
Citation: Miguel, J.; Mendonça, P.;

Quelhas, A.; Caldeira, J.M.L.P.; Soares,

V.N.G.J. Using Computer Vision to

Collect Information on Cycling and

Hiking Trails Users. Future Internet

2024, 16, 104. https://doi.org/

10.3390/fi16030104

Academic Editor: Gianluigi Ferrari

Received: 29 January 2024

Revised: 7 March 2024

Accepted: 17 March 2024

Published: 20 March 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

future internet

Review

Using Computer Vision to Collect Information on Cycling and
Hiking Trails Users
Joaquim Miguel 1, Pedro Mendonça 1, Agnelo Quelhas 2,3, João M. L. P. Caldeira 1,4,* and Vasco N. G. J. Soares 1,4

1 Polytechnic Institute of Castelo Branco, Av. Pedro Álvares Cabral n◦ 12, 6000-084 Castelo Branco, Portugal;
joaquim.miguel@ipcbcampus.pt (J.M.); mendonca.pedro@ipcbcampus.pt (P.M.);
vasco.g.soares@ipcb.pt (V.N.G.J.S.)

2 Direção Geral da Educação/ERTE, Av. 24 de Julho n.º 140-5.º piso, 1399-025 Lisboa, Portugal;
agneloquelhas@ipcb.pt

3 Federação Portuguesa de Ciclismo, Rua de Campolide, 237, 1070-030 Lisboa, Portugal
4 Instituto de Telecomunicações, Rua Marquês d’Ávila e Bolama, 6201-001 Covilhã, Portugal
* Correspondence: jcaldeira@ipcb.pt

Abstract: Hiking and cycling have become popular activities for promoting well-being and physical
activity. Portugal has been investing in hiking and cycling trail infrastructures to boost sustainable
tourism. However, the lack of reliable data on the use of these trails means that the times of greatest
affluence or the type of user who makes the most use of them are not recorded. These data are of the
utmost importance to the managing bodies, with which they can adjust their actions to improve the
management, maintenance, promotion, and use of the infrastructures for which they are responsible.
The aim of this work is to present a review study on projects, techniques, and methods that can be
used to identify and count the different types of users on these trails. The most promising computer
vision techniques are identified and described: YOLOv3-Tiny, MobileNet-SSD V2, and FasterRCNN
with ResNet-50. Their performance is evaluated and compared. The results observed can be very
useful for proposing future prototypes. The challenges, future directions, and research opportunities
are also discussed.

Keywords: hiking trails; cycling trails; computer vision; convolutional neural networks; state of the
art; performance evaluation; YOLOv3-Tiny; MobileNet-SSD V2; FasterRCNN with ResNet-50

1. Introduction

In recent years, walking, hiking, and cycling have become one of the most popular
activities for promoting physical activity and well-being. These are carried out through
trails or routes of varying lengths, classified into three categories depending on the distances
involved: Long Routes (GR), routes over 30 km long; Short Routes (PR), less than 30 km
long; and Local Routes (PL), where all or more than half of the route is in an urban
environment [1]. Each of these trails is duly marked with the signs displayed in Figure 1
along the way. These markings can appear in a wide variety of places, such as rocks, walls,
stakes, and electricity pylons, among others [2]. Figure 2 shows some examples of the
location of these marks.

Walking, hiking, and cycling trails and routes are created and maintained by various
entities, such as federations related to sports, mountaineering, camping, national, regional,
or local public administration entities, and even entities linked to the tourism sector [3].
According to the Federation of Camping and Mountaineering of Portugal (FCM) [4], the
body responsible for registering and homologating hiking trails, there are 76 small routes
and 46 large routes homologated in Portugal, following the Regulation for the Homologa-
tion of Walking Routes (RHPP) [1]. This regulation serves to establish specific standards
and criteria for a hiking trail to be officially recognized [5]. However, there are many routes

Future Internet 2024, 16, 104. https://doi.org/10.3390/fi16030104 https://www.mdpi.com/journal/futureinternet

https://doi.org/10.3390/fi16030104
https://doi.org/10.3390/fi16030104
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/futureinternet
https://www.mdpi.com
https://orcid.org/0000-0001-5830-3790
https://orcid.org/0000-0002-8057-5474
https://doi.org/10.3390/fi16030104
https://www.mdpi.com/journal/futureinternet
https://www.mdpi.com/article/10.3390/fi16030104?type=check_update&version=1

Future Internet 2024, 16, 104 2 of 32

that have not been homologated in the National Register of Footpaths (RNPP), managed
by the FCM.

Future Internet 2024, 16, x FOR PEER REVIEW 2 of 33

there are many routes that have not been homologated in the National Register of
Footpaths (RNPP), managed by the FCM.

Figure 1. Signage used on the routes.

Figure 2. Examples of signposted sites.

Figure 1. Signage used on the routes.

Future Internet 2024, 16, x FOR PEER REVIEW 2 of 33

there are many routes that have not been homologated in the National Register of
Footpaths (RNPP), managed by the FCM.

Figure 1. Signage used on the routes.

Figure 2. Examples of signposted sites. Figure 2. Examples of signposted sites.

Future Internet 2024, 16, 104 3 of 32

In Portugal, the number of approved walking, hiking, and cycling trails and routes has
been growing over the years, helping to add value to areas by attracting a growing number
of domestic and foreign tourists to practice nature sports and boosting sustainable tourism.
However, since these spaces are freely accessible, there is no reliable information available
on how often they are used and the types of users that use them most often. Given that, in
most cases, municipalities are the driving force behind these infrastructures, it is important
to assess, for example, the real tourist impact that these routes bring to the regions. Accurate
and reliable data are therefore needed to show how they are used. In this way, identifying
the different types of users, counting them, and knowing the times of greatest influx are
crucial data for the managers and promoters of these infrastructures. These data can also
help gauge the strategic importance of these facilities in tourism development, especially
in low-density areas. Another dimension that can be considered when analyzing the data
collected is the management of the capacity to use these infrastructures. Given that, along
these trails, there are often sensitive areas that have specific preservation regulations (such
as natural parks, protected areas, and special protection zones, among others), the collection
of data on usage rates is extremely important for managing access to these areas.

Considering the importance of these data in better managing these infrastructures,
there is a need to implement solutions that allow these data to be collected, processed, and
analyzed. The work presented in this paper represents a first step in an ongoing effort
to propose, develop, and evaluate a solution that allows for identifying and quantifying
different types of users on walking, hiking, and cycling trails or routes. To achieve this
goal, and after a preliminary analysis, it was decided to study solutions that use computer
vision techniques, since, as demonstrated in [6,7], these stand out as the main technique for
detecting moving objects. Moreover, computer vision demonstrates greater versatility and
adaptability to various conditions compared to other technologies like LiDAR [8]. Opting
for its use not only contributes to the evolution of this field but also ensures the availability
of more data for future utilization [9]. The cost effectiveness of essential hardware, such as
cameras and single-board computers, together with the widespread availability of open-
source software in this field, further encourages the option of using these technologies. This
paper surveys related work on the topic. It analyzes computer vision techniques suitable
for solving this problem and evaluates the most promising ones using a new dataset that
has been created in the context of this work. The dataset was composed of several images
collected by the authors, among others, from two platforms available on the web. All the
images were then manually annotated using the Roboflow platform [10].

The rest of the paper is organized as follows. Section 2 presents related work that
provides the context for the current research. Section 3 discusses computer vision techniques
and convolutional neural network (CNN) architectures, including one-stage detection and
two-stage detection, and analyzes YOLOv3-Tiny, MobileNet-SSD V2, and Faster-RCNN
with ResNet-50. Section 4 presents a performance evaluation of these models. Finally,
Section 5 presents the conclusions and suggests possible future works.

2. Related Work

This section provides context and a comprehensive review of previous work and
research related to the topic of this work. The Preferred Reporting Items for Systematic
Reviews and Meta-analyses (PRISMA) methodology [11] was used to conduct this re-
search. This methodology consists of a framework for reporting on systematic reviews and
meta-analyses. The main objective of PRISMA is to guarantee transparency, quality, and
consistency in the conduct and presentation of systematic reviews and meta-analyses, and
it can be adapted to carry out a broad search for works related to this project [11]. Thus,
the methodology implements the following procedures: (a) research questions, (b) infor-
mation sources and research strategy, (c) selection process, (d) analysis of studies, and
(e) results obtained.

Future Internet 2024, 16, 104 4 of 32

2.1. Research Questions

This procedure encourages questions to be drawn from the purpose of this work.
These will help to conduct clear research.

• Question No. 1—How can different types of users (cyclists and pedestrians) on cycling
and hiking trails and routes be distinguished?

• Question No. 2—How can different types of users (cyclists and pedestrians) on cycling
and hiking trails and routes be counted?

• Question No. 3—What frameworks exist for solutions to detect different types of users
on cycling and hiking trails and routes?

2.2. Information Sources and Research Strategy

The articles studied were identified manually and through a search using the b-on
platform (Online Knowledge Library) [12]. b-on is a virtual library that provides titles of
international scientific periodicals and e-books from the most important content providers.
Through the platform, it is possible to access document databases, including Science Direct,
IEEE Xplore, and SpringerLink, among others, enabling access to the full text of a wide
range of publications [13].

In the advanced search, carried out between November and December 2023, a query
was prepared using terms suitable for the search, as follows:

(“object detection” OR “people detection “) AND “counting” AND “computer vision”.

2.3. Selection Process

To select the studies resulting from the research, it was necessary to apply inclusion
filters. Firstly, the search was filtered by documents published between 2019 and 2023
and duplicate studies were eliminated from the search. Once the search was narrowed
down, the titles of the remaining articles were analyzed to identify which of them could
potentially meet the inclusion criteria. Some titles were promptly excluded due to their
clear lack of relevance to the theme of the work, while others, which initially presented a
less obvious connection, were kept for a more detailed evaluation in the subsequent stage.
Of those selected by title, their abstracts were then analyzed to conclude whether they
should be included or excluded. At this stage, those using expensive technologies such as
unmanned aerial vehicles (UAV) were also excluded. Articles that lacked clarity in their
descriptions, omitting information on the models used and the results obtained, were also
excluded. The resulting articles were then selected as part of the systematic review and the
full text of all of them was read. Figure 3 summarizes this whole process.

2.4. Analysis of Studies

This section presents an analysis of the projects and works related to the topic covered
in this article, which resulted from the previous selection process. Table 1 summarizes
the main characteristics considered in this analysis (title of the study, year of publication,
model used, dataset used, methodologies used, and results).

Table 1. Summary of the articles studied.

References Study Year Dataset Methodologies Results

[14] Vehicle Counting on
Vietnamese Street 2023 Dataset created by

the author
YOLOv8,

StrongSORT mAP of 82.9%

[15]

Development of
Automated People
Counting System

using Object Detection
and Tracking

2023 MS-COCO Mask R-CNN,
ResNet-50

mAP of 100% and
97.62% in plans with

simple funds and 85.73%
in complex funds

Future Internet 2024, 16, 104 5 of 32

Table 1. Cont.

References Study Year Dataset Methodologies Results

[16]

Pedestrian and Object
Detection using Image

Processing by
YOLOv3 and YOLOv2

2023 MS-COCO YOLOv3 mAP of 57.9%

[17]
Vehicle Counting

based on Convolution
NeuralNetwork

2023 UA-DETRAC YOLOv3, SORT Counting accuracy
of 85.45%

[18] People Detecting and
Counting System 2021 ImageNet ImageNet N/A

[19]

Intelligent multimodal
pedestrian detection

using hybrid
metaheuristic

optimization with
deep learning model

2023 UCSD (Ped-1 e
Ped-2)

YOLO-v5,
RetinaNet

AUC score of 98.86%
(Ped-1) and 97.58%

(Ped-2)

[20]

Realtime Vehicle
Counting Method

Using Haar Cascade
Classifier Model

2021 3 min video (origin
not described)

Haar Cascade
Classifier
algorithm

mAP of 91.2%

[7]
Real-time Train Wagon
Counting and Number
Recognition Algorithm

2022 Dataset created by
the authors

ResNet-18,
ResNet-34,
ResNet-50

Accuracy of 99.2% at
36 FPS (ResNet-18),

99.4% at 22 FPS
(ResNet-34), and 99.7%
at 10 FPS (ResNet-50)

[21]

Improved Person
Counting Performance

Using Kalman Filter
Based on Image
Detection and

Tracking

2021 N/A YOLOv3 e Kalman
Filter N/A

[22]

Performance
Evaluation of Deep
Learning Models on
Embedded Platform

2021 Dataset created by
the authors

YOLOv4,
MobileNet-SSD

mAP of 91% with
7.2 FPS (YOLOv4) and

87.5% with 40 FPS
(MobileNet-SSD)

[23]

EmbeddedPigCount:
Pig Counting with

Video Object Detection
and Tracking on an
Embedded Board

2022 Hallway, pig pen,
people in top view

LightYOLOv4,
DeepSORT mAP of 94.95%

[24]

Counting People and
Bicycles in Real Time

Using YOLO on Jetson
Nano

2022 Dataset created by
the authors Yolov5, V-IOU mAP of 44.4%

In [14], researchers in Vietnam studied a system for tracking vehicles on roads using
a custom dataset and the YOLOv8s model. The custom dataset, containing images of
Vietnamese traffic under various conditions, significantly outperformed a generic dataset
(COCO) in terms of accuracy (82.9% vs. 15.6%). This suggests that YOLOv8 performs
well on data similar to its training data but might be affected by factors like weather and
camera angles.

Future Internet 2024, 16, 104 6 of 32
Future Internet 2024, 16, x FOR PEER REVIEW 5 of 33

Figure 3. Flowchart of the research phases.

2.4. Analysis of Studies
This section presents an analysis of the projects and works related to the topic cov-

ered in this article, which resulted from the previous selection process. Table 1 summa-
rizes the main characteristics considered in this analysis (title of the study, year of publi-
cation, model used, dataset used, methodologies used, and results).

Table 1. Summary of the articles studied.

References Study Year Dataset Methodologies Results

[14]
Vehicle Counting on

Vietnamese Street 2023
Dataset created by

the author
YOLOv8, Strong-

SORT mAP of 82.9%

[15]

Development of Auto-
mated People Counting

System using Object
Detection and Tracking

2023 MS-COCO
Mask R-CNN, Res-

Net-50

mAP of 100% and
97.62% in plans with

simple funds and
85.73% in complex

funds

[16]

Pedestrian and Object
Detection using Image
Processing by YOLOv3

and YOLOv2

2023 MS-COCO YOLOv3 mAP of 57.9%

[17]
Vehicle Counting based
on Convolution Neural

Network
2023 UA-DETRAC YOLOv3, SORT Counting accuracy

of 85.45%

Figure 3. Flowchart of the research phases.

In [15], the paper describes an offline people-counting system using video files. It
employs Mask R-CNN for detection, is trained on a large dataset (MS-COCO), and uses
background subtraction, blob analysis, and centroid setting for counting. Additionally, it
integrates a notification system through ThingSpeak and an old social network (potentially
Twitter) to display the count. The system achieved high accuracy (100% and 97.62%)
in simple test scenarios and a lower, but still reasonable, accuracy (85.73%) in a more
complex scenario.

In [16], this study proposes a real-time object detection system for vehicles, aiming
to enhance road safety by identifying pedestrians and other objects and notifying drivers
of potential hazards. Utilizing the COCO dataset, the system compares the performance
of YOLOv2 and YOLOv3 algorithms. The findings reveal that YOLOv3 achieves superior
accuracy (approximately 58% mAP) and operates at a faster refresh rate, rendering it more
suitable for real-time applications. Conversely, YOLOv2 exhibits limitations in both object
detection and precision, hindering its effectiveness in this context.

In [17], this study presents a method for vehicle detection, classification, and counting
using a Virtual Detection Zone (VDZ) aimed at simplifying traffic management applica-
tions. The UA-DETRAC dataset was used for evaluation. The system leverages OpenCV,
the YOLOv3 model (with Darknet-53 as the feature extractor), and the SORT algorithm
for tracking. While minor challenges with duplicate counting were observed in specific
scenarios, the system demonstrated a high overall accuracy of approximately 85.45%.

In [18], a people counting system for monitoring entry and exit points is presented
in this study. The system leverages a Raspberry Pi for image capture, model execution,
and data transmission to a web server. Trained on the ImageNet dataset, the model
employs Support Vector Machines alongside HOG and VGG-16 models to classify objects

Future Internet 2024, 16, 104 7 of 32

as “person” or “non-person”. Both models exhibit comparable accuracy, although HOG
extracts a substantially higher number of features compared to VGG-16.

In [19], a multimodal pedestrian detection and classification system, IPDC-HMODL, is
introduced in this work. This deep learning-based model, employing techniques like hybrid
metaheuristic optimization and kernel extreme learning machines, demonstrates superior
performance on the UCSD Ped-1 and Ped-2 datasets compared to existing methods. IPDC-
HMODL achieves exceptional Area Under the Curve (AUC) scores (98.86% and 97.58%)
and low error rates (3.12% and 4.35%) on both datasets, surpassing established models like
AMDN, MDT, and Social Force. Receiver Operating Characteristic (ROC) analysis further
emphasizes IPDC-HMODL’s efficacy, highlighting its potential for real-world applications
in pedestrian detection and classification tasks.

