER REVIEW 6 of 17 
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A hash table is a collection of hashed key and value pairs, where data are considered
to be a value uniquely identified with a key. After having a key–value pair, hash tables
require a hashing function that requests both the key and the value as input. According to
the generated value, an index is generated to the location of the value corresponding to the
specific key stored. The hash table’s significant value over other data structures is its speed
in insertion, lookup, and deletion [17]. In our proposed ECHT, SipHash is chosen due to its
simplicity and high speed [14].

However, SipHash suffers from internal collisions. Therefore, we studied two famous
collision resolution techniques, separate chaining and open addressing, which are com-
pared in Table 1 [18]. We chose open addressing over separate chaining due to its cache
performance and operation complexity.

Table 1. Separate chaining vs. open addressing.

Separate Chaining Open Addressing
(Linear Probing)

Implementation Simple More computation

Cache performance Worse since keys are stored using a
linked list

Better, since keys are stored in the same
table

Space utilization 1. Waste spaces
2. Extra space for links

1. No waste spaces
2. No need for extra spaces

Clustering No clustering Suffers from clustering

Mapping time complexity (worst case) O(n) O(n)

Operations time complexity (worst case)
O(1 + α) [19], where

α =
Number o f keys

Number o f slots in hash table

O
(

1
1 − α

)
[19], where

α =
Number o f keys

Number o f slots in hash table < 1

Figure 2 depicts the data structure and transformation in ECHT.

3.1.2. ECHT Operations

Three different operations are supported by the ECHT data structure: (1) insertion,
(2) deletion, and (3) lookup. Hereafter, we refer to the NDN name of the producer’s domain
as entry_key and to the producer’s corresponding delivery locations as entry_value. The
following subsections discuss the ECHT operations.

• ECHT Insertion and Deletion Operations

When an ADD Interest is received via our proposed protocol PNPP, which will be
covered in the next section, the new name will be added to the mapping table as in the
following steps. The name and the location are extracted and represented in the form of
entry key value, where the key is the TLV encoded name in byte format as received from
the Interest, and the value is a list of encoded delivery locations. After that, each key and
its value are passed to ECHT for processing.

The insertion process starts by dividing the key into multiple components, e.g.,
/om/edu/squ is divided into three components: om, edu, and squ. The first compo-
nent (e.g., om) is checked against the trie’s nodes, starting from the root node. If the
component is not found in the trie, it will be added as a new node in the first level with an
empty value. This newly created node becomes the root node for the next component, and
so on. Once the last component is reached, it will be added with its corresponding past
value -if exists-. Each parent node has its own children’s keys stored in a hash to speed up
the look-up process between keys sharing the same parent. Upon process completion, the
corresponding entry_value is returned to the caller.

As for the deletion process, the received entry_key is divided into components, the
same as in the insert process. The first component is checked against the trie’s nodes,
starting from the root node. Once the last component is reached, if found, it will be either
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deleted if it has no children, or the key_value is set to nil if the current node has one child or
more to preserve the child nodes. Upon process completion, the corresponding entry_value
is returned to the caller. However, it will be nil if all corresponding delivery locations are
removed, or the whole node is removed.

• ECHT Lookup Operation

ECHT is designed to provide two types of lookups: searching for an exact match and
searching for the best component match. In exact match searching, the trie is traversed
based on the components of the entry_key. If the last component is found, its value will be
returned to the caller; otherwise, nil is returned.

Instead of the traditional Longest Prefix Match (LPM) search mechanism, we propose
a new search mechanism called Best Component Match (BCM). By using BCM, we avoid
returning a wrong reply due to an incorrect partial component matching. Also, iterating
over components while using hashing is faster than iterating over characters, as shown in
Section 5.

In BCM, two variables (bcm_key, bcm_value) are initialized to nil, and then the entry_key
is divided into components, and the trie is traversed based on these components. While
walking the path, if the traversed node has a valid non-empty value, this value will be stored
as bcm_value, and the node key will be appended to the bcm_key. This means that the BCM
pair will be updated as needed while traversing the path towards the last component. Both
the BCM key and value will be returned as a reply for the BCM lookup. Hence, BCM works
the same way as exact matching, with two differences: (1) it stores the last best match while
traversing the tree, and (2) it returns two parts of a reply instead of one.