In [20], a method was described for the real-time counting of vehicles through the
application of computer vision in conjunction with a Single-board Computer (SBC). The
main objective was to present an efficient system capable of identifying and counting
vehicles entering and leaving certain entrances. The dataset used for evaluation was not
explicitly detailed. The hardware used consisted of a Raspberry Pi equipped with a camera
module. The software used was the Haar Cascade Classifier algorithm, implemented in the
Python programming language. The test results showed that the proposed system achieved
an average accuracy of 91.2% in detecting and accurately counting moving vehicles.

In [7], a solution was proposed for train carriage counting and number recognition us-
ing deep learning computer vision models. The system processes a video stream into frames
and uses three datasets: “Scene Classifier” with 7000 backgrounds, 12,000 intervals, and
11,000 wagon images to train the classifier; “Number detection model” with 3400 wagon
images for detecting number edges; and “digit recognition model” with 3400 images for
recognizing digits. The first phase validated wagon counting with 99.5% accuracy using
ResNet models, while the second phase achieved 98.5% accuracy in recognizing wagon
numbers. This approach relies solely on computer vision without additional devices
or sensors.

In [21], an approach to people counting in image detection and tracking was intro-
duced. This research introduced an approach to counting people at a bus stop using image
detection and tracking. They used NVIDIA Jetson AGX Xavier hardware and NVIDIA
DeepStream SDK 5.0 with Python. The method implemented a Kalman filter for counting
people, resulting in a notable reduction in counting errors compared to a basic detection
approach. Specific details about the dataset were not provided.

In [22], the study analyzed the performance of deep learning models for real-time
traffic localization and detection using edge equipment. The dataset, created by the authors,
included images of Vietnamese vehicles and license plates. They used Nvidia Jetson Nano
as the hardware platform and compared MobileNet-SSD and YOLOv4 models for vehicle
counting and license plate detection. Both models showed high accuracy in real-time tasks,
with MobileNet-SSD processing at 40 frames per second (FPS) and YOLOv4 demonstrating
superior detection of smaller objects with around 91% mean Average Precision (mAP).

In [23], researchers developed an automatic camera-based method to count pigs in
a specific area of a large-scale pig farm. They used three datasets, two created manually
and one reused from a previous article. The hardware included cameras for video capture,
and a deep learning algorithm, specifically a convolutional neural network (CNN), was
used for pig identification and localization. The DeepSORT (Deep Simple Online and Real-
time Tracking) algorithm tracked the detected pigs in real time, allowing for precise and
individualized counting with around 94.95% mean Average Precision (mAP). This system
provided an automated solution for accurate and real-time pig counting in agricultural
settings, ensuring continuous monitoring and tracking of pig trajectories.

In [24], a system was developed for real-time counting of people and bicycles using
a private dataset of 339 videos. The dataset consisted of 4 s videos showing people and
bicycles in motion, from which 630 frames were extracted and annotated on the Roboflow
platform. The system was implemented on a Nvidia Jetson Nano 2 GB. The study compared

Future Internet 2024, 16, 104 8 of 32

various detection models including Faster R-CNN, SSD300, SSD512, YOLOv4, YOLOv4-
tiny, YOLOv5n, YOLOv5m, YOLOv5x, YOLOv5n6, YOLOv5m6, and YOLOv5x6, with an
average mean Average Precision (mAP) of 44.4%. YOLOv5 showed a higher refresh rate
than Faster R-CNN and SSD models and was supported by PyTorch and TensorRT. Object
tracking used IOU, V-IOU, and DeepSORT methods, with V-IOU proving superior to IOU
for tracking. Tests on YOLOv5 versions with TensorRT showed better results than those
with PyTorch. Overall, the system demonstrated efficient detection and tracking, with the
V-IOU tracking method outperforming IOU.

2.5. Results Obtained

As described above, a filter was applied by year of publication, from 2019 to 2023,
during the search for studies. It should be noted that no studies were found in years 2019
and 2020. Figure 4 shows the percentage of studies per year.

Future Internet 2024, 16, x FOR PEER REVIEW 8 of 33

vehicle counting and license plate detection. Both models showed high accuracy in real-
time tasks, with MobileNet-SSD processing at 40 frames per second (FPS) and YOLOv4
demonstrating superior detection of smaller objects with around 91% mean Average Pre-
cision (mAP).

In [23], researchers developed an automatic camera-based method to count pigs in a
specific area of a large-scale pig farm. They used three datasets, two created manually and
one reused from a previous article. The hardware included cameras for video capture, and
a deep learning algorithm, specifically a convolutional neural network (CNN), was used
for pig identification and localization. The DeepSORT (Deep Simple Online and Real-time
Tracking) algorithm tracked the detected pigs in real time, allowing for precise and indi-
vidualized counting with around 94.95% mean Average Precision (mAP). This system
provided an automated solution for accurate and real-time pig counting in agricultural
settings, ensuring continuous monitoring and tracking of pig trajectories.

In [24], a system was developed for real-time counting of people and bicycles using
a private dataset of 339 videos. The dataset consisted of 4 s videos showing people and
bicycles in motion, from which 630 frames were extracted and annotated on the Roboflow
platform. The system was implemented on a Nvidia Jetson Nano 2 GB. The study com-
pared various detection models including Faster R-CNN, SSD300, SSD512, YOLOv4,
YOLOv4-tiny, YOLOv5n, YOLOv5m, YOLOv5x, YOLOv5n6, YOLOv5m6, and
YOLOv5x6, with an average mean Average Precision (mAP) of 44.4%. YOLOv5 showed a
higher refresh rate than Faster R-CNN and SSD models and was supported by PyTorch
and TensorRT. Object tracking used IOU, V-IOU, and DeepSORT methods, with V-IOU
proving superior to IOU for tracking. Tests on YOLOv5 versions with TensorRT showed
better results than those with PyTorch. Overall, the system demonstrated efficient detec-
tion and tracking, with the V-IOU tracking method outperforming IOU.

2.5. Results Obtained
As described above, a filter was applied by year of publication, from 2019 to 2023,

during the search for studies. It should be noted that no studies were found in years 2019
and 2020. Figure 4 shows the percentage of studies per year.

Figure 4. Publication years of the articles.

When analyzing the articles selected for this study, there is a diversity in the imple-
mentation of detection models. Each article adopts its own approach, with some also im-
plementing tracking methods. In addition, the datasets are used for different purposes.
All in all, the results differ in terms of accuracy. All the articles used convolutional neural
networks. The results obtained stand out for their remarkable effectiveness in detecting
people, bicycles, and motorcycles. This evidence reinforces the prominent position of

Figure 4. Publication years of the articles.

When analyzing the articles selected for this study, there is a diversity in the imple-
mentation of detection models. Each article adopts its own approach, with some also
implementing tracking methods. In addition, the datasets are used for different purposes.
All in all, the results differ in terms of accuracy. All the articles used convolutional neural
networks. The results obtained stand out for their remarkable effectiveness in detecting
people, bicycles, and motorcycles. This evidence reinforces the prominent position of these
architectures as the most efficient and effective option to identify and count users of cycling
and hiking trails.

Regarding the datasets used, there is a wide range of choices for training, validating,
and testing the models, as shown in Figure 5. Most of the authors created their own dataset,
although the use of MS-COCO was a common practice.

Various detection models were reported in the work surveyed, as shown in Figure 6.
The most frequently cited was YOLOv3, which was mentioned in three studies. YOLOv5
and ResNet-50 also stood out, each having been used in two studies.

In addition to detection models, methods have also been used to track objects through-
out the sequence of frames in which they are present. Figure 7 shows the various methods
used by the authors.

Future Internet 2024, 16, 104 9 of 32

Future Internet 2024, 16, x FOR PEER REVIEW 9 of 33

these architectures as the most efficient and effective option to identify and count users of
cycling and hiking trails.

Regarding the datasets used, there is a wide range of choices for training, validating,
and testing the models, as shown in Figure 5. Most of the authors created their own da-
taset, although the use of MS-COCO was a common practice.

Figure 5. Datasets used.

Various detection models were reported in the work surveyed, as shown in Figure 6.
The most frequently cited was YOLOv3, which was mentioned in three studies. YOLOv5
and ResNet-50 also stood out, each having been used in two studies.

Figure 6. Detection models used.

In addition to detection models, methods have also been used to track objects
throughout the sequence of frames in which they are present. Figure 7 shows the various
methods used by the authors.

Figure 5. Datasets used.

Future Internet 2024, 16, x FOR PEER REVIEW 9 of 33

these architectures as the most efficient and effective option to identify and count users of
cycling and hiking trails.

Regarding the datasets used, there is a wide range of choices for training, validating,
and testing the models, as shown in Figure 5. Most of the authors created their own da-
taset, although the use of MS-COCO was a common practice.

Figure 5. Datasets used.

Various detection models were reported in the work surveyed, as shown in Figure 6.
The most frequently cited was YOLOv3, which was mentioned in three studies. YOLOv5
and ResNet-50 also stood out, each having been used in two studies.

Figure 6. Detection models used.

In addition to detection models, methods have also been used to track objects
throughout the sequence of frames in which they are present. Figure 7 shows the various
methods used by the authors.

Figure 6. Detection models used.

Future Internet 2024, 16, x FOR PEER REVIEW 10 of 33

Figure 7. Tracking methods used.

2.6. Critical Analysis
Throughout this study, several limitations were noted in the works analyzed, such

as the absence of methodologies and datasets used to implement the solutions. In addi-
tion, some results are not explicitly presented. However, it was concluded that there are
similarities in implementation between studies.

After analyzing all the articles obtained, only 12 of them fall within the scope of this
work. It should be noted that the choice of the CNN model to be used for detecting users
of cycling and hiking trails and routes is very important. Not all detection models are
equally efficient in terms of resource consumption, making it important to select based on
the implementation environment. In the scenario of this work, where the system will be
implemented in a remote location, it is anticipated that the hardware used may present
computational limitations. It is therefore necessary to strike a balance between the accu-
racy of the model and the hardware’s ability to respond to that model.

Based on the analysis of the related studies, three models were identified that could
potentially have the best results in the development of the solution to be proposed, for the
reasons described below. YOLOv3 was the most widely used model in the studies ana-
lyzed and is therefore included in this selection. In the future, its Tiny version will be used,
which is recognized for being lighter, more efficient, and less computationally demand-
ing. The choice of the MobileNet-SSD model was based on its use in embedded boards
with few computing resources. This selection was based on the model’s ability to offer
satisfactory performance (87.5% mAP [19]). Finally, the ResNet-50 model was also selected
due to its remarkable accuracy performance in [7,15], oscillating between 85% and 100%
in various test conditions. It is also highlighted as the second most used model in the re-
lated works studied, demonstrating the relevance and efficiency of this model in different
contexts. Considering that the system will be placed in remote locations (such as pedes-
trian routes), access to operational resources will probably be limited. Therefore, the op-
tion for a system with low power consumption should be considered.

The adaptation of the dataset to the context is also a point of analysis. In the existing
studies, no dataset has been identified that is perfectly aligned with the requirements of
the work described in this paper. It is therefore essential to build one that encompasses
people and bicycles and considers the possibility of including motorcycles. It is also im-
portant that the images that make up the dataset are captured on footpaths or in similar
scenarios, such as dirt tracks. In this way, the development of the dataset plays a key role
in training and testing the model to achieve more accurate detection.

Finally, based on the analysis of the previous studies, it is now possible to answer the
research questions.
Question No. 1—How can different types of users (cyclists and pedestrians) on cycling
and hiking trails and routes be distinguished?

Figure 7. Tracking methods used.

Future Internet 2024, 16, 104 10 of 32

2.6. Critical Analysis

Throughout this study, several limitations were noted in the works analyzed, such
as the absence of methodologies and datasets used to implement the solutions. In addi-
tion, some results are not explicitly presented. However, it was concluded that there are
similarities in implementation between studies.

After analyzing all the articles obtained, only 12 of them fall within the scope of this
work. It should be noted that the choice of the CNN model to be used for detecting users
of cycling and hiking trails and routes is very important. Not all detection models are
equally efficient in terms of resource consumption, making it important to select based on
the implementation environment. In the scenario of this work, where the system will be
implemented in a remote location, it is anticipated that the hardware used may present
computational limitations. It is therefore necessary to strike a balance between the accuracy
of the model and the hardware’s ability to respond to that model.

Based on the analysis of the related studies, three models were identified that could
potentially have the best results in the development of the solution to be proposed, for the
reasons described below. YOLOv3 was the most widely used model in the studies analyzed
and is therefore included in this selection. In the future, its Tiny version will be used, which
is recognized for being lighter, more efficient, and less computationally demanding. The
choice of the MobileNet-SSD model was based on its use in embedded boards with few
computing resources. This selection was based on the model’s ability to offer satisfactory
performance (87.5% mAP [19]). Finally, the ResNet-50 model was also selected due to its
remarkable accuracy performance in [7,15], oscillating between 85% and 100% in various
test conditions. It is also highlighted as the second most used model in the related works
studied, demonstrating the relevance and efficiency of this model in different contexts.
Considering that the system will be placed in remote locations (such as pedestrian routes),
access to operational resources will probably be limited. Therefore, the option for a system
with low power consumption should be considered.

The adaptation of the dataset to the context is also a point of analysis. In the existing
studies, no dataset has been identified that is perfectly aligned with the requirements of the
work described in this paper. It is therefore essential to build one that encompasses people
and bicycles and considers the possibility of including motorcycles. It is also important
that the images that make up the dataset are captured on footpaths or in similar scenarios,
such as dirt tracks. In this way, the development of the dataset plays a key role in training
and testing the model to achieve more accurate detection.

Finally, based on the analysis of the previous studies, it is now possible to answer the
research questions.

Question No. 1—How can different types of users (cyclists and pedestrians) on cycling
and hiking trails and routes be distinguished?

The classification of different types of users on cycling and pedestrian routes can be car-
ried out using computer vision and machine learning (ML) techniques. A computer vision
system can be trained to recognize distinctive features between cyclists and pedestrians,
using convolutional neural networks to learn patterns in the data received from real-time
video frames, thus distinguishing pedestrians from cyclists. All the articles studied present
a detection model based on CNNs.

Question No. 2—How can different types of users (cyclists and pedestrians) on cycling
and hiking trails and routes be counted?

Quantifying different types of users on cycling and pedestrian routes involves count-
ing the number of cyclists and pedestrians present in a scene, which must first be detected.
Object detection techniques can therefore be used to identify and locate cyclists and pedes-
trians in a video frame in real time. Counting is then carried out based on the detections.
This can be completed using the inputs and outputs of an ROI, as in [14,21].

Question No. 3—What frameworks exist for solutions to detect different types of users
on cycling and hiking trails and routes?

Future Internet 2024, 16, 104 11 of 32

Tensorflow, TensorRT, Keras, and PyTorch are examples of ML and deep learning
frameworks. In the article [23], TensorRT was used and in [24], a comparison of accuracy
between TensorRT and PyTorch was carried out. Tensorflow was the framework chosen
in [18,20].

The next section presents the definition of computer vision, as well as CNN archi-
tectures, highlighting the one-stage detection and two-stage detection approaches. As
expected, the characteristics of the following CNN models will be presented: YOLOv3-Tiny,
MobileNet-SSD V2, and ResNet-50.

3. Computer Vision Techniques

Computer vision is a technology that makes it possible to develop systems capable
of understanding and interpreting visual information and thus describing it accurately
and efficiently, automatically. Computer vision applications use artificial intelligence and
machine learning. They use a vast number of images and videos captured by different de-
vices, such as smartphones, surveillance cameras, and traffic systems, among others. These
data are processed for object identification and facial recognition, as well as classification,
recommendation, monitoring, and detection. In the future, various computational perfor-
mance tests will be carried out to determine the best hardware solution for developing the
proposed solution.

Deep learning is a machine learning technique that teaches computers to do what
comes naturally to humans (i.e., learn by example), by creating and training convolu-
tional neural networks. Training is carried out based on datasets, such as a dataset of
images [25,26]. This field has evolved considerably in recent decades thanks to advances
in image processing capacity and the increased availability of more data [27]. In this way,
computer vision plays an important role in the context of the work presented in this paper,
since the aim is to study the use of cameras to capture visual information from pedestrians,
cyclists, or other users on walking, hiking, and cycling trails and routes. Figure 8 represents
the concept described.

Future Internet 2024, 16, x FOR PEER REVIEW 12 of 33

Figure 8. Example of cyclist classification and detection.

3.1. CNN Architectures
Most computer vision algorithms that detect objects in real time use CNNs, as they

are generally the ideal choice [28], since they are especially effective at extracting features
from images, identifying relevant patterns, and locating objects within a scene [29], effi-
ciently and quickly. Convolutional neural networks are deep learning networks, influ-
enced by the functions and organization of the visual cortex. They are designed to resem-
ble the behavior of neurons in a human brain [30].

Figure 9 shows the structure of convolutional neural networks. They are made up of
convolutional, pooling, and fully connected layers, each of which has a specific function
in propagating the input image. The convolutional layers are responsible for extracting
features from the previous layers or from the input image if it is the first layer of the net-
work. The main function of the pooling layers is to simplify the information at the output
of the convolutional layer [31], reducing the size of the data, as well as helping to make
the representation constant in small translations of the input. The deep learning used with
convolutional neural networks is characterized by the repetition of the convolutional and
pooling layers [32]. Finally, the fully connected layer is responsible for propagating the
signal through point-to-point multiplication and the use of an activation function. The last
layer outputs the probability of an input image belonging to one of the classes for which
the network was trained, depending on the activation function used [33].

Figure 9. Simplified architecture of CNNs.

Figure 8. Example of cyclist classification and detection.

Throughout this section, convolutional neural networks and their layered architecture
will be explored. In addition, one-stage and two-stage detection strategies will be dis-
cussed, providing examples of models that implement these approaches. Finally, provides
details regarding the most promising models to be considered for implementation in the
future prototype.

3.1. CNN Architectures

Most computer vision algorithms that detect objects in real time use CNNs, as they are
generally the ideal choice [28], since they are especially effective at extracting features from
images, identifying relevant patterns, and locating objects within a scene [29], efficiently

Future Internet 2024, 16, 104 12 of 32

and quickly. Convolutional neural networks are deep learning networks, influenced by the
functions and organization of the visual cortex. They are designed to resemble the behavior
of neurons in a human brain [30].

Figure 9 shows the structure of convolutional neural networks. They are made up of
convolutional, pooling, and fully connected layers, each of which has a specific function
in propagating the input image. The convolutional layers are responsible for extracting
features from the previous layers or from the input image if it is the first layer of the
network. The main function of the pooling layers is to simplify the information at the
output of the convolutional layer [31], reducing the size of the data, as well as helping to
make the representation constant in small translations of the input. The deep learning used
with convolutional neural networks is characterized by the repetition of the convolutional
and pooling layers [32]. Finally, the fully connected layer is responsible for propagating the
signal through point-to-point multiplication and the use of an activation function. The last
layer outputs the probability of an input image belonging to one of the classes for which
the network was trained, depending on the activation function used [33].

Future Internet 2024, 16, x FOR PEER REVIEW 12 of 33

Figure 8. Example of cyclist classification and detection.

3.1. CNN Architectures

Most computer vision algorithms that detect objects in real time use CNNs, as they

are generally the ideal choice [28], since they are especially effective at extracting features

from images, identifying relevant patterns, and locating objects within a scene [29], effi-

ciently and quickly. Convolutional neural networks are deep learning networks, influ-

enced by the functions and organization of the visual cortex. They are designed to resem-

ble the behavior of neurons in a human brain [30].

Figure 9 shows the structure of convolutional neural networks. They are made up of

convolutional, pooling, and fully connected layers, each of which has a specific function

in propagating the input image. The convolutional layers are responsible for extracting

features from the previous layers or from the input image if it is the first layer of the net-

work. The main function of the pooling layers is to simplify the information at the output

of the convolutional layer [31], reducing the size of the data, as well as helping to make

the representation constant in small translations of the input. The deep learning used with

convolutional neural networks is characterized by the repetition of the convolutional and

pooling layers [32]. Finally, the fully connected layer is responsible for propagating the

signal through point-to-point multiplication and the use of an activation function. The last

layer outputs the probability of an input image belonging to one of the classes for which

the network was trained, depending on the activation function used [33].

Figure 9. Simplified architecture of CNNs. Figure 9. Simplified architecture of CNNs.

Object detection consists of two operations: object localization, which detects where
an object is present, and object classification, which determines the class to which the
object belongs. However, finding the location of objects using CNNs is challenging due to
differences in image views, sizes, postures, and lighting conditions [34]. Thus, the models
that can be used for these tasks fall into two approaches: one-stage detection and two-stage
detection. To summarize, two-stage detection models tend to achieve greater precision in
object detection [35], while one-stage detection focuses more on speed [36]. Each of these
approaches will be presented below. Figure 10 shows three examples of models for each
of them.

Future Internet 2024, 16, x FOR PEER REVIEW 13 of 33

Object detection consists of two operations: object localization, which detects where
an object is present, and object classification, which determines the class to which the ob-
ject belongs. However, finding the location of objects using CNNs is challenging due to
differences in image views, sizes, postures, and lighting conditions [34]. Thus, the models
that can be used for these tasks fall into two approaches: one-stage detection and two-
stage detection. To summarize, two-stage detection models tend to achieve greater preci-
sion in object detection [35], while one-stage detection focuses more on speed [36]. Each
of these approaches will be presented below. Figure 10 shows three examples of models
for each of them.

Figure 10. Classification of models in one-stage detection and two-stage detection.

One-Stage Detection
One-stage detection models simultaneously localize and classify objects, as illus-

trated in Figure 11. Initially, the images are analyzed by a feature extractor using CNN.
The extracted features are then used directly for classification and regression of the bound-
ing box coordinates [37].

Compared to two-stage detection, these models are much faster and strike a balance
between speed and detection accuracy [36]. Because of their speed, they can be used for
real-time object detection.

Figure 11. One-stage detection model architecture.

Two-Stage Detection
Two-stage detection solves the problem of detection in two phases, as illustrated in

Figure 12. The first stage involves creating an ROI and extracting features using CNNs.
The second phase consists of putting the results identified in the ROI into the SVM or
CNN-based classifier to classify the objects and then correcting the object positions using
bounding box regression [36].

Figure 10. Classification of models in one-stage detection and two-stage detection.

Future Internet 2024, 16, 104 13 of 32

One-Stage Detection

One-stage detection models simultaneously localize and classify objects, as illustrated
in Figure 11. Initially, the images are analyzed by a feature extractor using CNN. The
extracted features are then used directly for classification and regression of the bounding
box coordinates [37].

Future Internet 2024, 16, x FOR PEER REVIEW 13 of 33

Object detection consists of two operations: object localization, which detects where
an object is present, and object classification, which determines the class to which the ob-
ject belongs. However, finding the location of objects using CNNs is challenging due to
differences in image views, sizes, postures, and lighting conditions [34]. Thus, the models
that can be used for these tasks fall into two approaches: one-stage detection and two-
stage detection. To summarize, two-stage detection models tend to achieve greater preci-
sion in object detection [35], while one-stage detection focuses more on speed [36]. Each
of these approaches will be presented below. Figure 10 shows three examples of models
for each of them.

Figure 10. Classification of models in one-stage detection and two-stage detection.

One-Stage Detection
One-stage detection models simultaneously localize and classify objects, as illus-

trated in Figure 11. Initially, the images are analyzed by a feature extractor using CNN.
The extracted features are then used directly for classification and regression of the bound-
ing box coordinates [37].

Compared to two-stage detection, these models are much faster and strike a balance
between speed and detection accuracy [36]. Because of their speed, they can be used for
real-time object detection.

Figure 11. One-stage detection model architecture.

Two-Stage Detection
Two-stage detection solves the problem of detection in two phases, as illustrated in

Figure 12. The first stage involves creating an ROI and extracting features using CNNs.
The second phase consists of putting the results identified in the ROI into the SVM or
CNN-based classifier to classify the objects and then correcting the object positions using
bounding box regression [36].

Figure 11. One-stage detection model architecture.

Compared to two-stage detection, these models are much faster and strike a balance
between speed and detection accuracy [36]. Because of their speed, they can be used for
real-time object detection.

Two-Stage Detection

Two-stage detection solves the problem of detection in two phases, as illustrated in
Figure 12. The first stage involves creating an ROI and extracting features using CNNs.
The second phase consists of putting the results identified in the ROI into the SVM or
CNN-based classifier to classify the objects and then correcting the object positions using
bounding box regression [36].

Future Internet 2024, 16, x FOR PEER REVIEW 14 of 33

Figure 12. Two-stage detection model architecture.

3.2. CNN Model Analysis
In this subsection, the possible models to be used for the future implementation of

the prototype for detecting and counting different users of cycling and hiking trails and
routes will be analyzed.

3.2.1. YOLOv3-Tiny
YOLOv3 [38] is a real-time object detection model. It performs one-stage detection,

so it processes the entire image only once to try to find objects. It divides the image into a
grid of 3 × 3 cells, and each cell is responsible for predicting whether or not there is an
object in its area, as shown in Figure 13. For each cell, the model makes a prediction con-
sisting of a bounding box representing the area of the object in the image, a probability
indicating the presence of an object within that box, and the class of the object, where
applicable. This process offers high precision and efficiency in object detection [39].

YOLOv3-tiny [40] is a reduced version, designed to be more efficient in terms of com-
putational resources. It uses 13 convolutional layers, a much smaller number than the 106
layers present in the standard version (53 convolutional layers added to the 53 layers of
the Darknet-53 feature extractor used by YOLOv3) [41]. As this architecture has fewer fil-
ters, it reduces the size of the model and the training time. Figure 14 shows the architecture
of the YOLOv3-Tiny model. It is an excellent option for applications that require high
computational efficiency, such as mobile devices or embedded systems [38].

Figure 13. 3 × 3 frame division.

Figure 12. Two-stage detection model architecture.

3.2. CNN Model Analysis

In this subsection, the possible models to be used for the future implementation of the
prototype for detecting and counting different users of cycling and hiking trails and routes
will be analyzed.

Future Internet 2024, 16, 104 14 of 32

3.2.1. YOLOv3-Tiny

YOLOv3 [38] is a real-time object detection model. It performs one-stage detection, so
it processes the entire image only once to try to find objects. It divides the image into a grid
of 3 × 3 cells, and each cell is responsible for predicting whether or not there is an object in
its area, as shown in Figure 13. For each cell, the model makes a prediction consisting of a
bounding box representing the area of the object in the image, a probability indicating the
presence of an object within that box, and the class of the object, where applicable. This
process offers high precision and efficiency in object detection [39].

Future Internet 2024, 16, x FOR PEER REVIEW 14 of 33

Figure 12. Two-stage detection model architecture.

3.2. CNN Model Analysis
In this subsection, the possible models to be used for the future implementation of

the prototype for detecting and counting different users of cycling and hiking trails and
routes will be analyzed.

3.2.1. YOLOv3-Tiny
YOLOv3 [38] is a real-time object detection model. It performs one-stage detection,

so it processes the entire image only once to try to find objects. It divides the image into a
grid of 3 × 3 cells, and each cell is responsible for predicting whether or not there is an
object in its area, as shown in Figure 13. For each cell, the model makes a prediction con-
sisting of a bounding box representing the area of the object in the image, a probability
indicating the presence of an object within that box, and the class of the object, where
applicable. This process offers high precision and efficiency in object detection [39].

YOLOv3-tiny [40] is a reduced version, designed to be more efficient in terms of com-
putational resources. It uses 13 convolutional layers, a much smaller number than the 106
layers present in the standard version (53 convolutional layers added to the 53 layers of
the Darknet-53 feature extractor used by YOLOv3) [41]. As this architecture has fewer fil-
ters, it reduces the size of the model and the training time. Figure 14 shows the architecture
of the YOLOv3-Tiny model. It is an excellent option for applications that require high
computational efficiency, such as mobile devices or embedded systems [38].

Figure 13. 3 × 3 frame division. Figure 13. 3 × 3 frame division.

YOLOv3-tiny [40] is a reduced version, designed to be more efficient in terms of
computational resources. It uses 13 convolutional layers, a much smaller number than the
106 layers present in the standard version (53 convolutional layers added to the 53 layers of
the Darknet-53 feature extractor used by YOLOv3) [41]. As this architecture has fewer filters,
it reduces the size of the model and the training time. Figure 14 shows the architecture
of the YOLOv3-Tiny model. It is an excellent option for applications that require high
computational efficiency, such as mobile devices or embedded systems [38].

Future Internet 2024, 16, x FOR PEER REVIEW 15 of 33

Figure 14. YOLOv3-Tiny architecture.

3.2.2. MobileNet-SSD V2
MobileNet-SSD V2 (MobileNet Single Shot Detector) is a model specially designed

for mobile devices such as smartphones, tablets, and embedded systems with low com-
puting power. This Single Shot Detector (SSD) object detection model uses MobileNet as
a backbone and can perform fast object detection [42,43]. Compared to the previous ver-
sion (V1), there was a significant reduction in the complexity, cost, and size of the model
to make it possible to use it on devices with low computing power. The MobileNet-SSD
V2 model has an architecture divided into two distinct parts. In the first phase, the Mo-
bileNetV2 base network plays the role of extracting characteristics. Two types of block are
incorporated, a residual block with a stride of one (processing the image information pixel
by pixel) and others with a stride of two (every two pixels). The purpose of these blocks
is to reduce the number of parameters and improve the network’s performance, contrib-
uting to efficient visual feature extraction. In the second phase, the SSD layer uses the
features extracted by MobileNetV2 to detect and classify objects in the image.

MobileNet-SSD V2 was thus designed to achieve competitive accuracy with few pa-
rameters and minimal computational complexity, with the advantage of having a faster
inference time compared to the V1 version. It thus proves to be effective in image classifi-
cation, object detection, and image segmentation [44]. Figure 15 shows the architecture of
this model.

Figure 14. YOLOv3-Tiny architecture.

Future Internet 2024, 16, 104 15 of 32

3.2.2. MobileNet-SSD V2

MobileNet-SSD V2 (MobileNet Single Shot Detector) is a model specially designed for
mobile devices such as smartphones, tablets, and embedded systems with low computing
power. This Single Shot Detector (SSD) object detection model uses MobileNet as a back-
bone and can perform fast object detection [42,43]. Compared to the previous version (V1),
there was a significant reduction in the complexity, cost, and size of the model to make it
possible to use it on devices with low computing power. The MobileNet-SSD V2 model has
an architecture divided into two distinct parts. In the first phase, the MobileNetV2 base
network plays the role of extracting characteristics. Two types of block are incorporated, a
residual block with a stride of one (processing the image information pixel by pixel) and
others with a stride of two (every two pixels). The purpose of these blocks is to reduce the
number of parameters and improve the network’s performance, contributing to efficient
visual feature extraction. In the second phase, the SSD layer uses the features extracted by
MobileNetV2 to detect and classify objects in the image.

MobileNet-SSD V2 was thus designed to achieve competitive accuracy with few pa-
rameters and minimal computational complexity, with the advantage of having a faster
inference time compared to the V1 version. It thus proves to be effective in image classifica-
tion, object detection, and image segmentation [44]. Figure 15 shows the architecture of
this model.

Future Internet 2024, 16, x FOR PEER REVIEW 16 of 33

Figure 15. MobileNet-SSD V2 architecture.

3.2.3. FasterRCNN and ResNet-50
Faster R-CNN with ResNet-50 is an object detection implementation technique that

integrates these two technologies [45]. The term Faster R-CNN refers to an approach that
divides the image into regions and then uses a CNN to process these regions and identify
objects. ResNet-50 is a deep neural network architecture known as a “residual network”,
which aims to overcome training challenges in these networks [46]. As can be seen in Fig-
ure 16, by joining these two technologies, one benefits from ResNet-50’s ability to extract
complex features from images, while Faster R-CNN handles the task of object detection
[47].

Figure 15. MobileNet-SSD V2 architecture.

Future Internet 2024, 16, 104 16 of 32

3.2.3. FasterRCNN and ResNet-50

Faster R-CNN with ResNet-50 is an object detection implementation technique that
integrates these two technologies [45]. The term Faster R-CNN refers to an approach that
divides the image into regions and then uses a CNN to process these regions and identify
objects. ResNet-50 is a deep neural network architecture known as a “residual network”,
which aims to overcome training challenges in these networks [46]. As can be seen in
Figure 16, by joining these two technologies, one benefits from ResNet-50’s ability to extract
complex features from images, while Faster R-CNN handles the task of object detection [47].

Future Internet 2024, 16, x FOR PEER REVIEW 17 of 33

Figure 16. FasterRCNN and ResNet-50 architecture.

4. Performance Evaluation
This section presents a performance comparison between the most promising models

identified above. Thus, YOLOv3-Tiny, MobileNet-SSD V2, and FasterRCNN with ResNet-
50 models will be evaluated for detecting pedestrians, cyclists, or other users on walking,
hiking, and cycling trails and routes. Firstly, the dataset created for this work is presented.
Secondly, the benchmark scenario and the performance metrics are described. And
thirdly, the results are presented, analyzed, and discussed.

4.1. Dataset Description
After extensive research, it was decided that we create a new dataset of images that

allowed joint and individual detection of people, motorcycles, and bicycles. This dataset
will be used to train and validate the models under analysis. Various images were selected
from [48,49]. For both websites, there is no need for special licenses to use their images. In
addition to these images, some proprietary images were also captured in an environment
that resembles the real context of this work. These images were captured with an iPhone
13 in a vertical orientation. They were taken in two different positions, some at ground
level and others about 1 m above the ground. The final dataset is available in [50]. It is
categorized into three different classes: persons, bicycles, and motorcycles. It consists of
440 images, organized into three subsets: 70% for training, consisting of 309 images; 20%
for validation, comprising 89 images; and 10% for testing, with 42 images. The discrep-
ancy in the number of images between the person class and the other two classes is due
to the variety of accessories that people can carry with them, such as backpacks, hiking
poles, overcoats, and raincoats. For the object detection model to be able to recognize these
accessories, a greater number of images of this class were required. Table 2 shows the
number of images per set and per class in the dataset.