Therefore, there may be multiple cases for the BCM reply to the caller: (1) when no
component is matched, a (nil, nil) is returned; (2) when all components are matched, a
(bcm_key, bcm_value) is returned, which is equivalent to (entry_key, entry_value); and
(3) when few components are matched, a (bcm_key, bcm_value) is returned. The ECHT
lookup operation process is shown in Figure 3.
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client-to-server messages (add, remove, get, getbcm) are encapsulated within the Appli-
cationParameters element of an NDN Interest packet. On the other hand, server-to-client
message (reply) is encapsulated within the Content element of an NDN Data packet. PNPP
client-to-server messages are mapped one-to-one to ECHT messages, and the ECHT reply
is mapped to a PNPP server-to-client message.

The client-to-server messages are usually generated from a producer or normal con-
sumer side either to modify and update the mapping table or to obtain the delivery
location(s) of a requested domain name.

The process starts with the PNPS receiving one of the following messages from the
client/caller:

• ADD: A two-component message that contains the producer’s domain name and its
corresponding delivery locations. Their data types are of NDN name and a list of
NDN names, respectively. This message is encapsulated in an ApplicationParameters
element of an NDN Interest packet. The Name element of this Interest is set to the
NDN name of the PNPS. Upon receiving this message, the PNPS triggers the ECHT
insert operation, which will decide if a new node will be added or an entry_value will
be modified.

• REMOVE: On the structure level, REMOVE is similar to ADD, with one difference
being the second component is an optional one. If the delivery location component is
present, PNPS will modify the associated ECHT entry_value, and when it is absent,
the whole node along with its entry_value will be removed from the ECHT.

• GET: A one-component message that contains the producer’s domain name in NDN
name format. This message is encapsulated in an ApplicationParameters element of
an NDN Interest packet. The Name element of this Interest is set to the NDN name of
the PNPS. Upon receiving this message, the PNPS triggers the ECHT exact matching
lookup operation.

• GETBCM: This is the same as GET, but it triggers a BCM lookup operation instead,
and therefore, it receives a two-component reply instead of one from ECHT. A sample
of a GET message is shown in Figure 4.
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The process ends by encapsulating the ECHT reply in a Content element of an NDN
Data packet and sending it back to the caller.

4. Experimental Setup and Results

Seven experiments were conducted to compare ECHT performance with two text-
based algorithms, i.e., component and character tries, which are Google Python-based
tries. These tries were implemented following the instructions in [20]. The purpose of
considering the component trie was to study the TLV decoding impact, and the purpose of
considering the character trie was to study the impact of implementing the trie based on
components versus characters. The experiments were measured on a workstation with a
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4 Cores Intel(R) Xeon(R) E5-1620 v2 CPU running at 3.7 GHz with 32 GB RAM that runs
Ubuntu.22.04 [21]. The three tries were implemented in Python 3.10.

The performance evaluation was carried out using one million names provided in
“Majestic Million”, which were used for producers’ names [22]. All name prefixes were
converted from URL form, such as “squ.edu.om”, into NDN form, such as “/om/edu/squ”.
The number of components in a name ranged from two to five. This constitutes the first
column of our experiments’ dataset. As for the second and last column in our dataset,
10 delivery locations, 4 bytes each, were assigned to each entry in the first column. Some
experiments assessed the performance of loading one million names in terms of time and
memory consumption. Additional experiments were conducted to evaluate the lookup
and addition operations of 100,000 names. Table 2 contains a sample of the dataset used in
these experiments. Furthermore, Table 3 contains all the experimental parameters.

Table 2. Dataset sample.

Entry Producer Name Delivery Location

1 /com/google /AS1, /AS3, /AS5, /AS6

2 /com/googletagmanager /AS2, /AS4, /AS5, /AS6

3 /org/Wikipedia/en /AS1, /AS7, /AS8, /AS9

.
.

.
.

.
.

1,000,000 /ru/audimanual /AS2, /AS5, /AS7, /AS9

Table 3. Experimental parameters.

Parameter Specification

Names dataset Majestic Million

Number of delivery locations 10

Each delivery location length 4 bytes

Trie used component, character, ECHT

Number of components per name 2 to 5

Initial dataset 1,000,000 names

Lookup names 100,000 names

Added names 100,000 names

4.1. Time Performance

Five experiments were conducted to test the time performance of (1) the initial loading
of one million names to the mapping table and (2) the lookup operation. The first experi-
ment was conducted to study the time for locally loading the entire dataset (one million
entries) into an empty trie progressively. By locally, we mean injecting the entries from
memory directly into the three algorithms’ backends and not through PNPP ADD messages.
This allows us to fairly test the trie insertion performance without TLV decoding/encoding.