Table 2. Number of images per set and class in the dataset.

 No. of Training Images No. of Validation Images No. of Test Images
Persons 180 53 25
Bicycles 63 17 9

Motorcycles 68 19 8
Total 311 89 42

The Roboflow tool [10] was used for the labeling process [51], where annotations are
created for each image. The goal of this phase is to indicate to the model the location of
the objects in the images, as well as identify their class. Figure 17 illustrates the process of
creating image annotations with Roboflow, while Figure 18 shows the images already an-
notated.

Figure 16. FasterRCNN and ResNet-50 architecture.

4. Performance Evaluation

This section presents a performance comparison between the most promising models
identified above. Thus, YOLOv3-Tiny, MobileNet-SSD V2, and FasterRCNN with ResNet-
50 models will be evaluated for detecting pedestrians, cyclists, or other users on walking,
hiking, and cycling trails and routes. Firstly, the dataset created for this work is presented.
Secondly, the benchmark scenario and the performance metrics are described. And thirdly,
the results are presented, analyzed, and discussed.

4.1. Dataset Description

After extensive research, it was decided that we create a new dataset of images that
allowed joint and individual detection of people, motorcycles, and bicycles. This dataset
will be used to train and validate the models under analysis. Various images were selected
from [48,49]. For both websites, there is no need for special licenses to use their images. In
addition to these images, some proprietary images were also captured in an environment
that resembles the real context of this work. These images were captured with an iPhone
13 in a vertical orientation. They were taken in two different positions, some at ground
level and others about 1 m above the ground. The final dataset is available in [50]. It is
categorized into three different classes: persons, bicycles, and motorcycles. It consists of
440 images, organized into three subsets: 70% for training, consisting of 309 images; 20%
for validation, comprising 89 images; and 10% for testing, with 42 images. The discrepancy
in the number of images between the person class and the other two classes is due to the
variety of accessories that people can carry with them, such as backpacks, hiking poles,
overcoats, and raincoats. For the object detection model to be able to recognize these
accessories, a greater number of images of this class were required. Table 2 shows the
number of images per set and per class in the dataset.

Future Internet 2024, 16, 104 17 of 32

Table 2. Number of images per set and class in the dataset.

No. of Training Images No. of Validation Images No. of Test Images

Persons 180 53 25
Bicycles 63 17 9

Motorcycles 68 19 8
Total 311 89 42

The Roboflow tool [10] was used for the labeling process [51], where annotations
are created for each image. The goal of this phase is to indicate to the model the loca-
tion of the objects in the images, as well as identify their class. Figure 17 illustrates the
process of creating image annotations with Roboflow, while Figure 18 shows the images
already annotated.

Future Internet 2024, 16, x FOR PEER REVIEW 18 of 33

Figure 17. Image annotation on the Roboflow platform.

Figure 18. Annotation of three images from the dataset with their respective classes.

Images captured in adverse weather and lighting conditions were annotated and in-
corporated into the dataset, as shown in Figure 19. These images enrich the diversity of
the dataset, giving the detection model the ability to deal effectively with different real-
world scenarios.

Figure 19. Images affected by atmospheric and lighting conditions.

4.2. Benchmark Scenario
The Google Colab platform [52], which provides computing resources, was used to

train the models. To train the three models, a machine with the following characteristics
was allocated: an NVIDIA T4 graphics card with 16 GB of VRAM and 13 GB of RAM. With
the use of a free Google Colab subscription, this platform is limited in the amount of time
it can be used. As the graphics card is the most important piece of hardware in the model
training process [53], this subscription only allows for approximately 6 h of use. This num-
ber of hours is not exact, nor is it disclosed by Google, as these usage limitations are

Figure 17. Image annotation on the Roboflow platform.

Future Internet 2024, 16, x FOR PEER REVIEW 18 of 33

Figure 17. Image annotation on the Roboflow platform.

Figure 18. Annotation of three images from the dataset with their respective classes.

Images captured in adverse weather and lighting conditions were annotated and in-
corporated into the dataset, as shown in Figure 19. These images enrich the diversity of
the dataset, giving the detection model the ability to deal effectively with different real-
world scenarios.

Figure 19. Images affected by atmospheric and lighting conditions.

4.2. Benchmark Scenario
The Google Colab platform [52], which provides computing resources, was used to

train the models. To train the three models, a machine with the following characteristics
was allocated: an NVIDIA T4 graphics card with 16 GB of VRAM and 13 GB of RAM. With
the use of a free Google Colab subscription, this platform is limited in the amount of time
it can be used. As the graphics card is the most important piece of hardware in the model
training process [53], this subscription only allows for approximately 6 h of use. This num-
ber of hours is not exact, nor is it disclosed by Google, as these usage limitations are

Figure 18. Annotation of three images from the dataset with their respective classes.

Images captured in adverse weather and lighting conditions were annotated and
incorporated into the dataset, as shown in Figure 19. These images enrich the diversity
of the dataset, giving the detection model the ability to deal effectively with different
real-world scenarios.

Future Internet 2024, 16, 104 18 of 32

Future Internet 2024, 16, x FOR PEER REVIEW 18 of 33

Figure 17. Image annotation on the Roboflow platform.

Figure 18. Annotation of three images from the dataset with their respective classes.

Images captured in adverse weather and lighting conditions were annotated and in-
corporated into the dataset, as shown in Figure 19. These images enrich the diversity of
the dataset, giving the detection model the ability to deal effectively with different real-
world scenarios.

Figure 19. Images affected by atmospheric and lighting conditions.

4.2. Benchmark Scenario
The Google Colab platform [52], which provides computing resources, was used to

train the models. To train the three models, a machine with the following characteristics
was allocated: an NVIDIA T4 graphics card with 16 GB of VRAM and 13 GB of RAM. With
the use of a free Google Colab subscription, this platform is limited in the amount of time
it can be used. As the graphics card is the most important piece of hardware in the model
training process [53], this subscription only allows for approximately 6 h of use. This num-
ber of hours is not exact, nor is it disclosed by Google, as these usage limitations are

Figure 19. Images affected by atmospheric and lighting conditions.

4.2. Benchmark Scenario

The Google Colab platform [52], which provides computing resources, was used to
train the models. To train the three models, a machine with the following characteristics
was allocated: an NVIDIA T4 graphics card with 16 GB of VRAM and 13 GB of RAM.
With the use of a free Google Colab subscription, this platform is limited in the amount
of time it can be used. As the graphics card is the most important piece of hardware in
the model training process [53], this subscription only allows for approximately 6 h of use.
This number of hours is not exact, nor is it disclosed by Google, as these usage limitations
are dynamic and vary according to how the platform is used [54]. Therefore, the model
was saved in Google Drive [55] at the end of each training epoch. It was also necessary to
use another Google account to split up the YOLOv3-Tiny model training process.

To implement the training of the YOLOv3-Tiny model, an existing notebook on Google
Colab created by Roboflow was used, which was adapted from YOLOv4 to YOLOv3-
Tiny [56]. On the machine provided, the NVIDIA Cuda Compiler Driver [57] was installed
to associate the graphics processing unit (GPU) hardware with the execution. It also
installed the Darknet framework, which is an open-source neural network architecture
implemented in C and CUDA, recognized for its speed, ease of installation, and support for
computing on the central processing unit (CPU) and GPU [58]. Next, the YOLOv3-Tiny base
weights [59] were downloaded in YOLO Darknet format. With the help of the Roboflow
library for Python [60], it was easy to download and prepare the dataset for the framework,
as shown in Figure 20.

Future Internet 2024, 16, x FOR PEER REVIEW 19 of 33

dynamic and vary according to how the platform is used [54]. Therefore, the model was
saved in Google Drive [55] at the end of each training epoch. It was also necessary to use
another Google account to split up the YOLOv3-Tiny model training process.

To implement the training of the YOLOv3-Tiny model, an existing notebook on
Google Colab created by Roboflow was used, which was adapted from YOLOv4 to
YOLOv3-Tiny [56]. On the machine provided, the NVIDIA Cuda Compiler Driver [57]
was installed to associate the graphics processing unit (GPU) hardware with the execu-
tion. It also installed the Darknet framework, which is an open-source neural network
architecture implemented in C and CUDA, recognized for its speed, ease of installation,
and support for computing on the central processing unit (CPU) and GPU [58]. Next, the
YOLOv3-Tiny base weights [59] were downloaded in YOLO Darknet format. With the
help of the Roboflow library for Python [60], it was easy to download and prepare the
dataset for the framework, as shown in Figure 20.

Figure 20. Use of the Roboflow library.

After this stage, the images and labels were prepared in the correct directories. A
training configuration file adjusted to the dataset used was also built. The changes made
to this code were the number of epochs (max_batches), where the value was changed to
6000. The value recommended by the notebook follows the instructions in the darknet
repository, which states that max_batches should be defined as the number of classes mul-
tiplied by 2000 while ensuring that it is not less than the number of training images and
not less than 6000 [61].

In the next phase, the training was carried out using the command shown in Figure
21, where Darknet took control of the process.

Figure 21. Command to perform the training.

Once the training was complete, it was possible to analyze the first 1000 epochs, fol-
lowed by analysis at each increment of 100 subsequent epochs. These analyses were ex-
tracted to a results.log file where information was displayed, highlighting the current train-
ing epoch number, the average loss in training (loss), average detection accuracy (mAP),
the best average accuracy achieved so far (best), time remaining to complete training
based on current progress, details of the average loss (avg loss), and the total number of
images processed so far (images). Figure 22 illustrates this analysis in the file, at iterations
1299 and 1300 of the training.

Figure 22. Log file with analysis of iterations 1299 and 1300.

The MobileNet-SSD V2 model was implemented using the TensorFlow framework
in a Google Colab notebook [62]. It was later copied and adapted to our case [63]. Initially,
the dependencies for TensorFlow object detection were installed, guaranteeing the

Figure 20. Use of the Roboflow library.

After this stage, the images and labels were prepared in the correct directories. A
training configuration file adjusted to the dataset used was also built. The changes made to
this code were the number of epochs (max_batches), where the value was changed to 6000.
The value recommended by the notebook follows the instructions in the darknet repository,
which states that max_batches should be defined as the number of classes multiplied by
2000 while ensuring that it is not less than the number of training images and not less than
6000 [61].

In the next phase, the training was carried out using the command shown in Figure 21,
where Darknet took control of the process.

Future Internet 2024, 16, x FOR PEER REVIEW 19 of 33

dynamic and vary according to how the platform is used [54]. Therefore, the model was
saved in Google Drive [55] at the end of each training epoch. It was also necessary to use
another Google account to split up the YOLOv3-Tiny model training process.

To implement the training of the YOLOv3-Tiny model, an existing notebook on
Google Colab created by Roboflow was used, which was adapted from YOLOv4 to
YOLOv3-Tiny [56]. On the machine provided, the NVIDIA Cuda Compiler Driver [57]
was installed to associate the graphics processing unit (GPU) hardware with the execu-
tion. It also installed the Darknet framework, which is an open-source neural network
architecture implemented in C and CUDA, recognized for its speed, ease of installation,
and support for computing on the central processing unit (CPU) and GPU [58]. Next, the
YOLOv3-Tiny base weights [59] were downloaded in YOLO Darknet format. With the
help of the Roboflow library for Python [60], it was easy to download and prepare the
dataset for the framework, as shown in Figure 20.

Figure 20. Use of the Roboflow library.

After this stage, the images and labels were prepared in the correct directories. A
training configuration file adjusted to the dataset used was also built. The changes made
to this code were the number of epochs (max_batches), where the value was changed to
6000. The value recommended by the notebook follows the instructions in the darknet
repository, which states that max_batches should be defined as the number of classes mul-
tiplied by 2000 while ensuring that it is not less than the number of training images and
not less than 6000 [61].

In the next phase, the training was carried out using the command shown in Figure
21, where Darknet took control of the process.

Figure 21. Command to perform the training.

Once the training was complete, it was possible to analyze the first 1000 epochs, fol-
lowed by analysis at each increment of 100 subsequent epochs. These analyses were ex-
tracted to a results.log file where information was displayed, highlighting the current train-
ing epoch number, the average loss in training (loss), average detection accuracy (mAP),
the best average accuracy achieved so far (best), time remaining to complete training
based on current progress, details of the average loss (avg loss), and the total number of
images processed so far (images). Figure 22 illustrates this analysis in the file, at iterations
1299 and 1300 of the training.

Figure 22. Log file with analysis of iterations 1299 and 1300.

The MobileNet-SSD V2 model was implemented using the TensorFlow framework
in a Google Colab notebook [62]. It was later copied and adapted to our case [63]. Initially,
the dependencies for TensorFlow object detection were installed, guaranteeing the

Figure 21. Command to perform the training.

Future Internet 2024, 16, 104 19 of 32

Once the training was complete, it was possible to analyze the first 1000 epochs,
followed by analysis at each increment of 100 subsequent epochs. These analyses were
extracted to a results.log file where information was displayed, highlighting the current
training epoch number, the average loss in training (loss), average detection accuracy (mAP),
the best average accuracy achieved so far (best), time remaining to complete training based
on current progress, details of the average loss (avg loss), and the total number of images
processed so far (images). Figure 22 illustrates this analysis in the file, at iterations 1299
and 1300 of the training.

Future Internet 2024, 16, x FOR PEER REVIEW 19 of 33

dynamic and vary according to how the platform is used [54]. Therefore, the model was
saved in Google Drive [55] at the end of each training epoch. It was also necessary to use
another Google account to split up the YOLOv3-Tiny model training process.

To implement the training of the YOLOv3-Tiny model, an existing notebook on
Google Colab created by Roboflow was used, which was adapted from YOLOv4 to
YOLOv3-Tiny [56]. On the machine provided, the NVIDIA Cuda Compiler Driver [57]
was installed to associate the graphics processing unit (GPU) hardware with the execu-
tion. It also installed the Darknet framework, which is an open-source neural network
architecture implemented in C and CUDA, recognized for its speed, ease of installation,
and support for computing on the central processing unit (CPU) and GPU [58]. Next, the
YOLOv3-Tiny base weights [59] were downloaded in YOLO Darknet format. With the
help of the Roboflow library for Python [60], it was easy to download and prepare the
dataset for the framework, as shown in Figure 20.

Figure 20. Use of the Roboflow library.

After this stage, the images and labels were prepared in the correct directories. A
training configuration file adjusted to the dataset used was also built. The changes made
to this code were the number of epochs (max_batches), where the value was changed to
6000. The value recommended by the notebook follows the instructions in the darknet
repository, which states that max_batches should be defined as the number of classes mul-
tiplied by 2000 while ensuring that it is not less than the number of training images and
not less than 6000 [61].

In the next phase, the training was carried out using the command shown in Figure
21, where Darknet took control of the process.

Figure 21. Command to perform the training.

Once the training was complete, it was possible to analyze the first 1000 epochs, fol-
lowed by analysis at each increment of 100 subsequent epochs. These analyses were ex-
tracted to a results.log file where information was displayed, highlighting the current train-
ing epoch number, the average loss in training (loss), average detection accuracy (mAP),
the best average accuracy achieved so far (best), time remaining to complete training
based on current progress, details of the average loss (avg loss), and the total number of
images processed so far (images). Figure 22 illustrates this analysis in the file, at iterations
1299 and 1300 of the training.

Figure 22. Log file with analysis of iterations 1299 and 1300.

The MobileNet-SSD V2 model was implemented using the TensorFlow framework
in a Google Colab notebook [62]. It was later copied and adapted to our case [63]. Initially,
the dependencies for TensorFlow object detection were installed, guaranteeing the

Figure 22. Log file with analysis of iterations 1299 and 1300.

The MobileNet-SSD V2 model was implemented using the TensorFlow framework in
a Google Colab notebook [62]. It was later copied and adapted to our case [63]. Initially, the
dependencies for TensorFlow object detection were installed, guaranteeing the availability
of the libraries needed for the process. Next, to prepare the training data, the dataset was
downloaded in Pascal VOC format and TFRecords format from the Roboflow platform.
The purpose of this notebook is to convert the images and their XML files, in Pascal VOC
format, into TFRecords format, to be used by TensorFlow during training. In addition,
tests were carried out to evaluate the performance of the trained model, also using test
images extracted from the dataset in Pascal VOC format. The use of the Roboflow platform
considerably simplified this task.

In the training configuration, the MobileNet-SSD V2 model to be used was selected
from the TensorFlow 2 Object Detection Model Zoo [64]. At this stage, hyperparameters
were also specified for training the model, such as the number of epochs (num_steps) and
batch_size, which represent the number of images to be used per training step. In this case,
6000 epochs and 16 images were selected, respectively. Every 100 epochs, the time taken
and metrics such as classification_loss, localization_loss, regularization_loss, total_loss, and
learning_rate were displayed. Figure 23 provides a detailed view of the outputs, focusing
particularly on the 5900th iteration epoch.

Future Internet 2024, 16, x FOR PEER REVIEW 20 of 33

availability of the libraries needed for the process. Next, to prepare the training data, the
dataset was downloaded in Pascal VOC format and TFRecords format from the Roboflow
platform. The purpose of this notebook is to convert the images and their XML files, in
Pascal VOC format, into TFRecords format, to be used by TensorFlow during training. In
addition, tests were carried out to evaluate the performance of the trained model, also
using test images extracted from the dataset in Pascal VOC format. The use of the Ro-
boflow platform considerably simplified this task.

In the training configuration, the MobileNet-SSD V2 model to be used was selected
from the TensorFlow 2 Object Detection Model Zoo [64]. At this stage, hyperparameters
were also specified for training the model, such as the number of epochs (num_steps) and
batch_size, which represent the number of images to be used per training step. In this case,
6000 epochs and 16 images were selected, respectively. Every 100 epochs, the time taken
and metrics such as classification_loss, localization_loss, regularization_loss, total_loss,
and learning_rate were displayed. Figure 23 provides a detailed view of the outputs, fo-
cusing particularly on the 5900th iteration epoch.

Figure 23. Runtime output and loss metrics at the iteration epoch 5900.

Subsequently, the model resulting from the training was converted into the Tensor-
Flow Lite format, a version optimized for devices with low computing power. Still in the
notebook, the model was tested on 10 test images, before the mAP was calculated to assess
the model’s effectiveness in terms of average detection accuracy.

ResNet-50 was implemented in a notebook based on [65]. The framework used to
train this model was PyTorch [66]. A clone was made of a repository created in [65]. After
this step, the Roboflow library [60] was used to download and format the dataset in Pascal
VOC format. Next, the training configuration file was prepared to assign the paths of the
training and test images and labels. This file, shown in Figure 24, also defines the classes
present in the dataset and their ID.

Figure 24. ResNet-50 training configuration file.

Next, the “train.py” file needs to be executed to start training the model. As can be
seen in Figure 25, input parameters need to be set: the location of the training configura-
tion file, the number of epochs to be trained, the model to be used, the name of the output
of the trained model, and the batch size.

Figure 23. Runtime output and loss metrics at the iteration epoch 5900.

Subsequently, the model resulting from the training was converted into the TensorFlow
Lite format, a version optimized for devices with low computing power. Still in the
notebook, the model was tested on 10 test images, before the mAP was calculated to assess
the model’s effectiveness in terms of average detection accuracy.

ResNet-50 was implemented in a notebook based on [65]. The framework used to
train this model was PyTorch [66]. A clone was made of a repository created in [65]. After
this step, the Roboflow library [60] was used to download and format the dataset in Pascal
VOC format. Next, the training configuration file was prepared to assign the paths of the
training and test images and labels. This file, shown in Figure 24, also defines the classes
present in the dataset and their ID.

Future Internet 2024, 16, 104 20 of 32

Future Internet 2024, 16, x FOR PEER REVIEW 20 of 33

availability of the libraries needed for the process. Next, to prepare the training data, the
dataset was downloaded in Pascal VOC format and TFRecords format from the Roboflow
platform. The purpose of this notebook is to convert the images and their XML files, in
Pascal VOC format, into TFRecords format, to be used by TensorFlow during training. In
addition, tests were carried out to evaluate the performance of the trained model, also
using test images extracted from the dataset in Pascal VOC format. The use of the Ro-
boflow platform considerably simplified this task.

In the training configuration, the MobileNet-SSD V2 model to be used was selected
from the TensorFlow 2 Object Detection Model Zoo [64]. At this stage, hyperparameters
were also specified for training the model, such as the number of epochs (num_steps) and
batch_size, which represent the number of images to be used per training step. In this case,
6000 epochs and 16 images were selected, respectively. Every 100 epochs, the time taken
and metrics such as classification_loss, localization_loss, regularization_loss, total_loss,
and learning_rate were displayed. Figure 23 provides a detailed view of the outputs, fo-
cusing particularly on the 5900th iteration epoch.

Figure 23. Runtime output and loss metrics at the iteration epoch 5900.

Subsequently, the model resulting from the training was converted into the Tensor-
Flow Lite format, a version optimized for devices with low computing power. Still in the
notebook, the model was tested on 10 test images, before the mAP was calculated to assess
the model’s effectiveness in terms of average detection accuracy.

ResNet-50 was implemented in a notebook based on [65]. The framework used to
train this model was PyTorch [66]. A clone was made of a repository created in [65]. After
this step, the Roboflow library [60] was used to download and format the dataset in Pascal
VOC format. Next, the training configuration file was prepared to assign the paths of the
training and test images and labels. This file, shown in Figure 24, also defines the classes
present in the dataset and their ID.

Figure 24. ResNet-50 training configuration file.

Next, the “train.py” file needs to be executed to start training the model. As can be
seen in Figure 25, input parameters need to be set: the location of the training configura-
tion file, the number of epochs to be trained, the model to be used, the name of the output
of the trained model, and the batch size.

Figure 24. ResNet-50 training configuration file.

Next, the “train.py” file needs to be executed to start training the model. As can be
seen in Figure 25, input parameters need to be set: the location of the training configuration
file, the number of epochs to be trained, the model to be used, the name of the output of
the trained model, and the batch size.

Future Internet 2024, 16, x FOR PEER REVIEW 21 of 33

Figure 25. Command to run ResNet-50 training.

The model selected was “fasterrcnn_resnet_50_fpn_v2”, the output name was “cus-
tom_training”, and the batch size value was 8. For each training epoch, the metrics loss,
loss_classifier, loss_box_reg, loss_objectness, loss_rpn_box_reg, and execution time are
displayed, as shown in Figure 26.

Figure 26. Epoch 42 training metrics.

At the end of each epoch, tests were also carried out on the model, shown in Figure
27, resulting in a summary of validation metrics, such as Average Precision and Average
Recall. The mAP is also displayed if these results are better than those obtained previ-
ously.

Figure 27. Epoch 42 validation metrics.

The test environment was then carried out on a device with an Intel-Core I7-11370H
CPU, 16 GB of RAM, and an NVIDIA RTX 3050 GPU. All the models were tested on it,
allowing an equal comparison between models in terms of accuracy, processing speed,
and model efficiency.

4.3. Performance Metrics
In order to assess the effectiveness of models in detecting and classifying objects, it is

essential to understand the metrics associated with these methods. AP (average precision)
is a commonly used metric in binary classification and information retrieval. It serves to
summarize the precision–recall curve and provides a single numerical value that charac-
terizes the quality of retrieval results for a given class or category. This is particularly rel-
evant in tasks like object detection [67]. It is calculated according to Equation (1).

𝐴𝑃 ൌ ෍ ሾ𝑅𝑒𝑐𝑎𝑙𝑙𝑠ሺ𝑘ሻ െ 𝑅𝑒𝑐𝑎𝑙𝑙𝑠ሺ𝑘 ൅ 1ሻሿ ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑠ሺ𝑘ሻ௞ୀ௡ିଵ
௞ୀ଴ (1)

One of the most important and widely used metrics is the mAP. It is calculated as the
average of the accuracies at different recall levels (evaluation of the model’s effectiveness
in detection). The mAP is an important metric because it is insensitive to the size of the
objects, allowing effective comparison of models. It is calculated using Equation (2), using
the average of the APs of all the classes considered.

Figure 25. Command to run ResNet-50 training.

The model selected was “fasterrcnn_resnet_50_fpn_v2”, the output name was “cus-
tom_training”, and the batch size value was 8. For each training epoch, the metrics loss,
loss_classifier, loss_box_reg, loss_objectness, loss_rpn_box_reg, and execution time are
displayed, as shown in Figure 26.

Future Internet 2024, 16, x FOR PEER REVIEW 21 of 33

Figure 25. Command to run ResNet-50 training.

The model selected was “fasterrcnn_resnet_50_fpn_v2”, the output name was “cus-
tom_training”, and the batch size value was 8. For each training epoch, the metrics loss,
loss_classifier, loss_box_reg, loss_objectness, loss_rpn_box_reg, and execution time are
displayed, as shown in Figure 26.

Figure 26. Epoch 42 training metrics.

At the end of each epoch, tests were also carried out on the model, shown in Figure
27, resulting in a summary of validation metrics, such as Average Precision and Average
Recall. The mAP is also displayed if these results are better than those obtained previ-
ously.

Figure 27. Epoch 42 validation metrics.

The test environment was then carried out on a device with an Intel-Core I7-11370H
CPU, 16 GB of RAM, and an NVIDIA RTX 3050 GPU. All the models were tested on it,
allowing an equal comparison between models in terms of accuracy, processing speed,
and model efficiency.

4.3. Performance Metrics
In order to assess the effectiveness of models in detecting and classifying objects, it is

essential to understand the metrics associated with these methods. AP (average precision)
is a commonly used metric in binary classification and information retrieval. It serves to
summarize the precision–recall curve and provides a single numerical value that charac-
terizes the quality of retrieval results for a given class or category. This is particularly rel-
evant in tasks like object detection [67]. It is calculated according to Equation (1).

𝐴𝑃 ൌ ෍ ሾ𝑅𝑒𝑐𝑎𝑙𝑙𝑠ሺ𝑘ሻ െ 𝑅𝑒𝑐𝑎𝑙𝑙𝑠ሺ𝑘 ൅ 1ሻሿ ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑠ሺ𝑘ሻ௞ୀ௡ିଵ
௞ୀ଴ (1)

One of the most important and widely used metrics is the mAP. It is calculated as the
average of the accuracies at different recall levels (evaluation of the model’s effectiveness
in detection). The mAP is an important metric because it is insensitive to the size of the
objects, allowing effective comparison of models. It is calculated using Equation (2), using
the average of the APs of all the classes considered.

Figure 26. Epoch 42 training metrics.

At the end of each epoch, tests were also carried out on the model, shown in Figure 27,
resulting in a summary of validation metrics, such as Average Precision and Average Recall.
The mAP is also displayed if these results are better than those obtained previously.

Future Internet 2024, 16, x FOR PEER REVIEW 21 of 33

Figure 25. Command to run ResNet-50 training.

The model selected was “fasterrcnn_resnet_50_fpn_v2”, the output name was “cus-
tom_training”, and the batch size value was 8. For each training epoch, the metrics loss,
loss_classifier, loss_box_reg, loss_objectness, loss_rpn_box_reg, and execution time are
displayed, as shown in Figure 26.

Figure 26. Epoch 42 training metrics.

At the end of each epoch, tests were also carried out on the model, shown in Figure
27, resulting in a summary of validation metrics, such as Average Precision and Average
Recall. The mAP is also displayed if these results are better than those obtained previ-
ously.

Figure 27. Epoch 42 validation metrics.

The test environment was then carried out on a device with an Intel-Core I7-11370H
CPU, 16 GB of RAM, and an NVIDIA RTX 3050 GPU. All the models were tested on it,
allowing an equal comparison between models in terms of accuracy, processing speed,
and model efficiency.

4.3. Performance Metrics
In order to assess the effectiveness of models in detecting and classifying objects, it is

essential to understand the metrics associated with these methods. AP (average precision)
is a commonly used metric in binary classification and information retrieval. It serves to
summarize the precision–recall curve and provides a single numerical value that charac-
terizes the quality of retrieval results for a given class or category. This is particularly rel-
evant in tasks like object detection [67]. It is calculated according to Equation (1).

𝐴𝑃 ൌ ෍ ሾ𝑅𝑒𝑐𝑎𝑙𝑙𝑠ሺ𝑘ሻ െ 𝑅𝑒𝑐𝑎𝑙𝑙𝑠ሺ𝑘 ൅ 1ሻሿ ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑠ሺ𝑘ሻ௞ୀ௡ିଵ
௞ୀ଴ (1)

One of the most important and widely used metrics is the mAP. It is calculated as the
average of the accuracies at different recall levels (evaluation of the model’s effectiveness
in detection). The mAP is an important metric because it is insensitive to the size of the
objects, allowing effective comparison of models. It is calculated using Equation (2), using
the average of the APs of all the classes considered.

Figure 27. Epoch 42 validation metrics.

The test environment was then carried out on a device with an Intel-Core I7-11370H
CPU, 16 GB of RAM, and an NVIDIA RTX 3050 GPU. All the models were tested on it,
allowing an equal comparison between models in terms of accuracy, processing speed, and
model efficiency.

Future Internet 2024, 16, 104 21 of 32

4.3. Performance Metrics

In order to assess the effectiveness of models in detecting and classifying objects,
it is essential to understand the metrics associated with these methods. AP (average
precision) is a commonly used metric in binary classification and information retrieval. It
serves to summarize the precision–recall curve and provides a single numerical value that
characterizes the quality of retrieval results for a given class or category. This is particularly
relevant in tasks like object detection [67]. It is calculated according to Equation (1).

AP =
k=n−1

∑
k=0

[Recalls(k)− Recalls(k + 1)] ∗ Precisions(k) (1)

One of the most important and widely used metrics is the mAP. It is calculated as the
average of the accuracies at different recall levels (evaluation of the model’s effectiveness
in detection). The mAP is an important metric because it is insensitive to the size of the
objects, allowing effective comparison of models. It is calculated using Equation (2), using
the average of the APs of all the classes considered.

mAP =
1
k

k

∑
i

APi (2)

The F1-Score is a metric commonly employed to evaluate a model’s precision. It
combines both precision and recall into a unique measure. Consequently, it offers an
assessment of a model’s performance across varying levels of precision and recall. It is
mainly calculated using true positives, false positives, and false negatives, as delineated in
Equation (3).

F1 score =
TP

TP + 1
2 (FP + FN)

(3)

Intersection over union (IoU) is also used to assess the accuracy of a model. It is
calculated as the ratio of the area of intersection of the detection and the area of union
of the detection and the reference rectangle. It is also a metric that is independent of the
size of the objects, which makes it useful for comparing models of different sizes. The
loss metric represents the collective error in the model’s predictions, calculated as the
difference between the model’s output and the desired value. The loss_classifier measures
the discrepancy between the model’s predictions and the actual classes of the objects in
the image, quantifying how far off the model’s predictions are from the actual classes.
This encourages the model to adjust the parameters to minimize this discrepancy. The
loss_box refers to the loss associated with the location or bounding box, assessing the
discrepancy between the coordinates of the bounding box predicted by the model and the
actual coordinates of the object’s bounding box in the image. The loss_rpn_box specifies
the loss associated with adjusting the bounding boxes generated by the RPN (Region
Proposal Network). The loss_object metric is used to assess the overall accuracy of a model,
looking at the accuracy of the location of objects in the image and the correct assignment of
categories to objects. It is a weighted combination of these two components, reflecting the
overall accuracy of the model in detecting and classifying objects.

Overfitting [68] represents a significant challenge when training CNNs. It is manifested
when a model is overtrained, going so far as to memorize specific details of that data. As
a result, the model demonstrates outstanding performance on the training data, but fails
when dealing with new data. To mitigate this problem, a balance must be struck in
accurately capturing meaningful patterns, while avoiding building an overly complex
model that adapts too much to the training data. Figure 28 provides an illustration of the
concept of overfitting.

Future Internet 2024, 16, 104 22 of 32

Future Internet 2024, 16, x FOR PEER REVIEW 22 of 33

𝑚𝐴𝑃 ൌ 1𝑘 ෍ 𝐴𝑃௜௞
௜ (2)

The F1-Score is a metric commonly employed to evaluate a model’s precision. It com-
bines both precision and recall into a unique measure. Consequently, it offers an assess-
ment of a model’s performance across varying levels of precision and recall. It is mainly
calculated using true positives, false positives, and false negatives, as delineated in Equa-
tion (3). 𝐹1 𝑠𝑐𝑜𝑟𝑒 ൌ 𝑇𝑃𝑇𝑃 ൅ 12 ሺ𝐹𝑃 ൅ 𝐹𝑁ሻ (3)

Intersection over union (IoU) is also used to assess the accuracy of a model. It is cal-
culated as the ratio of the area of intersection of the detection and the area of union of the
detection and the reference rectangle. It is also a metric that is independent of the size of
the objects, which makes it useful for comparing models of different sizes. The loss metric
represents the collective error in the model’s predictions, calculated as the difference be-
tween the model’s output and the desired value. The loss_classifier measures the discrep-
ancy between the model’s predictions and the actual classes of the objects in the image,
quantifying how far off the model’s predictions are from the actual classes. This encour-
ages the model to adjust the parameters to minimize this discrepancy. The loss_box refers
to the loss associated with the location or bounding box, assessing the discrepancy be-
tween the coordinates of the bounding box predicted by the model and the actual coordi-
nates of the object’s bounding box in the image. The loss_rpn_box specifies the loss asso-
ciated with adjusting the bounding boxes generated by the RPN (Region Proposal Net-
work). The loss_object metric is used to assess the overall accuracy of a model, looking at
the accuracy of the location of objects in the image and the correct assignment of categories
to objects. It is a weighted combination of these two components, reflecting the overall
accuracy of the model in detecting and classifying objects.

Overfitting [68] represents a significant challenge when training CNNs. It is mani-
fested when a model is overtrained, going so far as to memorize specific details of that
data. As a result, the model demonstrates outstanding performance on the training data,
but fails when dealing with new data. To mitigate this problem, a balance must be struck
in accurately capturing meaningful patterns, while avoiding building an overly complex
model that adapts too much to the training data. Figure 28 provides an illustration of the
concept of overfitting.