For this experiment, the dataset was loaded to memory in two copies: (1) native text
format, to be used by Component and Character Trie algorithms, and (2) TLV encoded
format, to be used by the ECHT algorithm. By using this approach, we ensure fair start
points for all algorithms. The dataset was loaded in incremental batches of 100,000 names,
as shown in Figure 5.

Figure 5 shows that component trie took the least loading time (4.56 s), since the
character trie (33.52 s) had more nodes (character-based). Moreover, component trie also
took less loading time than ECHT (30.65 s). This is because ECHT loads NDN names, which
need more processing time, since they are longer than string names, i.e., “squ” contains
3 bytes in text format and 5 bytes in NDN TLV encoding format, i.e., b’\x03squ’.
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The following four experiments aimed to evaluate the time performance of the lookup
operation. The main metrics that were used for these experiments are as follows:

• GET Positive: This experiment focused on testing the exact matching mechanism
using a preset of 100,000 different names that were randomly selected from the one
million dataset. The preset has one column, and each row is in TLV encoded format,
i.e., a list of byte arrays.

• GET Negative: This experiment focused on testing the exact matching mechanism
using the previous preset, but where each row was manipulated as follows, For the
sake of simplicity, we will use human-readable strings for names instead of the actual
list of byte-arrays:

# Insert 1-byte-char “x” as a prefix for each name component, i.e., the name
“/om/edu/squ” becomes “/xom/edu/squ”, “/om/xedu/squ”, and “/om/
edu/xsqu”. This technique ensures that competing algorithms are tested for
fast query exits at various depths.

# Insert 1-byte-char “x” as a suffix for each name component, i.e., the name
“/om/edu/squ” becomes “/omx/edu/squ”, “/om/edux/squ”, and “/om/
edu/squx”. This technique ensures that competing algorithms are tested for
delayed query exits at various depths.

# Insert 1-byte-char “x” as a suffix component for each name, i.e., the name
“/om/edu/squ” becomes “/om/edu/squ/x”. This technique ensures that
competing algorithms are tested for maximum depth at each query.

This preset size was multiple times bigger than the original 100,000 preset. In the
interest of clarity, we normalized the result to 100,000.

• BCM Positive: This experiment focused on testing the best component matching
mechanism using the GET Positive preset.

• BCM Negative: This experiment focused on testing the best component matching mecha-
nism using the GET Negative preset. This preset size was multiple times bigger than the
original 100,000 preset. In the interest of clarity, we normalized the result to 100,000.

As illustrated in Figure 6, the lookup performance of the proposed ECHT was much
better than both component and character tries—approximately 76 times faster when the
exact matching mechanism was used for the GET Positive case and 11.7 times faster for
the Get Negative case. Moreover, when the BCM mechanism was used, ECHT was 65.3 to
71.63 times (98.47 to 98.6%) faster than component trie and character trie, respectively. For
the case of BCM Positive and BCM Negative, ECHT was 97.06% faster than component trie
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and 98.61% faster than character trie. The main reason is that ECHT eliminates the need to
decode/encode NDN names while parsing received NDN Interests or while creating NDN
Data replies. In Component/Character tries algorithms, domain names have to be decoded
to text before searching the trie, and then the results are encoded before sending them back
to the caller.
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4.2. Throughput Performance

This experiment tested the local insertion operation of 100,000 new entries in TLV en-
coded format into the previously “1 million” populated tries. In this experiment, ECHT pro-
cesses the entries and makes replies without any conversion, while Component/Character
tries need to TLV decode the entries before processing them and encode the replies before
sending them to the caller. The results showed that the insertion throughput is more than
37 times faster in ECHT than in the other tries, which is around 336 names/ms for ECHT
and 9 names/ms for the other tries, as detailed in Table 4. The results also indicated that
the trie type is of less significance when TLV encoding/decoding is involved, i.e., the
conversion is way more expensive than the actual entry addition.

Table 4. Throughput performance of 100,000 entries insertion operation.

ECHT Component Trie Character Trie

Name/ms 335.964 9.196 8.576

4.3. Memory Consumption

This experiment measured memory consumption while conducting the first experi-
ment. The results showed that to achieve high operation performance, ECHT consumes
approximately 4600 MB of memory, which is roughly two-and-a-half times greater than the
memory consumption of other trie structures and amounts to around 1500 MB, as shown
in Figure 7.