Figure 28. Illustration of the concept of overfitting.

For overfitting prevention Early Stopping [69], Figure 29 illustrates the concept,
showing the training error in blue and the validation error in red as a function of the

Figure 28. Illustration of the concept of overfitting.

For overfitting prevention Early Stopping [69], Figure 29 illustrates the concept, show-
ing the training error in blue and the validation error in red as a function of the training
epochs. If the model continues learning after a certain point, the validation error will
increase while the training error will continue to decrease. The aim is to find the right
moment to stop training, avoiding both underfitting and overfitting.

Future Internet 2024, 16, x FOR PEER REVIEW 23 of 33

training epochs. If the model continues learning after a certain point, the validation error
will increase while the training error will continue to decrease. The aim is to find the right
moment to stop training, avoiding both underfitting and overfitting.

Figure 29. Validation error versus training error.

4.4. Results and Discussion
To evaluate the results obtained with each of the models, initially, each of the models

was trained and the respective training results were obtained. Then, various tests were
carried out using real videos to assess the ability of each model to detect the various clas-
ses (persons, bicycles, and motorcycles).

4.4.1. Train
YOLOv3-Tiny training lasted a total of 2 h and 30 min. For each iteration, a graph

was generated, as shown in Figure 30, in which the mAP values are shown in red, while
the training loss values are shown in blue. The graph shows the upward trend of the mAP
over the epochs, indicating a continuous improvement in detection accuracy. The model
ended with a mAP of 68.7%, which is an acceptable performance. In addition, the graph
showed the exponential decrease in training loss, initially sharp and stabilizing at values
close to 0.1.

Figure 31 shows the AP of each class, where bicycles obtained 65.27%, motorcycles
78.71%, and persons 62.02%. In addition to this information, a precision of 71%, a recall of
57%, and an F1-score of 63% were obtained.

Training the MobileNet-SSD V2 model was faster than YOLOv3-Tiny, taking approx-
imately 31 min. The mAP calculated for this model shown in Figure 32 was 44.52%, which
is considered a relatively low value. This lower value may be a consequence of training
speed that may impact accuracy.

A TensorBoard session was started to monitor the training progress of the MobileNet-
SSD V2 model [70]. Figure 33 shows the results of the loss metrics, where there is a varia-
tion in values over the epochs in the classification loss, localization loss, regularization
loss, and total loss metrics. Figure 34, on the other hand, shows the learning rate metric,
where it can be concluded that, close to 1500 epochs, the model no longer learns.

The ResNet-50 model took 3 h and 50 min to train, making it the longest. A mAP of
61.5% was obtained in epoch 43. Figure 35 shows the evolution of the mAP over the epoch.
The model’s evolution in terms of accuracy does not improve significantly from epoch 30
onwards. So, there is no need for exhaustive training of the model.

Figure 29. Validation error versus training error.

4.4. Results and Discussion

To evaluate the results obtained with each of the models, initially, each of the models
was trained and the respective training results were obtained. Then, various tests were
carried out using real videos to assess the ability of each model to detect the various classes
(persons, bicycles, and motorcycles).

4.4.1. Train

YOLOv3-Tiny training lasted a total of 2 h and 30 min. For each iteration, a graph was
generated, as shown in Figure 30, in which the mAP values are shown in red, while the
training loss values are shown in blue. The graph shows the upward trend of the mAP
over the epochs, indicating a continuous improvement in detection accuracy. The model
ended with a mAP of 68.7%, which is an acceptable performance. In addition, the graph
showed the exponential decrease in training loss, initially sharp and stabilizing at values
close to 0.1.

Future Internet 2024, 16, 104 23 of 32

Figure 30. Training loss and mAP in YOLOv3-Tiny.

Figure 31 shows the AP of each class, where bicycles obtained 65.27%, motorcycles
78.71%, and persons 62.02%. In addition to this information, a precision of 71%, a recall of
57%, and an F1-score of 63% were obtained.

Future Internet 2024, 16, x FOR PEER REVIEW 24 of 33

Figure 30. Training loss and mAP in YOLOv3-Tiny.

Figure 31. YOLOv3-Tiny training results.

Figure 32. MobileNet-SSD V2 training results.

Figure 31. YOLOv3-Tiny training results.

Training the MobileNet-SSD V2 model was faster than YOLOv3-Tiny, taking approxi-
mately 31 min. The mAP calculated for this model shown in Figure 32 was 44.52%, which
is considered a relatively low value. This lower value may be a consequence of training
speed that may impact accuracy.

Future Internet 2024, 16, 104 24 of 32

Future Internet 2024, 16, x FOR PEER REVIEW 24 of 33

Figure 30. Training loss and mAP in YOLOv3-Tiny.

Figure 31. YOLOv3-Tiny training results.

Figure 32. MobileNet-SSD V2 training results. Figure 32. MobileNet-SSD V2 training results.

A TensorBoard session was started to monitor the training progress of the MobileNet-
SSD V2 model [70]. Figure 33 shows the results of the loss metrics, where there is a variation
in values over the epochs in the classification loss, localization loss, regularization loss, and
total loss metrics. Figure 34, on the other hand, shows the learning rate metric, where it can
be concluded that, close to 1500 epochs, the model no longer learns.

Future Internet 2024, 16, x FOR PEER REVIEW 25 of 33

Figure 33. MobileNet-SSD V2 loss metrics.

Figure 34. MobileNet-SSD V2 learning rate metric.

Figure 35. ResNet-50 mAP.

Figure 36 shows the metrics associated with ResNet-50 training, focusing on the var-
ious losses. Analysis of this figure reveals an evolution over the seasons, manifested by

Figure 33. MobileNet-SSD V2 loss metrics.

Future Internet 2024, 16, x FOR PEER REVIEW 25 of 33

Figure 33. MobileNet-SSD V2 loss metrics.

Figure 34. MobileNet-SSD V2 learning rate metric.

Figure 35. ResNet-50 mAP.

Figure 36 shows the metrics associated with ResNet-50 training, focusing on the var-
ious losses. Analysis of this figure reveals an evolution over the seasons, manifested by

Figure 34. MobileNet-SSD V2 learning rate metric.

The ResNet-50 model took 3 h and 50 min to train, making it the longest. A mAP of
61.5% was obtained in epoch 43. Figure 35 shows the evolution of the mAP over the epoch.
The model’s evolution in terms of accuracy does not improve significantly from epoch
30 onwards. So, there is no need for exhaustive training of the model.

Future Internet 2024, 16, 104 25 of 32

Future Internet 2024, 16, x FOR PEER REVIEW 25 of 33

Figure 33. MobileNet-SSD V2 loss metrics.

Figure 34. MobileNet-SSD V2 learning rate metric.

Figure 35. ResNet-50 mAP.

Figure 36 shows the metrics associated with ResNet-50 training, focusing on the var-
ious losses. Analysis of this figure reveals an evolution over the seasons, manifested by

Figure 35. ResNet-50 mAP.

Figure 36 shows the metrics associated with ResNet-50 training, focusing on the
various losses. Analysis of this figure reveals an evolution over the seasons, manifested
by the constant decrease in all the values represented in it. In the last season considered,
the results obtained were as follows: loss 0.0261, loss_classifier 0.0166, loss_box 0.0313,
loss_rpn_box 0.0058, and loss_object 0.0016. These values demonstrate a remarkable ability
to recognize and identify objects. The consistent reduction in losses over the epochs
suggests that the training is evolving towards an optimal solution.

Future Internet 2024, 16, x FOR PEER REVIEW 26 of 33

the constant decrease in all the values represented in it. In the last season considered, the
results obtained were as follows: loss 0.0261, loss_classifier 0.0166, loss_box 0.0313,
loss_rpn_box 0.0058, and loss_object 0.0016. These values demonstrate a remarkable abil-
ity to recognize and identify objects. The consistent reduction in losses over the epochs
suggests that the training is evolving towards an optimal solution.

Figure 36. ResNet-50 training metrics.

The ResNet-50 model was validated in order to check its accuracy. The images used
for this scenario were the validation images in the dataset described above. Figure 37
shows the results obtained at this stage, with an AP of 56.2% in the bicycle class, an AP of
67.6% in the motorcycle class, and an AP of 51.1% in the person class. These results gave
a mAP of 58.3%, suggesting that the model performed reasonably well.

Figure 37. ResNet-50 validation results.

4.4.2. Tests
To validate the results obtained, several comparative tests were carried out on the

three trained models, using various videos recorded in real context. For these tests, the
error/accuracy of the different models was taken into account as well as the consumption
of computational resources using the FPS comparison. According to [71], video input is
more demanding in terms of computing power than direct input from a webcam or similar
device. The confidence parameter was set to 93%, i.e., only bounding boxes appear for the
object classes that the model has identified with a confidence equal to or greater than this
threshold.

In a future prototype, it is intended to place the camera in strategic locations, such as
on a pole about a meter off the ground (a topic that will be studied in the second part of
this work). In addition, cameras with a high field of view (FOV) will be used, allowing
objects to appear in the scene for longer. The initial option of carrying out tests with the

Figure 36. ResNet-50 training metrics.

The ResNet-50 model was validated in order to check its accuracy. The images used
for this scenario were the validation images in the dataset described above. Figure 37 shows
the results obtained at this stage, with an AP of 56.2% in the bicycle class, an AP of 67.6%
in the motorcycle class, and an AP of 51.1% in the person class. These results gave a mAP
of 58.3%, suggesting that the model performed reasonably well.

Future Internet 2024, 16, 104 26 of 32

Future Internet 2024, 16, x FOR PEER REVIEW 26 of 33

the constant decrease in all the values represented in it. In the last season considered, the
results obtained were as follows: loss 0.0261, loss_classifier 0.0166, loss_box 0.0313,
loss_rpn_box 0.0058, and loss_object 0.0016. These values demonstrate a remarkable abil-
ity to recognize and identify objects. The consistent reduction in losses over the epochs
suggests that the training is evolving towards an optimal solution.

Figure 36. ResNet-50 training metrics.

The ResNet-50 model was validated in order to check its accuracy. The images used
for this scenario were the validation images in the dataset described above. Figure 37
shows the results obtained at this stage, with an AP of 56.2% in the bicycle class, an AP of
67.6% in the motorcycle class, and an AP of 51.1% in the person class. These results gave
a mAP of 58.3%, suggesting that the model performed reasonably well.

Figure 37. ResNet-50 validation results.

4.4.2. Tests
To validate the results obtained, several comparative tests were carried out on the

three trained models, using various videos recorded in real context. For these tests, the
error/accuracy of the different models was taken into account as well as the consumption
of computational resources using the FPS comparison. According to [71], video input is
more demanding in terms of computing power than direct input from a webcam or similar
device. The confidence parameter was set to 93%, i.e., only bounding boxes appear for the
object classes that the model has identified with a confidence equal to or greater than this
threshold.

In a future prototype, it is intended to place the camera in strategic locations, such as
on a pole about a meter off the ground (a topic that will be studied in the second part of
this work). In addition, cameras with a high field of view (FOV) will be used, allowing
objects to appear in the scene for longer. The initial option of carrying out tests with the

Figure 37. ResNet-50 validation results.

4.4.2. Tests

To validate the results obtained, several comparative tests were carried out on the
three trained models, using various videos recorded in real context. For these tests, the
error/accuracy of the different models was taken into account as well as the consumption
of computational resources using the FPS comparison. According to [71], video input is
more demanding in terms of computing power than direct input from a webcam or similar
device. The confidence parameter was set to 93%, i.e., only bounding boxes appear for
the object classes that the model has identified with a confidence equal to or greater than
this threshold.

In a future prototype, it is intended to place the camera in strategic locations, such as
on a pole about a meter off the ground (a topic that will be studied in the second part of
this work). In addition, cameras with a high field of view (FOV) will be used, allowing
objects to appear in the scene for longer. The initial option of carrying out tests with the
camera positioned on the ground aims to provide an effective preliminary evaluation
of the algorithms under controlled conditions, allowing for initial optimizations before
transitioning to the final configuration.

For the first test, a video containing a bicycle moving toward the camera was used to
see how each of the models identified this element. In Figure 38, we can see that all the
models correctly identify the bicycle class. Interestingly, ResNet-50 also classifies a dog in
the scenario as a person, which is an error.

Future Internet 2024, 16, x FOR PEER REVIEW 27 of 33

camera positioned on the ground aims to provide an effective preliminary evaluation of
the algorithms under controlled conditions, allowing for initial optimizations before tran-
sitioning to the final configuration.

For the first test, a video containing a bicycle moving toward the camera was used to
see how each of the models identified this element. In Figure 38, we can see that all the
models correctly identify the bicycle class. Interestingly, ResNet-50 also classifies a dog in
the scenario as a person, which is an error.

Figure 38. Examples of bicycle detection results for the three models (moving towards the camera).

Figure 39 shows that both YOLOv3-Tiny and ResNet-50 models correctly identify a
bicycle even when it moves in the opposite direction to the camera. In contrast, MobileNet-
SSD V2 identifies a bicycle as a person. It can also be seen that ResNet-50 wrongly identi-
fies a dog as a person. For this test, it can be concluded that YOLOv3-Tiny performs better
than the other models.

For the second test, videos containing people were used to see how each of the mod-
els identified this element. Figure 40 shows that all the models correctly identified the
people present, classifying them as a person. It is worth noting that ResNet-50 again iden-
tified wrongly a dog as a person. So, YOLOv3-Tiny and MobileNet-SSD V2 models per-
form better in this test.

For the last test, videos containing motorcycles were used to assess their identifica-
tion by each of the models. Figure 41 shows motorcycles moving in the opposite direction
to the camera. YOLOv3-Tiny and ResNet-50 models correctly detect and classify motor-
cycles, whereas MobileNet-SSD V2 incorrectly mistakes the motorcycle with a person.
Therefore, for this test, it can be concluded that YOLOv3-Tiny and ResNet-50 perform
better.

Figure 39. Examples of bicycle detection results for the three models (moving in the opposite direc-
tion to the camera).

Figure 38. Examples of bicycle detection results for the three models (moving towards the camera).

Figure 39 shows that both YOLOv3-Tiny and ResNet-50 models correctly identify a
bicycle even when it moves in the opposite direction to the camera. In contrast, MobileNet-
SSD V2 identifies a bicycle as a person. It can also be seen that ResNet-50 wrongly identifies
a dog as a person. For this test, it can be concluded that YOLOv3-Tiny performs better than
the other models.

Future Internet 2024, 16, 104 27 of 32

Future Internet 2024, 16, x FOR PEER REVIEW 27 of 33

camera positioned on the ground aims to provide an effective preliminary evaluation of
the algorithms under controlled conditions, allowing for initial optimizations before tran-
sitioning to the final configuration.

For the first test, a video containing a bicycle moving toward the camera was used to
see how each of the models identified this element. In Figure 38, we can see that all the
models correctly identify the bicycle class. Interestingly, ResNet-50 also classifies a dog in
the scenario as a person, which is an error.

Figure 38. Examples of bicycle detection results for the three models (moving towards the camera).

Figure 39 shows that both YOLOv3-Tiny and ResNet-50 models correctly identify a
bicycle even when it moves in the opposite direction to the camera. In contrast, MobileNet-
SSD V2 identifies a bicycle as a person. It can also be seen that ResNet-50 wrongly identi-
fies a dog as a person. For this test, it can be concluded that YOLOv3-Tiny performs better
than the other models.

For the second test, videos containing people were used to see how each of the mod-
els identified this element. Figure 40 shows that all the models correctly identified the
people present, classifying them as a person. It is worth noting that ResNet-50 again iden-
tified wrongly a dog as a person. So, YOLOv3-Tiny and MobileNet-SSD V2 models per-
form better in this test.

For the last test, videos containing motorcycles were used to assess their identifica-
tion by each of the models. Figure 41 shows motorcycles moving in the opposite direction
to the camera. YOLOv3-Tiny and ResNet-50 models correctly detect and classify motor-
cycles, whereas MobileNet-SSD V2 incorrectly mistakes the motorcycle with a person.
Therefore, for this test, it can be concluded that YOLOv3-Tiny and ResNet-50 perform
better.

Figure 39. Examples of bicycle detection results for the three models (moving in the opposite direc-
tion to the camera).
Figure 39. Examples of bicycle detection results for the three models (moving in the opposite direction
to the camera).

For the second test, videos containing people were used to see how each of the models
identified this element. Figure 40 shows that all the models correctly identified the people
present, classifying them as a person. It is worth noting that ResNet-50 again identified
wrongly a dog as a person. So, YOLOv3-Tiny and MobileNet-SSD V2 models perform
better in this test.

Future Internet 2024, 16, x FOR PEER REVIEW 28 of 33

Figure 40. Examples of person detection results for the three models.

Figure 41. Examples of motorcycle detection results for the three models (moving in the opposite
direction to the camera).

Figure 42 shows a motorcycle moving towards the camera. Both the YOLOv3-Tiny
and MobileNet-SSD V2 models fail to classify the motorcycle, wrongly classifying it as a
person. ResNet-50 correctly identifies the motorcycle. Therefore, it performs better in this
case. Figure 43 shows that all the models were able to correctly classify the motorcycle
when it was near the camera.

Figure 42. Examples of motorcycle detection results for the three models (moving towards the cam-
era).

Figure 40. Examples of person detection results for the three models.

For the last test, videos containing motorcycles were used to assess their identification
by each of the models. Figure 41 shows motorcycles moving in the opposite direction to
the camera. YOLOv3-Tiny and ResNet-50 models correctly detect and classify motorcycles,
whereas MobileNet-SSD V2 incorrectly mistakes the motorcycle with a person. Therefore,
for this test, it can be concluded that YOLOv3-Tiny and ResNet-50 perform better.

Figure 42 shows a motorcycle moving towards the camera. Both the YOLOv3-Tiny
and MobileNet-SSD V2 models fail to classify the motorcycle, wrongly classifying it as a
person. ResNet-50 correctly identifies the motorcycle. Therefore, it performs better in this
case. Figure 43 shows that all the models were able to correctly classify the motorcycle
when it was near the camera.

As far as computing resources are concerned, after the video test was completed, it
was observed that the most demanding model was the ResNet-50, reaching only 4.15 FPS.
On the other hand, the model that proved to be the least demanding was the MobileNet-
SSD V2, reaching 27.85 FPS. Finally, the YOLOv3-Tiny achieved a rate of 16.58 FPS. From
these results, it was concluded that ResNet-50 could be too demanding for the scenario
considered in the context of this work. Table 3 summarizes the results of the performance
metrics of the models under evaluation.

Future Internet 2024, 16, 104 28 of 32

Future Internet 2024, 16, x FOR PEER REVIEW 28 of 33

Figure 40. Examples of person detection results for the three models.

Figure 41. Examples of motorcycle detection results for the three models (moving in the opposite
direction to the camera).

Figure 42 shows a motorcycle moving towards the camera. Both the YOLOv3-Tiny
and MobileNet-SSD V2 models fail to classify the motorcycle, wrongly classifying it as a
person. ResNet-50 correctly identifies the motorcycle. Therefore, it performs better in this
case. Figure 43 shows that all the models were able to correctly classify the motorcycle
when it was near the camera.

Figure 42. Examples of motorcycle detection results for the three models (moving towards the cam-
era).

Figure 41. Examples of motorcycle detection results for the three models (moving in the opposite
direction to the camera).

Future Internet 2024, 16, x FOR PEER REVIEW 28 of 33

Figure 40. Examples of person detection results for the three models.

Figure 41. Examples of motorcycle detection results for the three models (moving in the opposite
direction to the camera).

Figure 42 shows a motorcycle moving towards the camera. Both the YOLOv3-Tiny
and MobileNet-SSD V2 models fail to classify the motorcycle, wrongly classifying it as a
person. ResNet-50 correctly identifies the motorcycle. Therefore, it performs better in this
case. Figure 43 shows that all the models were able to correctly classify the motorcycle
when it was near the camera.

Figure 42. Examples of motorcycle detection results for the three models (moving towards the cam-
era).
Figure 42. Examples of motorcycle detection results for the three models (moving towards
the camera).

Future Internet 2024, 16, x FOR PEER REVIEW 29 of 33

Figure 43. Examples of motorcycle detection results for the three models.

As far as computing resources are concerned, after the video test was completed, it
was observed that the most demanding model was the ResNet-50, reaching only 4.15 FPS.
On the other hand, the model that proved to be the least demanding was the MobileNet-
SSD V2, reaching 27.85 FPS. Finally, the YOLOv3-Tiny achieved a rate of 16.58 FPS. From
these results, it was concluded that ResNet-50 could be too demanding for the scenario
considered in the context of this work. Table 3 summarizes the results of the performance
metrics of the models under evaluation.

Table 3. Comparative table of performance metrics of the models tested.

 AP mAP FPS

YOLOv3-Tiny
Bicycle: 65.27%

Motorcycle: 78.71%
Person: 62.02%

68.7% 16.58

MobileNet-SSD V2
Bicycle: 46.88%

Motorcycle: 50.51%
Person: 36.16%

44.52% 27.85

FasterRCNN and
ResNet-50

Bicycle: 56.2%
Motorcycle: 67.6%

Person: 51.1%
58.3% 4.15

It was concluded that YOLOv3-Tiny achieved a mAP of 68.7%, while MobileNet-SSD
V2 only achieved 44.52%. These results corroborate the results obtained in the validation
of the models, indicating that YOLOv3-Tiny has superior accuracy. Although MobileNet-
SSD V2 offers a higher FPS rate, its lower accuracy suggests a limitation in the reliability
of the data obtained. Based on this analysis, YOLOv3-Tiny is considered the most prom-
ising model for the solution to be developed in future work.

5. Conclusions
This work aims to present a response to the identified challenge of the lack of accurate

and reliable data on the actual use of walking, hiking, and cycling trails and routes. The
absence of detailed information on the frequency of use and the types of users of these
infrastructures hinders the assessment of the tourist impact on the regions, as well as man-
agement, maintenance, and access control itself.

Initially, a comprehensive study was carried out of various projects, techniques, and
methods applied to the identification and quantification of different types of users. For
this study, an analysis of various articles was conducted using the PRISMA methodology.
As a result of this analysis, 12 articles were selected that fit the theme of this work. Con-
sidering these articles, a critical analysis was carried out of the most prevalent and most

Figure 43. Examples of motorcycle detection results for the three models.

It was concluded that YOLOv3-Tiny achieved a mAP of 68.7%, while MobileNet-SSD
V2 only achieved 44.52%. These results corroborate the results obtained in the validation of
the models, indicating that YOLOv3-Tiny has superior accuracy. Although MobileNet-SSD
V2 offers a higher FPS rate, its lower accuracy suggests a limitation in the reliability of the
data obtained. Based on this analysis, YOLOv3-Tiny is considered the most promising
model for the solution to be developed in future work.

Future Internet 2024, 16, 104 29 of 32

Table 3. Comparative table of performance metrics of the models tested.

AP mAP FPS

YOLOv3-Tiny
Bicycle: 65.27%

Motorcycle: 78.71%
Person: 62.02%

68.7% 16.58

MobileNet-SSD V2
Bicycle: 46.88%

Motorcycle: 50.51%
Person: 36.16%

44.52% 27.85

FasterRCNN and
ResNet-50

Bicycle: 56.2%
Motorcycle: 67.6%

Person: 51.1%
58.3% 4.15

5. Conclusions

This work aims to present a response to the identified challenge of the lack of accurate
and reliable data on the actual use of walking, hiking, and cycling trails and routes. The
absence of detailed information on the frequency of use and the types of users of these
infrastructures hinders the assessment of the tourist impact on the regions, as well as
management, maintenance, and access control itself.

Initially, a comprehensive study was carried out of various projects, techniques, and
methods applied to the identification and quantification of different types of users. For this
study, an analysis of various articles was conducted using the PRISMA methodology. As a
result of this analysis, 12 articles were selected that fit the theme of this work. Considering
these articles, a critical analysis was carried out of the most prevalent and most promising
computer vision techniques. YOLOv3-Tiny, MobileNet-SSD V2, and ResNet-50 were identi-
fied for further study. Next, fundamental concepts of computer vision, CNN architectures,
as well as one-stage and two-stage detection approaches were covered, followed by an
analysis of the specific features of YOLOv3-Tiny, MobileNet-SSD V2, and ResNet-50.

Then, a performance assessment was carried out of these models. A new dataset was
developed for this purpose. The benchmark scenario and the training environment for
each model were detailed. The performance metrics used to evaluate the results obtained
for each of the models were also explained. The training and validation results for each
model were then analyzed. In addition, to validate the training results, a set of tests were
carried out using videos captured in real context. Due to the hardware limitations of the
prototype to be built in future work, the results analysis also considered the computing
power required for each model, measuring their performance in terms of frames per second.
In conclusion, it should be noted that, although YOLOv3-Tiny did not register the best
FPS rate, it did achieve the best mAP. Thus, the choice between real-time performance and
accuracy leads to the conclusion that YOLOv3-Tiny is the most promising model to be used
in the development of the future prototype.

It should be noted that the work presented in this paper represents the first step
in an ongoing effort to develop a prototype to be applied, tested, and demonstrated in
real-world scenarios. Therefore, as for future work, it is necessary to consider technological
challenges, as well as opportunities to improve it. In this way, challenges are faced in
remote environments, subject to adverse conditions such as rain, fog, extreme temperatures,
and the risk of malicious activities such as theft. To guarantee the system’s operability in
the face of these challenges, it is essential to implement suitable protections. In addition, the
issue of energy is crucial, considering that setting up a network infrastructure for the site
can be unfeasible. In this context, the implementation of alternative energy sources, such
as solar panels [72], is a viable solution. Mobile network integration is also indispensable
for the efficient transmission of collected data to a centralized database. Although it is
possible to schedule the periodic transmission of data, optimizing resource consumption,
the absence of mobile network infrastructure can be circumvented by involving route users.
An effective strategy in this regard involves the use of a dedicated mobile application

Future Internet 2024, 16, 104 30 of 32

installed on users’ devices, turning them into “bridges” for data transfer. In addition to
these challenges, it is necessary to substantially enrich the dataset, and carry out additional
tests to optimize the mAP in the models evaluated.

Author Contributions: Conceptualization, J.M., P.M. and A.Q.; methodology, J.M. and P.M.; valida-
tion, J.M.L.P.C. and V.N.G.J.S.; formal analysis, J.M.L.P.C. and V.N.G.J.S.; investigation, J.M. and P.M.;
writing—original draft preparation, J.M. and P.M.; writing—review and editing, A.Q., J.M.L.P.C. and
V.N.G.J.S.; supervision, J.M.L.P.C. and V.N.G.J.S.; funding acquisition, J.M.L.P.C. and V.N.G.J.S. All
authors have read and agreed to the published version of the manuscript.

Funding: J.M.L.P.C. and V.N.G.J.S. acknowledge that this work is funded by FCT/MCTES through
national funds and, when applicable, co-funded EU funds under the project UIDB/50008/2020.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Federação de Campismo e Montanhismo de Portugal Regulamento de Homologação De Percursos. Lisboa, Portugal, 2006.

Available online: https://cm-nisa.pt/images/documentos/areas_atividade/desporto/regulamentopercursospedestres.pdf
(accessed on 9 December 2023).

2. Sinalização. Available online: http://www.solasrotas.org/2008/09/sinalizao.html (accessed on 9 December 2023).
3. Carvalho, P. Pedestrianismo e Percursos Pedestres; Cadernos de Geograia: Coimbra, Portugal, 2009.
4. Federação de Campismo e Montanhismo de Portugal Site Oficial Da FCMP. Available online: https://www.fcmportugal.com/

(accessed on 16 January 2024).
5. Federação de Campismo e Montanhismo de Portugal Site Oficial Da FCMP—Percursos Pedestres. Available online: https:

//www.fcmportugal.com/percursos-pedestres/ (accessed on 9 December 2023).
6. Zhao, W.; Li, J. A Survey of Object Detection Methods in Inclement Weather Conditions. In Proceedings of the 2023 IEEE

International Conference on Unmanned Systems (ICUS), Hefei, China, 13–15 October 2023; IEEE: New York, NY, USA, 2023;
pp. 1405–1412.

7. Vavilin, A.; Lomov, A.; Roman, T. Real-Time Train Wagon Counting and Number Recognition Algorithm. In Proceedings of the
2022 International Workshop on Intelligent Systems (IWIS), Ulsan, Republic of Korea, 17–19 August 2022; pp. 1–4.

8. Gideon Why Vision Is Better than LiDAR. Available online: https://www.gideon.ai/resources/why-is-vision-better-than-lidar-
for-logistics-robots/ (accessed on 27 February 2024).

9. Cardoso, O. Visão Computacional: Desafios e Avanços Recentes Na Área|Vigeversa. Available online: https://vigeversa.com/
inteligencia-artificial/visao-computacional/ (accessed on 27 February 2024).

10. Roboflow Inc. Roboflow Website. Available online: https://roboflow.com/ (accessed on 22 November 2023).
11. Prisma PRISMA Statement. Available online: http://www.prisma-statement.org/ (accessed on 6 November 2023).
12. FCCN Biblioteca Do Conhecimento Online (b-On). Available online: https://www.b-on.pt/ (accessed on 7 November 2023).
13. ISCTE, B. Guia de Apoio Ao Utilizador (b-On); Lisboa, Portugal, 2013; Volume 3. Available online: https://www.iscte-iul.pt/assets/

files/2017/01/30/1485777979520_Guia_b_on_MOD_SID_AU_003_4.pdf (accessed on 7 November 2023).
14. Minh, K.T.; Dinh, Q.-V.; Nguyen, T.-D.; Nhut, T.N. Vehicle Counting on Vietnamese Street. In Proceedings of the 2023 IEEE

Statistical Signal Processing Workshop (SSP), Hanoi, Vietnam, 2–5 July 2023; pp. 160–164.
15. Hong, C.J.; Mazlan, M.H. Development of Automated People Counting System Using Object Detection and Tracking. Int. J.

Online Biomed. Eng. 2023, 19, 18–30. [CrossRef]
16. Chatrasi, A.L.V.S.S.; Batchu, A.G.; Kommareddy, L.S.; Garikipati, J. Pedestrian and Object Detection Using Image Processing

by YOLOv3 and YOLOv2. In Proceedings of the 7th International Conference on Trends in Electronics and Informatics, ICOEI
2023—Proceedings, Tirunelveli, India, 11–13 April 2023; pp. 1667–1672.

17. Anil, J.M.; Mathews, L.; Renji, R.; Jose, R.M.; Thomas, S. Vehicle Counting Based on Convolution Neural Network. In Proceedings
of the 7th International Conference on Intelligent Computing and Control Systems, ICICCS, Madurai, India, 17–19 May 2023;
pp. 695–699.

18. Myint, E.P.; Sein, M.M. People Detecting and Counting System. In LifeTech 2021, Proceedings of the 2021 IEEE 3rd Global Conference
on Life Sciences and Technologies, Nara, Japan, 9–11 March 2021; IEEE: Nara, Japan, 2021; pp. 289–290.

19. Kolluri, J.; Das, R. Intelligent Multimodal Pedestrian Detection Using Hybrid Metaheuristic Optimization with Deep Learning
Model. Image Vis. Comput. 2023, 131, 104268. [CrossRef]

20. Mimboro, P.; Heryadi, Y.; Lukas; Suparta, W.; Wibowo, A. Realtime Vehicle Counting Method Using Haar Cascade Classifier
Model. In Proceedings of the 2021 International Conference on Advanced Mechatronics, Intelligent Manufacture and Industrial
Automation, ICAMIMIA, Surabaya, Indonesia, 8–9 December 2021; IEEE: Surabaya, Indonesia, 2021; pp. 229–233.

https://cm-nisa.pt/images/documentos/areas_atividade/desporto/regulamentopercursospedestres.pdf
http://www.solasrotas.org/2008/09/sinalizao.html
https://www.fcmportugal.com/
https://www.fcmportugal.com/percursos-pedestres/
https://www.fcmportugal.com/percursos-pedestres/
https://www.gideon.ai/resources/why-is-vision-better-than-lidar-for-logistics-robots/
https://www.gideon.ai/resources/why-is-vision-better-than-lidar-for-logistics-robots/
https://vigeversa.com/inteligencia-artificial/visao-computacional/
https://vigeversa.com/inteligencia-artificial/visao-computacional/
https://roboflow.com/
http://www.prisma-statement.org/
https://www.b-on.pt/
https://www.iscte-iul.pt/assets/files/2017/01/30/1485777979520_Guia_b_on_MOD_SID_AU_003_4.pdf
https://www.iscte-iul.pt/assets/files/2017/01/30/1485777979520_Guia_b_on_MOD_SID_AU_003_4.pdf
https://doi.org/10.3991/ijoe.v19i06.38515
https://doi.org/10.1016/j.imavis.2023.104628

Future Internet 2024, 16, 104 31 of 32

21. Vignarca, D.; Prakash, J.; Vignati, M.; Sabbioni, E. Improved Person Counting Performance Using Kalman Filter Based on Image
Detection and Tracking. In Proceedings of the 2021 AEIT International Conference on Electrical and Electronic Technologies for
Automotive, AEIT AUTOMOTIVE, Torino, Italy, 17–19 November 2021; IEEE: Torino, Italy, 2021; pp. 1–6.

22. Minh, H.T.; Mai, L.; Minh, T.V. Performance Evaluation of Deep Learning Models on Embedded Platform for Edge AI-Based
Real Time Traffic Tracking and Detecting Applications. In Proceedings of the 2021 15th International Conference on Advanced
Computing and Applications, ACOMP, Ho Chi Minh City, Vietnam, 24–26 November 2021; pp. 128–135.