Though both ECHT and component trie operate on a component-based approach,
ECHT requires additional memory due to its handling of decoded names, resulting in
longer initial dataset loading times. This is because ECHT allocates more bytes for Type,
Length, and Value (TLV).
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4.4. Use Case Scenario

Let us start our scenario with the following assumption: (1) a producer named SQU with
the NDN domain name “/om/edu/squ” is located in “AS1”, (2) “AS1” and “AS2” admin-
istrators are running in their respective domains: “/AS1/PNPS”, “/AS2/PNPS”, (3) “AS1”
and “AS2” are peered using N-BGP [2], and each domain is advertising its own PNPS name,
and (4) “C1” and “C2” are three consumers located in “AS1” and “AS2”, respectively.

Based on the above assumptions, “C1” can reach SQU via static/intra-domain routing,
whereas “C2” cannot reach the SQU domain name, as it is not globally advertised. Therefore,
if C2 sends an NDN Interest to the SQU domain, it will receive an NDN Nack (Figure 8a).
Additionally, if it sends GET/GETBCM to its domain PNPS, it will receive a nil result, since
“/AS2/PNPS” does not have a mapping entry for the SQU domain name (Figure 8b).

SQU decided to solve this issue by providing reachability to its domain for clients in
“AS2”. To provide reachability, the SQU network administrator uses PNPC to send an ADD
message to “/AS2/PNPS”, as follows:

pnpc --server = /AS2/PNPS --message = add --name = /om/edu/squ --location = /AS1
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Since “/AS2/PNPS” is globally advertised using N-BGP, the NDN Interest packet
holding the ADD message can reach its destination. When PNPS of “AS2” receives the
NDN Interest, it validates the Interest signature (outside the scope of this paper) against
the name “/om/edu/squ”. If the Interest packet is signed by an entity that is authorized to
modify entries of this domain name, access will be granted, and the ECHT add operation
will take place. Otherwise, a “not authorized” data message is sent back.

Now, “C2” will still receive a Nack message when sending an NDN Interest to the
SQU domain. However, “C2” can get the delivery location(s) of the SQU domain by
sending a GET/GETBCM message to “/AS2/PNPS”, which will be “/AS1”. “C2” will
use “/AS1” as a ForwardingHint [23] for a new Interest packet with the name element
“/om/edu/squ”. As “/AS1” is publicly advertised via N-BGP, “AS2” can now route the
packet to its destination (Figure 8c).

5. Conclusions and Future Work

This paper proposes a two-element solution to enhance name resolution in NDN
networks. The two elements in the proposed solution include (1) a data structure of the
NDN mapping table and (2) a management protocol. The proposed data structure, called
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Encoded Component Hash Trie (ECHT), combines the trie data structure with a hashing
mechanism to build the NDN mapping table, where each producer name is decomposed
into components, and each component is encoded in NDN NameComponent TLV format.
ECHT supports three operations: insertion, deletion, and lookup. The lookup operation
in ECHT is based on a proposed searching mechanism called Best Component Match
(BCM) as a replacement for the Longest Prefix Match (LPM) mechanism, which assists
in avoiding a wrong reply due to an incorrect partial component matching. Moreover,
the management protocol is proposed to automatically populate, update, and modify the
entries of the mapping table (producer name, delivery location) via four messages (add,
remove, get, getbcm). The proposed scheme performance was tested and evaluated against
two other tries: component and character tries. The results show that the operations’ speed
was enhanced and was much faster than other tries, e.g., lookup and insertion operations
are around 65 and 37 times faster, respectively, when the ECHT data structure is used in
comparison with normal text-based component trie. This is because ECHT does not require
decoding/encoding NDN names while parsing received NDN Interests or creating NDN
Data replies.

For future work, we aim to develop an authentication framework that can be used by
an NDN producer who wants to modify (add or remove) an entry in the mapping table.
Accordingly, the origin, authenticity, and integrity of the content producer are verified.

For the convenience of the reader, the abbreviations used in this paper are listed in
Table 5.

Table 5. Abbreviations in alphabetical order.

Abbreviation Description

BMC Best Component Match

DNS Domain Name System

ECHT Encoded Component Hash Trie

FIB Forwarding Information Base

IDR Inter-Domain Routing

LPM Longest Prefix Match

N-BGP Named Data Border Gateway Protocol

NDN Named Data Networking

PNP Peer Name Provider

PNPC Peer Name Provider Client

PNPP Peer Name Provider Protocol

PNPS Peer Name Provider Server

TLV Type-Length-Value
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