23. Kim, J.; Suh, Y.; Lee, J.; Chae, H.; Ahn, H.; Chung, Y.; Park, D. EmbeddedPigCount: Pig Counting with Video Object Detection
and Tracking on an Embedded Board. Sensors 2022, 22, 2689. [CrossRef] [PubMed]

24. Gomes, H.; Redinha, N.; Lavado, N.; Mendes, M. Counting People and Bicycles in Real Time Using YOLO on Jetson Nano.
Energies 2022, 15, 8816. [CrossRef]

25. LeCun, Y.; Bengio, Y.; Hinton, G. Deep Learning. Nature 2015, 521, 436–444. [CrossRef] [PubMed]
26. Morera, Á.; Sánchez, Á.; Moreno, A.B.; Sappa, Á.D.; Vélez, J.F. SSD vs. YOLO for Detection of Outdoor Urban Advertising Panels

under Multiple Variabilities. Sensors 2020, 20, 4587. [CrossRef] [PubMed]
27. Amazon Web Services O Que é Visão Computacional?—Explicação de IA/ML de Reconhecimento de Imagem—AWS. Available

online: https://aws.amazon.com/pt/what-is/computer-vision/ (accessed on 30 October 2023).
28. IBM O Que São Redes Neurais? IBM. Available online: https://www.ibm.com/br-pt/topics/neural-networks (accessed on

17 October 2023).
29. Nunes dos Santos, V. Reconhecimento de Objetos Em Uma Cena Utilizando Redes Neurais Convolucionais. Bachelor’s Thesis,

Universidade Tecnológica Federal do Paraná, Curitiba, Brazil, 2018.
30. Bhatt, D.; Patel, C.; Talsania, H.; Patel, J.; Vaghela, R.; Pandya, S.; Modi, K.; Ghayvat, H. CNN Variants for Computer Vision:

History, Architecture, Application, Challenges and Future Scope. Electronics 2021, 10, 2470. [CrossRef]
31. Deep Learning Book Capítulo 43—Camadas de Pooling Em Redes Neurais Convolucionais. Available online: https://www.

deeplearningbook.com.br/camadas-de-pooling-em-redes-neurais-convolucionais/ (accessed on 5 November 2023).
32. Barbosa, G.; Bezerra, G.M.; de Medeiros, D.S.; Andreoni Lopez, M.; Mattos, D. Segurança Em Redes 5G: Oportunidades e

Desafios Em Detecção de Anomalias e Predição de Tráfego Baseadas Em Aprendizado de Máquina. In Proceedings of the
Minicursos do XXI Simpósio Brasileiro de Segurança da Informação e de Sistemas Computacionais, Online, Belém, 4–7 October
2021; pp. 164–165. [CrossRef]

33. Poloni, K. Redes Neurais Convolucionais. Available online: https://medium.com/itau-data/redes-neurais-convolucionais-2206
a089c715 (accessed on 1 November 2023).

34. Archana, V.; Kalaiselvi, S.; Thamaraiselvi, D.; Gomathi, V.; Sowmiya, R. A Novel Object Detection Framework Using Convolutional
Neural Networks (CNN) and RetinaNet. In Proceedings of the International Conference on Automation, Computing and
Renewable Systems, ICACRS, Pudukkottai, India, 13–15 December 2022; pp. 1070–1074.

35. Carranza-García, M.; Torres-Mateo, J.; Lara-Benítez, P.; García-Gutiérrez, J. On the Performance of One-Stage and Two-Stage
Object Detectors in Autonomous Vehicles Using Camera Data. Remote Sens. 2020, 13, 89. [CrossRef]

36. Zhou, L.; Lin, T.; Knoll, A. Fast and Accurate Object Detection on Asymmetrical Receptive Field. Comput. Vis. Pattern Recognit.
Arxiv 2023, arXiv:2303.08995. [CrossRef]

37. Thakur, N. A Detailed Introduction to Two Stage Object Detectors. Available online: https://namrata-thakur893.medium.com/a-
detailed-introduction-to-two-stage-object-detectors-d4ba0c06b14e (accessed on 23 December 2023).

38. Redmon, J.; Farhadi, A. YOLOv3: An Incremental Improvement. Comput. Vis. Pattern Recognit. 2018, arXiv:1804.02767. [CrossRef]
39. Bajaj, V. The YOLO Algorithm—Deep Learning Specialization—Coursera. Available online: https://vikram-bajaj.gitbook.

io/deep-learning-specialization-coursera/convolutional-neural-networks/object-detection/the-yolo-algorithm (accessed on
28 January 2024).

40. Adarsh, P.; Rathi, P.; Kumar, M. YOLO V3-Tiny: Object Detection and Recognition Using Stage Improved Model. In Proceedings
of the 2020 6th International Conference on Advanced Computing & Communication Systems (ICACCS), Coimbatore, India,
6–7 March 2020; pp. 687–694.

41. Li, T.; Ma, Y.; Endoh, T. A Systematic Study of Tiny YOLO3 Inference: Toward Compact Brainware Processor With Less Memory
and Logic Gate. IEEE Access 2020, 8, 142931–142955. [CrossRef]

42. Cochard, D. MobilenetSSD: A Machine Learning Model for Fast Object Detection. Available online: https://medium.com/axinc-
ai/mobilenetssd-a-machine-learning-model-for-fast-object-detection-37352ce6da7d (accessed on 16 January 2024).

43. Sabina, N.; Aneesa, M.P.; Haseena, P.V. Object Detection Using YOLO And Mobilenet SSD: A Comparative Study. Int. J. Eng. Res.
Technol. 2022, 11, 136–138.

44. Howard, A.; Sandler, M.; Chu, G.; Chen, L.-C.; Chen, B.; Tan, M.; Wang, W.; Zhu, Y.; Pang, R.; Vasudevan, V.; et al. Searching for
MobileNetV3. Comput. Vis. Pattern Recognit. 2019, arXiv:1905.02244. [CrossRef]

45. Sovit Rath, R. Object Detection Using PyTorch Faster RCNN ResNet50 FPN V2. Available online: https://debuggercafe.com/
object-detection-using-pytorch-faster-rcnn-resnet50-fpn-v2/ (accessed on 26 February 2024).

46. ResNet-50: The Basics and a Quick Tutorial. Available online: https://datagen.tech/guides/computer-vision/resnet-50/
(accessed on 26 February 2024).

47. Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. IEEE
Trans. Pattern Anal. Mach. Intell. 2017, 39, 1137–1149. [CrossRef] [PubMed]

https://doi.org/10.3390/s22072689
https://www.ncbi.nlm.nih.gov/pubmed/35408302
https://doi.org/10.3390/en15238816
https://doi.org/10.1038/nature14539
https://www.ncbi.nlm.nih.gov/pubmed/26017442
https://doi.org/10.3390/s20164587
https://www.ncbi.nlm.nih.gov/pubmed/32824232
https://aws.amazon.com/pt/what-is/computer-vision/
https://www.ibm.com/br-pt/topics/neural-networks
https://doi.org/10.3390/electronics10202470
https://www.deeplearningbook.com.br/camadas-de-pooling-em-redes-neurais-convolucionais/
https://www.deeplearningbook.com.br/camadas-de-pooling-em-redes-neurais-convolucionais/
https://doi.org/10.5753/SBC.7165.8.4
https://medium.com/itau-data/redes-neurais-convolucionais-2206a089c715
https://medium.com/itau-data/redes-neurais-convolucionais-2206a089c715
https://doi.org/10.3390/rs13010089
https://doi.org/10.48550/arXiv.2303.08995
https://namrata-thakur893.medium.com/a-detailed-introduction-to-two-stage-object-detectors-d4ba0c06b14e
https://namrata-thakur893.medium.com/a-detailed-introduction-to-two-stage-object-detectors-d4ba0c06b14e
https://doi.org/10.48550/arXiv.1804.02767
https://vikram-bajaj.gitbook.io/deep-learning-specialization-coursera/convolutional-neural-networks/object-detection/the-yolo-algorithm
https://vikram-bajaj.gitbook.io/deep-learning-specialization-coursera/convolutional-neural-networks/object-detection/the-yolo-algorithm
https://doi.org/10.1109/ACCESS.2020.3013934
https://medium.com/axinc-ai/mobilenetssd-a-machine-learning-model-for-fast-object-detection-37352ce6da7d
https://medium.com/axinc-ai/mobilenetssd-a-machine-learning-model-for-fast-object-detection-37352ce6da7d
https://doi.org/10.48550/arXiv.1905.02244
https://debuggercafe.com/object-detection-using-pytorch-faster-rcnn-resnet50-fpn-v2/
https://debuggercafe.com/object-detection-using-pytorch-faster-rcnn-resnet50-fpn-v2/
https://datagen.tech/guides/computer-vision/resnet-50/
https://doi.org/10.1109/TPAMI.2016.2577031
https://www.ncbi.nlm.nih.gov/pubmed/27295650

Future Internet 2024, 16, 104 32 of 32

48. Pixabay Pixabay Website. Available online: https://pixabay.com/ (accessed on 29 November 2023).
49. Unsplash Unsplash Website. Available online: https://unsplash.com/pt-br (accessed on 29 November 2023).
50. Miguel, J.; Mendonça, P. Person, Bicycle and Motorcyle Dataset. Available online: https://universe.roboflow.com/projeto-gfvuy/

person-bicycle-motorcyle/model/7 (accessed on 26 January 2024).
51. Nelson, J. How to Label Image Data for Computer Vision Models. Available online: https://blog.roboflow.com/tips-for-how-to-

label-images/ (accessed on 15 January 2024).
52. Google Colab. Available online: https://colab.google/ (accessed on 22 December 2023).
53. Weka Why GPUs for Machine Learning? A Complete Explanation—WEKA. Available online: https://www.weka.io/learn/ai-

ml/gpus-for-machine-learning/ (accessed on 23 December 2023).
54. Google Colab—FAQ. Available online: https://research.google.com/colaboratory/faq.html#resource-limits (accessed on

15 January 2024).
55. Armazenamento Na Nuvem Pessoal e Plataforma de Partilha de Ficheiros—Google. Available online: https://www.google.com/

intl/pt-PT/drive/ (accessed on 23 December 2023).
56. Roboflow Notebook—Train Yolov4 Tiny Object Detection On Custom Data. Available online: https://github.com/roboflow/

notebooks/blob/main/notebooks/train-yolov4-tiny-object-detection-on-custom-data.ipynb (accessed on 23 December 2023).
57. NVIDIA. NVIDIA CUDA Compiler Driver. Available online: https://docs.nvidia.com/cuda/cuda-compiler-driver-nvcc/index.

html (accessed on 23 December 2023).
58. Darknet Darknet: Open Source Neural Networks in C. Available online: https://pjreddie.com/darknet/ (accessed on

23 December 2023).
59. yaming116 Darknet—Yolov3-Tiny Weights. Available online: https://github.com/smarthomefans/darknet-test/blob/master/

yolov3-tiny.weights (accessed on 23 December 2023).
60. Traore, M. Roboflow’s Python Pip Package For Computer Vision. Available online: https://blog.roboflow.com/pip-install-

roboflow/ (accessed on 23 December 2023).
61. Charette, S. Programming Comments—Darknet FAQ. Available online: https://www.ccoderun.ca/programming/darknet_faq/

(accessed on 28 January 2024).
62. Juras, E.; Technology Consultants, E. Notebook—Train TFLite2 Object Detection Model. Available online: https://colab.research.

google.com/github/EdjeElectronics/TensorFlow-Lite-Object-Detection-on-Android-and-Raspberry-Pi/blob/master/Train_
TFLite2_Object_Detction_Model.ipynb (accessed on 15 January 2024).

63. Juras, E.; Technology Consultants, E.; Miguel, J.; Mendonça, P. Notebook Adaptado—Train TFLite2 Object Detection Model.
Available online: https://colab.research.google.com/drive/1rK3GNbJA_i_rupahuWyWgvrEHHvvp44i?authuser=1#scrollTo=
fF8ysCfYKgTP (accessed on 15 January 2024).

64. TensorFlow; vighneshbirodkar; TF Object Detection Team TensorFlow 2 Detection Model Zoo. Available online: https://github.
com/tensorflow/models/blob/master/research/object_detection/g3doc/tf2_detection_zoo.md (accessed on 15 January 2024).

65. sovit-123 FasterRCNN Pytorch Training Pipeline: PyTorch Faster R-CNN Object Detection on Custom Dataset. Available online:
https://github.com/sovit-123/fasterrcnn-pytorch-training-pipeline (accessed on 15 January 2024).

66. PyTorch PyTorch. Available online: https://pytorch.org/ (accessed on 24 December 2023).
67. Lakera Average Precision. Available online: https://www.lakera.ai/ml-glossary/average-precision (accessed on 17 January 2024).
68. Cook, J.A.; Ranstam, J. Overfitting. Br. J. Surg. 2016, 103, 1814. [CrossRef] [PubMed]
69. Ying, X. An Overview of Overfitting and Its Solutions. J. Phys. Conf. Ser. 2019, 1168, 022022. [CrossRef]
70. TensorFlow TensorBoard. Available online: https://www.tensorflow.org/tensorboard?hl=pt-br (accessed on 16 January 2024).
71. Rosebrock, A. YOLO and Tiny-YOLO Object Detection on the Raspberry Pi and Movidius NCS—PyImageSearch. Available

online: https://pyimagesearch.com/2020/01/27/yolo-and-tiny-yolo-object-detection-on-the-raspberry-pi-and-movidius-ncs/
(accessed on 17 January 2024).

72. Serra, R. Como Funcionam Os Painéis Solares Para Casa? Available online: https://www.doutorfinancas.pt/energia/como-
funcionam-os-paineis-solares-para-casa/ (accessed on 29 November 2023).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://pixabay.com/
https://unsplash.com/pt-br
https://universe.roboflow.com/projeto-gfvuy/person-bicycle-motorcyle/model/7
https://universe.roboflow.com/projeto-gfvuy/person-bicycle-motorcyle/model/7
https://blog.roboflow.com/tips-for-how-to-label-images/
https://blog.roboflow.com/tips-for-how-to-label-images/
https://colab.google/
https://www.weka.io/learn/ai-ml/gpus-for-machine-learning/
https://www.weka.io/learn/ai-ml/gpus-for-machine-learning/
https://research.google.com/colaboratory/faq.html#resource-limits
https://www.google.com/intl/pt-PT/drive/
https://www.google.com/intl/pt-PT/drive/
https://github.com/roboflow/notebooks/blob/main/notebooks/train-yolov4-tiny-object-detection-on-custom-data.ipynb
https://github.com/roboflow/notebooks/blob/main/notebooks/train-yolov4-tiny-object-detection-on-custom-data.ipynb
https://docs.nvidia.com/cuda/cuda-compiler-driver-nvcc/index.html
https://docs.nvidia.com/cuda/cuda-compiler-driver-nvcc/index.html
https://pjreddie.com/darknet/
https://github.com/smarthomefans/darknet-test/blob/master/yolov3-tiny.weights
https://github.com/smarthomefans/darknet-test/blob/master/yolov3-tiny.weights
https://blog.roboflow.com/pip-install-roboflow/
https://blog.roboflow.com/pip-install-roboflow/
https://www.ccoderun.ca/programming/darknet_faq/
https://colab.research.google.com/github/EdjeElectronics/TensorFlow-Lite-Object-Detection-on-Android-and-Raspberry-Pi/blob/master/Train_TFLite2_Object_Detction_Model.ipynb
https://colab.research.google.com/github/EdjeElectronics/TensorFlow-Lite-Object-Detection-on-Android-and-Raspberry-Pi/blob/master/Train_TFLite2_Object_Detction_Model.ipynb
https://colab.research.google.com/github/EdjeElectronics/TensorFlow-Lite-Object-Detection-on-Android-and-Raspberry-Pi/blob/master/Train_TFLite2_Object_Detction_Model.ipynb
https://colab.research.google.com/drive/1rK3GNbJA_i_rupahuWyWgvrEHHvvp44i?authuser=1#scrollTo=fF8ysCfYKgTP
https://colab.research.google.com/drive/1rK3GNbJA_i_rupahuWyWgvrEHHvvp44i?authuser=1#scrollTo=fF8ysCfYKgTP
https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/tf2_detection_zoo.md
https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/tf2_detection_zoo.md
https://github.com/sovit-123/fasterrcnn-pytorch-training-pipeline
https://pytorch.org/
https://www.lakera.ai/ml-glossary/average-precision
https://doi.org/10.1002/bjs.10244
https://www.ncbi.nlm.nih.gov/pubmed/27901280
https://doi.org/10.1088/1742-6596/1168/2/022022
https://www.tensorflow.org/tensorboard?hl=pt-br
https://pyimagesearch.com/2020/01/27/yolo-and-tiny-yolo-object-detection-on-the-raspberry-pi-and-movidius-ncs/
https://www.doutorfinancas.pt/energia/como-funcionam-os-paineis-solares-para-casa/
https://www.doutorfinancas.pt/energia/como-funcionam-os-paineis-solares-para-casa/

	Introduction
	Related Work
	Research Questions
	Information Sources and Research Strategy
	Selection Process
	Analysis of Studies
	Results Obtained
	Critical Analysis

	Computer Vision Techniques
	CNN Architectures
	CNN Model Analysis
	YOLOv3-Tiny
	MobileNet-SSD V2
	FasterRCNN and ResNet-50

	Performance Evaluation
	Dataset Description
	Benchmark Scenario
	Performance Metrics
	Results and Discussion
	Train
	Tests

	Conclusions
	References

